01;05;07;11 Эффекты ограничения заряда эмиссии фотокатодов при неоднородном освещении

© Б.И. Резников¹, А.В. Субашиев²

¹Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 e-mail: Boris.Reznikov@pop.ioffe.rssi.ru
 ²Санкт-Петербургский государственный технический университет,
 195251 Санкт-Петербург, Россия
 e-mail: arsen@spes.stu.neva.ru

(Поступило в Редакцию 27 июня 2001 г.)

Теоретически исследована фотоэмиссия из полупроводника с отрицательным электронным сродством для неравномерного распределения интенсивности света на освещаемой поверхности при стационарном и импульсном возбуждении. Показано, что максимальное значение тока эмиссии экспоненциально возрастает с увеличением отношения отрицательного электронного сродства Δ_0 к характерной энергии туннелирования E_0 , и найдена интенсивность возбуждения I_{opt} , соответствующая максимальному току. Неравномерность возбуждения приводит к ослаблению зависимости тока эмиссии от интенсивности вблизи его максимального значения. Время восстановления квантовой эффективности, измеряемое при двухимпульсном возбуждении, слабо зависит от интенсивности и неравномерности распределения интенсивности в пятне и близко ко времени релаксации малых фотонапряжений.

Введение

Интенсивные электронные пучки, получаемые с помощью GaAs фотокатодов с отрицательным электронным сродством (ОЭС), используются как в электронных ускорителях высоких энергий [1], так и в полупроводниковой электронной литографии [2]. При сильном оптическом возбуждении проявляются эффекты поверхностного ограничения заряда эмиссии, связанные с накоплением электронов в приповерхностной потенциальной яме области объемного заряда (ООЗ) и возникновением фотонапряжения, уменьшающего ОЭС и препятствующего эмиссии [3-5]. Основные закономерности эффекта насыщения заряда были проанализированы ранее путем численного моделирования [4,6-8] и аналитически [8] при различных предположениях о восстанавливающем токе дырок к поверхности, но для однородного распределения интенсивности возбуждающего света в пучке.

При размере светового пятна, меньшем и близком к площади активированной части фотокатода, становится существенным поперечное распределение интенсивности света в пятне. В известных нам экспериментах по эмиссии заряда из фотокатодов оно варьировалось от "неправильной" и несимметричной функции относительно оси пучка [9] до П-образного распределения с 30%-ным изменением интенсивности по сечению [10].

Неравномерное распределение интенсивности света по пятну имеет место и при использовании локального возбуждения для предотвращения деактивации катода обратным потоком ионов [11], и при диагностике распределения квантового выхода по поверхности [12]. Учет неоднородности интенсивности важен также при использовании эффекта насыщения для определения по экспериментальным данным таких параметров фотоэмиттеров, как проницаемость поверхностного барьера и величина ОЭС.

В настоящей работе рассмотрена задача об эмиссии при неравномерном распределении интенсивности падающего света в условиях интенсивного возбуждения. Изучена зависимость тока эмиссии от интенсивности локального возбуждения как в стационарном так и в импульсном режиме и выявлены условия получения максимального тока при возбуждении гауссовым пучком, типичным для одномодовых лазеров [13].

1. Модель фотоэмиссии

1. Рассмотрим фотоэмиссию из рабочего слоя толщиной d полупроводникового материала с поверхностным слоем ООЗ толщины w, активированным до отрицательного электронного сродства. Будем считать, что интенсивность светового излучения в полупроводнике Iраспределена неравномерно по поверхности и изменяется с расстоянием от центра светового пятна $I = I(\rho)$. Локальная плотность потока эмиссии фотоэлектронов $q_{\rm emi}$ и полный поток эмиссии $q_{\rm tot}$ равны

$$q_{\rm emi} = q_w B_n, \quad q_{\rm tot} = 2\pi \int_0^{\rho_{\rm max}} q_{\rm emi}(\rho) \rho d\rho, \qquad (1)$$

где q_w — плотность потока электронов к поверхности на границе рабочей области и приповерхностного слоя ООЗ, B_n — вероятность выхода в вакуум из приповерхностной ямы ООЗ.

В условиях эксперимента масштаб неоднородности радиального распределения интенсивности возбужде-

ния существенно больше толщины рабочей области $(d \leq 1 \,\mu\text{m})$ и поток в направлении внешней нормали z к поверхности рабочего слоя преобладает $q_{nz} \gg q_{n\rho}$. Поэтому координата ρ входит в одномерное уравнение переноса как параметр через распределение $I(\rho)$. Поток электронов q_w к границе ООЗ и квазинейтральной области $z = w(w \ll d)$ может быть найден из решения уравнения диффузии в рабочей области с граничными условиями, описывающими поверхностную рекомбинацию со скоростью s_1 на гетерогранице при z = d, и быстрый захват электронов в ООЗ при z = w со скоростью \bar{v} . В результате

$$q_w = D_n \frac{dn}{dz} (w) = I(\rho) \delta \gamma, \quad \delta = \alpha (d - w).$$
 (2)

Параметр γ зависит от величин δ , $\kappa = (d - w)/L_{\text{dif}}$ и $S_1 = s_1(d - w)/D_n$, где L_{dif} и D_n — длина диффузии и коэффициент диффузии электронов в рабочем слое. В предельном случае малой объемной рекомбинации $\kappa \to 0$ и при $\delta < 1$

$$\gamma = (1 - \delta/2 + S_1/2)(1 + S_1 + s_1/\bar{v})^{-1}.$$
 (3)

При произвольных κ и δ выражение для диффузионного потока к поверхности приведено в [8]. Отметим, что поток q_w через величину γ и скорость захвата \bar{v} в ООЗ зависит от ширины ООЗ и возникающего фотонапряжения $\delta V(\delta V = V_b - V_{b0}, eV_{b0}$ — глубина ямы области объемного заряда в темноте, $e\delta V$ — ее изменение при освещении), однако, при малом отношении s_1/\bar{v} эта зависимость малосущественна.

2. При малой прозрачности поверхностного барьера на границе с вакуумом и квазиупругом характере релаксации электронов по энергии в потенциальной яме ООЗ величина B_n пропорциональна величине ОЭС, т.е. ширине интервала энергий между краем зоны проводимости и уровнем вакуума $\Delta = E_c - E_{vl}$ и линейно уменьшается с ростом фотонапряжения δV . При этом [5]

$$B_n = B_{n0} \left(1 - \frac{y}{r} \right), r = \frac{\Delta_0}{eV_{b0}}, \quad y = \frac{\delta V}{V_{b0}}.$$
 (4)

Здесь B_{n0} и Δ_0 — вероятность эмиссии и величина ОЭС в отсутствии освещения.

3. Возникающее при освещении локальное уменьшение изгиба зон в ООЗ $\delta V(\rho)$ определяется кинетикой захвата на поверхностные центры фотоэлектронов из рабочей области и дырок, туннелирующих через энергетический барьер области объемного заряда, а также растеканием неравновесных носителей в плоскости ямы ООЗ. Характерный размер области растекания заряда δl , связанный с радиальным дрейфом электронов по поверхности в ООЗ, можно оценить как $\delta l \approx \tau_e v_s$, где v_s — скорость радиального дрейфа электронов в поперечном поле, созданном фотонапряжением $v_s \sim (eD/kT)\delta V/\delta l$, $\tau_e \approx (eV_{b0}/\hbar\omega_0)\tau_{opt}$ — время релаксации энергии электрона до уровня порога подвижности в яме ООЗ, τ_{opt} — время испускания оптического фонона с энергией

 $\hbar\omega_{\rm opt}$ [5]. Для GaAs ($\hbar\omega_0 = 39 \,{\rm meV}$, $\tau_{\rm opt} \approx 0.1 \,{\rm ps}$) вплоть до фотонапряжения $\delta V \approx 0.2 \,{\rm V}$ (близкого к ОЭС и соответствующего прекращению фотоэмиссии) размер $\delta l \lesssim 0.1 \,\mu{\rm m}$, и для пучков с радиусом, превышающим 1–2 микрона, растекание электронов по ООЗ несущественно.

4. Изменение плотности поверхностного заряда *N_s* определяется разностью локальных потоков к поверхности электронов и дырок

$$\frac{dN_s}{dt} = q_{ps} - q_{ns}.$$
(5)

Поток рекомбинирующих электронов равен потоку из рабочей области за вычетом эмиссионного потока электронов, преодолевших поверхностный барьер, $q_{ns} = q_w(1-B_n) \sim I$. Ввиду быстрого захвата электронов на притягивающие поверхностные центры концентрация неравновесных носителей в ООЗ мала.

Восстанавливающий равновесие поток дырок определяется их захватом на нейтральные поверхностные центры. Плотность потока рекомбинирующих дырок равна $q_{ps} = p_w \langle v_p \sigma_p \rangle N_{ns}$, где p_w — концентрация дырок на границе ООЗ и квазинейтральной области, N_{ns} — поверхностная плотность нейтральных центров, σ_p — сечение захвата, v_p — скорость дырок. Скобками обозначено усреднение по распределению дырок и распределению уровней поверхностных состояний. Плотность нейтральных центров N_{ns} зависит от структуры поверхностного слоя. Экспериментальные данные об активации поверхности GaAs свидетельствуют об отсутствии закрепления уровня Ферми на активированых поверхностях, т.е. о наличии широкой полосы частично заполненных поверхностных состояний. При этом темновая плотность центров захвата дырок близка к концентрации поверхностных состояний и слабо меняется при освещении [6,7].

Сечение захвата дырок на поверхностные состояния пропорционально вероятности туннелирования через отталкивающий потенциал ООЗ и потому экспоненциально мало́. Температурные и концентрационные зависимости нелинейных эффектов в фотоэмиссии свидетельствуют о преобладающем вкладе в потоке дырок к поверхности термополевого вклада (т. е. термоактивированного туннелирования). В этом случае рекомбинационный поток можно записать в виде

$$q_{ps} = q_{s0}[\exp(\lambda_0 y) - 1], \quad q_{s0} = 1/4v_T p_w \sigma_0 N_{ns} e^{-\lambda_0}, \quad (6)$$
$$\lambda_0 = eV_{b0}/E_0, \quad E_0 = E_{00} \text{cth}(E_{00}/kT),$$
$$E_{00} = \frac{\hbar}{2} \left[\frac{e^2 N_a}{m_p^* \varepsilon_s}\right]^{1/2}. \quad (7)$$

Здесь v_T — тепловая скорость дырок, σ_0 — эффективное сечение захвата туннелирующих дырок. Второе слагаемое в квадратных скобках в (6) учитывает процессы обратного выброса дырок в объем в приближении высокой плотности поверхностных состояний.

97

Основное отличие выражения для потока рекомбинирующих дырок q_{ps} от туннельного потока дырок в поверхностный слой (определяющего восстанавливающий ток в модели, соответствующей диоду Шоттки [5,6,7]) дается множителем $\sigma_0 N_{ns}$. Величина σ_0 зависит от механизма захвата. При тепловой скорости дырок 10^7 cm/s, поверхностной концентрации центров $N_{ns} = 10^{12} - 10^{13}$ cm⁻² и типичных значениях сечения захвата на нейтральный центр $\sigma_0 = 10^{-15}$ cm² [14], величина $N_{ns}\sigma_0 \ll 1$. В этом случае рекомбинационный поток q_{ps} существенно меньше туннельного потока дырок к поверхности. Ниже величина q_{s0} рассматривается как параметр модели.

Кинетика фотонапряжения. Результаты для равномерного освещения

1. В приближении обедненного слоя $N_s = N_{s0}\sqrt{1-y}$, и уравнение (5) может быть записано относительно фотонапряжения *у*

$$\frac{\tau_s}{2\sqrt{1-y}} \frac{dy}{dt} = q_w/q_{s0}(1-B_n) + 1 - e^{\lambda_0 y},$$

$$\tau_s = N_{s0}/q_{s0}$$
(8)

и проинтегрировано в квадратурах. При малой вероятности выхода $B_n \ll 1$ зависимость y(t) имеет вид

$$y = \frac{1}{\lambda_0} \ln \frac{a}{1 + [a \exp(-\lambda_0 y_0) - 1] \exp[-2\lambda_0 a \tau \overline{(1 - y)^{1/2}}]}$$
$$\tau = \frac{t}{\tau_s}, \quad a = \frac{q_w}{q_{s0}} + 1.$$
(9)

Здесь $y(t = 0) = y_0 = 0$ для включения и $y = y_0 \neq 0$, a = 1 для случая выключения освещения. При малых интенсивностях $q_w/q_{s0} \ll 1$ стационарное значение фотонапряжения δV_{st} возрастает пропорционально интенсивности $y_{st} = 1/\lambda_0(q_w/q_{s0})$. При больших интенсивностях $q_w/q_{s0} \gg 1$ фотонапряжение растет логарифмически. Отметим, что диапазон малых и больших интенсивностей разграничивается условием $q_w \simeq q_{s0}$, которому соответствует интенсивность $I_b \simeq q_{s0}/\delta$.

Из (9) следует, что время релаксации фотонапряжения равно

$$t_{\rm rel} = k_t(I) \, \frac{\tau_{s0}}{(1 + q_w/q_{s0})}, \quad \tau_{s0} = \tau_s/\lambda_0, \quad 1 < k_t(I) \lesssim 3.$$
(10)

При малых интенсивностях $q_w \ll q_{s0}$, $k_t \approx 1$ время релаксации не зависит от интенсивности освещения и равно $t_{\rm rel} = \tau_{s0}$. При больших интенсивностях $q_w \gg q_{s0}$, $k_t \approx 3$ время установления фотонапряжения убывает обратно пропорционально интенсивности $t_{\rm rel} \sim q_w^{-1}$. При выключении освещения электроны быстро покидают рабочую область за время $\tau_{\rm ext} = \max(d^2/D_n, d/\bar{v})$, и измерение времени релаксации фотонапряжения в ООЗ

методом двухимпульсного возбуждения дает с использованием формул (8) и (10) оценку величины q_{s0} .

2. Согласно (4), при фотонапряжении y = r прозрачность барьера $B_n = 0$ и происходит прекращение эмиссии. Соответствующую критическую интенсивность $I_{\rm cr}$ можно определить из условия достижения стационарного состояния $q_{ns} = q_{ps}$ при y = r

$$I_{\rm cr} \approx \frac{q_{s0}}{\delta \gamma} e^{\lambda_0 r}.$$
 (11)

Из (11) следует, что критическая интенсивность экспоненциально возрастает с увеличением значения $\lambda_0 r = \Delta_0/E_0$. Интенсивность I_{opt} , при которой стационарная плотность тока эмиссии максимальна, находится (с учетом (9) при $\tau \to \infty$) из условия экстремума выражения

$$q_{\rm emi} = B_{n0}q_w \left[1 - \frac{1}{\lambda_0 r} \ln \left(1 + \frac{q_w}{q_{s0}} \right) \right].$$
(12)

Максимум эмиссионного потока достигается, когда $q_w/q_{s0} = e^{\lambda_0 r - 1} - 1$. При $q_w \gg q_{s0}$ интенсивность I_{opt} , фотонапряжение и величина максимальной плотности тока эмиссии q_{opt} равны

$$I_{\text{opt}} = \frac{q_{s0}}{\delta \gamma} e^{\lambda_0 r - 1}, \quad y = y_{\text{opt}} = r - \lambda_0^{-1},$$
$$q_{\text{opt}} = q_{s0} e^{\lambda_0 r - 1} \frac{B_{n0}}{\lambda_0 r}.$$
(13)

Используя (13) и выражение для квантового выхода эмиссии Y при малых интенсивностях $Y_0 = (q_{\text{emi}}/I)_{I \to 0} = B_{n0} \delta \gamma$, имеем

$$\frac{I_{\text{opt}}}{I_{\text{cr}}} = e^{-1}, \quad q_{\text{opt}} = I_{\text{opt}} \frac{Y_0}{\lambda_0 r}.$$
 (14)

Из (13) следует, что максимум эмиссионного тока q_{opt} пропорционален восстанавливающему току дырок, вероятности B_{n0} и возрастает с увеличением отношения Δ_0/E_0 по закону, близкому к экспоненциальному.

3. Приведенные формулы связывают основные характеристики фотокатода (Δ_0 , eV_{b0} , B_{n0} , q_{s0} , E_0) и экспериментально измеряемые величины, в частности, Y_0 , I_{opt} , $Y_{opt} = q_{opt}/I_{opt}$, $\delta V_{st}(I_{opt})$,

$$B_{n0} = \frac{Y_0}{\delta \gamma}, \quad \frac{\Delta_0}{E_0} = \frac{Y_0}{Y_{\text{opt}}},$$
$$q_{s0} = I_{\text{opt}} \delta \gamma e^{-(\lambda_0 r - 1)}, \quad E_0 = \frac{e \delta V_{st}(I_{\text{opt}})}{\lambda_0 r - 1}. \tag{15}$$

Оценим характеристики GaAs фотокатодов, исследованных экспериментально в работах [9,10] (в этом случае $d = 2 \,\mu$ m, $N_a = 6 \cdot 10^{18} \,\mathrm{cm}^{-3}$, $\alpha = 10^4 \,\mathrm{cm}^{-1}$). Используя экспериментальные значения квантовых эффективностей, токов эмиссии и фотонапряжения при соответствующих им интенсивностях возбуждения $Y_0 = 0.219, j_{opt} = 1 \,\mathrm{A/cm}^2, (q_{opt} = 6.25 \cdot 10^{18} \,\mathrm{cm}^{-2} \mathrm{s}^{-1})$,

 $I_{opt} = 30 \text{ W/cm}^2 (I_{opt} = 1.3 \cdot 10^{20} \text{ cm}^{-2} \text{s}^{-1}), Y_{opt} = 0.049,$ $\delta V_{st} = 152 \text{ mV},$ получим: $B_{n0} = 0.384, \lambda_0 r = 4.47,$ $E_0 = 44 \text{ meV}, \Delta_0 = 0.2 \text{ eV}.$ Величина E_0 близка к значению $E_0 = 47 \text{ meV},$ следующему из (7). Предэкспоненциальный множитель q_{s0} равен $q_{s0} = 2.3 \cdot 10^{18} \text{ cm}^{-2} \text{s}^{-1}.$ Оба параметра близки к значениям, определенным из аналогичных экспериментов для тонких слоев GaAs [5], что свидетельствует об адекватности модели.

3. Неравномерное распределение интенсивности освещения

1. Рассмотрим распределение фотонапряжения, квантовой эффективности и потока эмиссии при неоднородном освещении фотокатода $I(\rho) = I_m \Phi(\rho)$, предполагая, что размер светового пятна $\rho_{\text{max}} \gg d$. В установившемся режиме распределение фотонапряжения $y(\rho) = \delta V/V_{b0}$ находится из уравнения

$$y = \frac{1}{\lambda_0} \ln \left\{ 1 + \frac{q_w[I(\rho), y][1 - B_n(y)]}{q_{s0}} \right\}, \quad (16)$$

которое при $B_n < 1$ эффективно решается методом итераций. Полный эмиссионный поток q_{tot} находится интегрированием по площади пятна возбуждения.

Численные расчеты проводились для GaAs фотоэмиттера при значениях параметров, приведенных в разделе 2. Считалось, что интенсивность $I(\rho)$ спадает при удалении от центра пятна по закону Гаусса, соответствующего распределению амплитуды основной моды различных конфигураций одномодовых лазеров [13]

$$I(\rho) = I_m \exp(-\beta R^2), \quad R = \rho / \rho_{\text{max}}.$$
(17)

2. При удалении от центра пятна возбуждения изза уменьшения интенсивности освещения фотонапряжение y уменьшается, а квантовая эффективность растет. Распределение эмиссионного потока в зависимости от расстояния от центра пятна $q_{\rm emi}(\rho)$ приведено на рис. 1.

1.2

1.0

Рис. 1. Распределение потока эмиссии $q_{emi}(R)$ вдоль освещаемой поверхности ($I_{max}/I_{min} = 100$) для различных максимальных интенсивностей I_{max} , 10^{20} cm⁻² · s⁻¹: I = 0.1, 2 = 1, 3 = 1.7, 4 = 2, 5 = 2.5, 6 = 3.

При всех интенсивностях, $I_m < I_{opt}$, когда эффективная прозрачность области объемного заряда относительно слабо зависит от интенсивности и не слишком мала $(\Delta = E_c - E_{vl} \approx \Delta_0)$, величина $q_{
m emi}$ спадает при удалении от центра пятна вместе с интенсивностью (кривые 1,2). При приближении к критической интенсивности, когда эффективная прозрачность барьера около оси пучка близка к нулю, распределение $q_{\rm emi}(\rho)$ немонотонно и имеет максимум, смещенный от центра пятна. В интервале $I_{opt} < I_m < I_{cr}$ при приближении к критической интенсивности разности $q_{
m emi}^{
m max} - q_{
m emi}(0)$ и $q_{\rm emi}^{\rm max} - q_{\rm emi}(1)$ увеличиваются, а положение максимума удаляется от центра пятна. Само значение максимума не зависит от интенсивности и определяется максимальной прозрачностью барьера и параметрами, определяющими восстановительный ток дырок. Точность оценки максимального значения тока $q_{\rm opt}$ по формуле (13) зависит от величины B_{n0} и составляет несколько процентов.

3. Определим значения интенсивности в центре пятна площадью S, соответствующей максимуму собранного заряда. Этот максимум достигается при интенсивности на оси пятна I_m , несколько большей значения I_{opt} и меньшей I_{cr} , поскольку область пятна, где $I(\rho) \ge I_{cr}$, соответствует $B_n \approx 0$ и является нерабочей. Для гауссовского распределения $I(\rho)$ (17) с использованием (16) при $B_n \ll 1$ и $q_w = I(\rho)\delta\gamma$ получаем

$$q_{\text{tot}} = Sq_{s0}B_{n0}\Phi(H,\beta),$$

$$\Phi(H,\beta) = \frac{[P - \exp(-\beta)]}{\beta}H - \frac{1}{\lambda_0 r\beta}[\phi(H') - \phi(He^{-\beta})],$$
(18)

здесь $H = I_m \delta \gamma / q_{s0}$, $\phi(x) = (x + 1) \ln(x + 1) - x$, а величины P и H' определены соотношениями

$$I_m \leq I_{\rm cr} \quad P = 1, \quad H' = H,$$

$$I_m > I_{\rm cr} \quad P = I_{\rm cr}/I_m, \quad H' = I_{\rm cr}\delta\gamma/q_{s0}.$$
(19)

При малых $H \ll 1$ полный поток практически не зависит от β и возрастает пропорционально средней по пятну интенсивности \bar{I}

$$q_{\text{tot}} = S\bar{I}Y, \quad \bar{I} = I_m \frac{1 - e^{-\beta}}{\beta},$$
$$Y = Y_0 \left[1 - \frac{H}{\lambda_0 r} \frac{1 + e^{-\beta}}{2} \right]. \tag{20}$$

При больших интенсивностях $H \gg 1$ функция $\Phi(H, \beta)$ описывает немонотонную зависимость. При распределениях интенсивности света, близких к равномерным ($\beta \ll 1$), максимальная и средняя интенсивности, соответствующие максимуму полного потока эмиссии, и его значение задаются формулами

$$I_m = I_{\text{opt}} e^{\beta/2 - \beta^2/12}, \quad \bar{I}_{\text{opt}} = I_{\text{opt}} \left(1 - \frac{\beta^2}{24} \right),$$
$$q_{\text{tot}}^{\text{max}}/S = q_{\text{opt}} \left(1 - \frac{\beta^2}{24} \right). \tag{21}$$

Рис. 2. Зависимость полного потока эмиссии $q_{\text{tot}}/q_{\text{opt}}$ от средней интенсивности освещения $\tilde{I} = \bar{I}/I_{\text{opt}}$ для различной степени неравномерности распределения интенсивности освещения по пятну $I_{\text{max}}/I_{\text{min}}$: I - 1, 2 - 2, 3 - 5, 4 - 20, 5 - 100, 6 - 1000.

Из (21) следует, что с ростом неравномерности освещения значение I_m смещается в сторону бо́льших интенсивностей и более чувствительно, чем поток эмиссии, к неравномерности распределения интенсивности. Максимальный поток, как и средняя интенсивность, мало отклоняются от своего наибольшего значения вплоть до $I_m/I(\rho_{\text{max}}) \leq 2$. Из (18), (19) следует, что для гауссова пучка эмиссия прекращается когда $I(\rho_{\text{max}}) = I_{\text{cr}}$, что достигается при $I_m = I_{\text{sup}}$, где

$$I_{\rm sup} = I_{\rm cr} e^{\beta} = I_{\rm cr} \frac{I_m}{I(\rho_{\rm max})}, \quad \bar{I}_{\rm sup} = I_{\rm sup} \frac{1 - e^{-\beta}}{\beta}.$$
 (22)

Для сильно неравномерных распределений ($e^{-\beta} \ll 1$) при больших интенсивностях $H \gg 1$ средняя и максимальная интенсивность падающего излучения, при которых полный поток эмиссии максимален, определяются как

$$H_m = \exp[\lambda_0 r(1 - e^{-\beta})], \quad \bar{I}_{opt} \approx q_{s0} \, \frac{\exp[\lambda_0 r(1 - e^{-\beta})]}{\delta \gamma \beta}.$$
(23)

Максимум тока q_{tot}^{\max} (как и величина \bar{I}_{opt}) уменьшается обратно пропорционально β и равен

$$q_{\text{tot}}^{\max}/S = q_{s0}B_{n0} \frac{\exp[\lambda_0 r(1 - \exp(-\beta))]}{\lambda_0 r\beta}$$
$$\approx \frac{e}{\beta} (1 - \lambda_0 r e^{-\beta}) q_{\text{opt}}.$$
 (24)

Зависимость полного потока эмиссии q_{tot} (в единицах q_{opt}) от средней интенсивности для различных значений β представлена на рис. 2. С ростом β максимум тока смещается в сторону меньших средних интенсивностей, максимальный ток уменьшается и при больших значениях $\beta \gg 1$ ярко проявляется "насыщение" тока вблизи максимума из-за существенного увеличения предельной интенсивности I_{sup} . Теоретическая

зависимость q(I) повторяет характерные качественные особенности экспериментальной зависимости j(I) [10]: ток эмиссии довольно быстро падает при $I < I_{opt}$ и практически постоянен при $I \gtrsim I_{opt}$. Плавная зависимость $q_{tot}(I)$ в окрестности I_{opt} связана с интегральным характером этой величины. Область вблизи оси пучка, где энергетический интервал, доступный для эмиссии, мал, имеет малую площадь и основной вклад вносит часть поверхности, где интенсивность освещения близка к оптимальной. Ввиду экспоненциально сильного изменения восстанавливающего тока при больших интенсивностях возбуждения точное задание закона прозрачности барьера при малых значениях B_n не является существенным в окрестности I_{opt} .

Переходные процессы и восстановление заряда

1. Для исследования релаксационных процессов и времени восстановления квантовой эффективности используются измерения зависимости от времени тока эмиссии при быстром включении освещения и режим двухимпульсного возбуждения. В этом случае измеряется зависимость от времени задержки отношения заряда эмиссии, создаваемого пробным импульсом к заряду эмиссии, созданному импульсом накачки.

Приведем результаты численных расчетов переходных процессов для случая мгновенного включения (выключения) освещения постоянной по времени интенсивности $I(\rho)$ в одноимпульсном и двухимпульсном режимах. Длительность импульсов освещения — t_i , время задержки для второго импульса — t_p . Параметры фотокатодов указаны в разделе 2. Фотонапряжение y(R, t) находилось численным интегрированием уравнения (8) с соответствующими начальными условиями: при первом включении освещения $p_0(R, 0) = 0$, при (мгновенном) включении освещения распределение фотонапряжения — $y(R, t_i)$, при повторном включении света — $y(R, t_i + t_p)$. Полный эмиссионный поток определялся интегрированием по площади образца. Величина собранного заряда

$$Q = \int_{0}^{t_i} q_{\text{tot}}(t) dt.$$
 (25)

2. На рис. 3–5 представлены результаты расчетов зависимости от времени фотонапряжения и потока эмиссии для интенсивности $I_m \approx 2 \cdot 10^{20} \text{ cm}^{-2} \text{s}^{-1}$ при сильно неравномерном распределении интенсивности света $I_m/I(\rho_{\text{max}}) = 100$. Длительность освещения $t_i = 0.1\tau_s$ близка к наибольшему времени установления фотонапряжения на периферии светового пятна. Из рис. 3 видно следующее.

Время релаксации фотонапряжения при включении τ_+ значительно возрастает при удалении от центра к периферии пятна $\tau_+(0) \ll \tau_+(\rho_{\max})$.

Рис. 3. Зависимость фотонапряжения *у* от времени (в единицах $\tau_s = N_{s0}/q_{s0}$) при включении (*I*-4) и выключении (*5*-7) освещения. Время импульса (задержки) 0.1 τ_s . Штриховая линия — зависимости *y*(*t*) при повторном включении света. Время по оси абсцисс отсчитано от начала процессов включения, выключения и повторного включения освещения; ρ/ρ_{max} : *I*, *5* — 0; *2* — 0.3; *3*, *6* — 0.6; *4*, *7* — 1.

Рис. 4. Зависимость потока эмиссии $q = q_{\text{emi}}(t, \rho)/q_{\text{opt}}$ от времени в центре пятна (1) и на периферии (2) — ρ/ρ_{max} : 1 - 0, 2 - 0.8. Точки — зависимость от времени полного потока эмиссии $\tilde{q}_{\text{tot}} = q_{\text{tot}}(t)/q_{\text{opt}}$.

При выключении освещения время релаксации τ_{-} существенно больше времени τ_{+} для больших интенсивностей и совпадает с ним при малых интенсивностях.

Существенно бо́льшая скорость релаксации фотонапряжения в центре пятна при выключении освещения приводит к выравниванию его значений по радиусу уже при малых временах ($\lambda_0 \tau \ll 1$). В результате при выключении освещения основное время занимает релаксация в линейном режиме, что предопределяет равенство времени восстановления заряда величине τ_{s0} (см. (10)).

Время релаксации локального потока эмиссии при включении (рис. 4) равно времени релаксации эффективной прозрачности барьера (т.е. фотонапряжения). Оно значительно возрастает при удалении к периферии пятна с уменьшением отношения $q_w/q_{s0}(\rho)$ (см. (10)). Пол-

ный поток эмиссии $q_{\rm tot}$ релаксирует с промежуточным временем релаксации, близким к $t_{\rm rel} \approx \tau_{s0} e^{1-\lambda_0 r}$ области поверхности с максимальным потоком эмиссии.

Влияние времени задержки t_p на зависимости полного потока эмиссии от времени представлено на рис. 5, где показаны зависимости $q_{tot}(t)$ при первом и повторном включениях. С уменьшением t_p начальное значение полного потока эмиссии уменьшается, что связано с бо́льшим значением фотонапряжения при повторном включении.

3. Наиболее важная зависимость, характеризующая восстановление заряда как функцию времени задержки $\eta = Q_2/Q_1(\tau_p)$ при различных значениях интенсивности I_m и $I_m/I(\rho_{\rm max})$, представлена на рис. 6. Длительность освещения $t_i = 0.02\tau_s$ примерно равна времени релаксации полного потока эмиссии при включении освещения (рис. 4, 5). Из рисунка видно, что в случаях, когда эффек-

Рис. 5. Зависимость от времени полного потока эмиссии $\tilde{q}_{tot}(t) = q_{tot}(t)/q_{opt}$ при различных временах задержки. Штриховая кривая — релаксация $\tilde{q}_{tot}(t)$ при первом включении, сплошные кривые — релаксация при повторном включении; τ_p (в единицах τ_s): 1 - 0.1, 2 - 0.02, 3 - 0.01.

Рис. 6. Зависимость $\eta = Q_2/Q_1(\tau_p)$ от времени задержки при различных интенсивностях и различной степени неравномерности освещения; I_m , 10^{20} cm⁻² · s⁻¹: I - 0.1, 2 - 0.3, 3 - 2, 4 - 2.8. Сплошные кривые — при равномерном освещении $I_m/I(\rho_{\text{max}}) = 1$, штриховые — при $I_m/I(\rho_{\text{max}}) = 100$.

Журнал технической физики, 2002, том 72, вып. 5

ты ограничения заряда сильно выражены ($I_{\rm opt} \lesssim I_m \lesssim I_{\rm cr}$, $I_m/I(
ho_{
m max})\simeq 1)$, отношение $\eta=Q_2/Q_1(au_p)$ зависит от интенсивности освещения и неравномерности распределения света по пятну при малых временах задержки $\lambda_0 \tau_o \ll 1$ (сравни сплошную и штриховую кривые 3 или сплошные кривые 1-4). Это порождает зависимость времени восстановления и потока q_{s0}, оцениваемого по восстановлению заряда на уровне \lesssim 90%, от параметров светового пучка. В случаях, когда основной вклад в заряд вносит область пятна, где интенсивность меньше оптимальной, чувствительность функции $\eta(\tau_n)$ к параметрам светового пучка понижается (сравни штриховые кривые 3 и 4). Полное восстановление заряда $(\eta = Q_2/Q_1(t_r) \approx 0.99)$ достигается при $t_r \approx \tau_{s0}$. При этом время t_r , соответствующее восстановлению сбора заряда, слабо зависит от интенсивности и неравномерности распределения интенсивности в пятне. Этот факт связан с тем, что при значениях η , близких к 1, скорость восстановления определяется наибольшим временем релаксации, соответствующим периферии светового пятна.

Заключение

Результаты проведенных расчетов показывают высокую (экспоненциальную) чувствительность максимального тока эмиссии к величине отрицательного сродства. В случае неравномерного возбуждения максимальный ток эмиссии заметно снижается, а его зависимость от интенсивности в окрестности максимума становится более пологой. Быстрая релаксация фотонапряжения в области высокой интенсивности приводит к низкой чувствительности времени восстановления к интенсивности возбуждения и неравномерности распределения интенсивности в пятне. В результате учет неравномерности освещения оказывается необходимым как при определении параметров фотокатода по данным эксперимента, так и при выборе оптимального режима фотоэмиссии.

Работа выполнена при поддержке INTAS (грант № 99-00125), а также фонда РФФИ (грант № 00-02-16775).

Список литературы

- Alley R., Aoyagi H., Clendenin J. et. al. // Nucl. Instr. and Methods A. 1995. Vol. 365 (1). P. 1–27.
- [2] Schneider J.E., Baum A.W., Winograd G.I. et. al. // J. Vac. Sci. Techn. B. 1996. Vol. 14 (6). P. 3782–3786.
- [3] Woods M. et. al.// J. Appl. Phys. 1993. Vol. 73 (12). P. 8531– 8535.
- [4] Herrera-Gómez A., Vergara G., Spicer W.E. // J. Appl. Phys. 1996. Vol. 79 (9). P. 7318–7323.
- [5] Mulhollan G.A., Subashiev A.V., Clendenin J.E. et al. // Phys. Lett. A. 2001. Vol. 282 (2). P. 309–318.
- [6] Hecht M.H. // Phys. Rev. B. 1990. Vol. 41 (11). P. 7918–7921.
- [7] Bauer A., Prietsch M., Molodtsov S. et. al.// Phys. Rev. B. 1991. Vol. 44 (8). P. 4002–4005.
- [8] Резников Б.И., Субашиев А.В. // ФТП. 1998. Т. 32. Вып. 9. С. 1125–1134, ФТП, 1998. Т. 32. Вып. 12. С. 1467–1475.

- [9] Jaroshevich A.S., Kirillov M.A., Orlow D.A. et. al. // Proc. 7th Intern. Workshop on Polarized Gas Targets and Polarized Beams. Urbana (USA), 1997. P. 132–134.
- [10] Kirillov M.A., Orlov D.A., Terekhov A.S. // Proc. Low Energy Polarized Electron Workshop. St. Petersburg, 1998. P. 30–33.
- [11] *Sinclair C.* // Polarized Sources and Targets / Ed. A. Gute et al. Erlangen–Nurnberg, 1999. P. 222–232.
- Mulhollan G.A. et. al. // Polarized Sources and Targets / Ed.
 A. Gute et al. Erlangen-Nurnberg, 1999. P. 322–334.
- [13] Ищенко Е.Ф. Открытые оптические резонаторы. М.: Сов. радио, 1980. 207 с.
- [14] Милнс А. Примеси с глубокими уровнями в полупроводниках. М.: Мир, 1977. 562 с.