01;05 Влияние внешнего магнитного поля на ориентационные фазовые диаграммы кристалла-пластины (011) с комбинированной анизотропией

© Р.М. Вахитов, В.В. Гриневич, М.М. Вахитова

Башкирский государственный университет, 450074 Уфа, Россия e-mail: VakhitovRM@bsu.bashedu.ru

(Поступило в Редакцию 3 сентября 2001 г.)

Теоретически изучается влияние внешнего магнитного поля на однородные магнитные состояния кристалла-пластины (011) с комбинированной анизотропией. Показано, что "включение" магнитного поля приводит к понижению магнитной симметрии кристалла и изменению картины спин-переориентационных фазовых переходов в них, которая существенно зависит от величины и ориентации магнитного поля. Найдены кривые критических полей и определены общие закономерности перемагничивания пластины (011), обусловленные вращательным механизмом.

Введение

Как известно, эпитаксиально выращенные монокристаллы ферритов-гранатов, используемые в различных магнитоэлектронных устройствах, наряду с наведенной одноосной анизотропией (НОА) обладают и естественной кубической (КА) [1,2]. Сочетание двух типов анизотропий различной симметрии существенно сказывается на многих свойствах таких материалов, в том числе и на их поведении во внешнем магнитном поле. Исследование процессов намагничивания и перемагничивания дают разностороннюю информацию о свойствах этих кристаллов и, в частности, позволяет определить некоторые магнитные характеристики, важные в практическом отношении. В связи с этим представляет интерес изучение влияния внешнего магнитного поля на равновесные направления вектора намагниченности М в кристаллах-пластинах (011) с комбинированной анизотропией. Ранее аналогичные исследования были проведены для магнетиков, представляющих (001)- и (111)ориентированные пластины [3-5]. Предлагаемая работа позволяет создать более полную картину процессов перемагничивания в таких материалах, обусловленных механизмом когерентного вращения магнитных моментов. В то же время в рассматриваемых магнетиках НОА имеет две составляющие: перпендикулярную и ромбическую. Наличие последней улучшает их данимические характеристики, что вызывает повышенный интерес к ним.

Однородные магнитные состояния кристалла в нулевом поле

Рассмотрим плотность энергии однородно намагниченной пластины (011) с комбинированной анизотропией при учете внешнего магнитного поля H, которая в системе координат с $O_Z \parallel [011], O_X \parallel [100], O_Y \parallel [01\overline{1}]$ запишется в виде

$$E = K_{u} \sin^{2} \Theta + K_{p} \sin^{2} \Theta \sin^{2} \varphi$$

+ $K_{1} \left[\sin^{4} \Theta \left(\cos^{2} \varphi \sin^{2} \varphi + \frac{1}{4} \sin^{4} \varphi \right) \right]$
+ $\sin^{2} \Theta \cos^{2} \Theta \left(\cos^{2} \varphi - \frac{1}{2} \sin^{2} \varphi \right) + \frac{1}{4} \cos^{4} \Theta \right]$
+ $\frac{1}{4} K_{2} \left[\sin^{2} \Theta \cos^{4} \Theta \cos^{2} \varphi - 2 \sin^{4} \Theta \cos^{2} \Theta \sin^{2} \varphi \right]$
× $\cos^{2} \varphi + \sin^{6} \Theta \sin^{4} \varphi \cos^{2} \varphi - (\mathbf{MH}), \qquad (1)$

где K_u и K_p — константы одноосной и ромбической анизотропии, K_1 и K_2 — первая и вторая константы KA; Θ и φ — полярный и азимутальный углы вектора намагниченности **M**; учет конечности пластины приводит лишь к перенормировке константы K_u : $K_u \to K_u - 2\pi M_s^2$ (M_s — намагниченность насыщения).

Равновесные направления вектора намагниченности **M** в рассматриваемом кристалле определяются из минимума (1), т.е. из решений уравнений

$$\frac{\partial E}{\partial \varphi} = 0, \quad \frac{\partial E}{\partial \Theta} = 0$$
 (2)

при условии

$$\frac{\partial^2 E}{\partial \varphi^2} > 0, \quad \frac{\partial^2 E}{\partial \Theta^2} > 0, \quad \frac{\partial^2 E}{\partial \varphi^2} \frac{\partial^2 E}{\partial \Theta^2} - \left(\frac{\partial^2 E}{\partial \varphi \partial \Theta}\right)^2 > 0.$$
(3)

Анализ этих соотношений показывает [6], что в пластине (011) в нулевом поле (H = 0) возможно существование девяти магнитных фаз, три из которых симметричные, а шесть — дисимметричные (рис. 1, 2) [7]. Причем

пять из них — угловые и характеризуются тем, что в них направление вектора М изменяется в определенных плоскостях симметрии куба в зависимости от изменения параметров \varkappa_1 , \varkappa_2 , \varkappa_p , где $\varkappa_1 = K_1/|K_u|$, $\varkappa_2 = K_2/|K_u|$, $\kappa_p = K_p/|K_u|$, а шестая является фазой общего вида. Параметры этих фаз, представленные в таблице, и степень их вырождения определяются в основном симметрией рассматриваемой пластины (группа D_{2h}) [7,8]. В частности, высокосимметричные фазы имеют двукратное вырождение, угловые — четырехкратное, а фаза общего вида — восьмикратное. Угловые фазы $(\Phi^{II}_{<})_{1,2}$, а также $(\Phi^{\rm III}_{<})_{1,2}$ обладают одинаковой группой симметрии; их наличие обусловлено более полным учетом симметрии КА (K₂ \neq 0). Действительно, из анализа асимптотического поведения фаз $(\Phi^{\rm III}_{<})_{1,2}$ видно, что при $K_2 \rightarrow 0$ фаза $\left(\Phi^{\rm III}_{<}
ight)_1$ непрерывно переходит в угловую фазу $\Phi^{\rm III}_<$, изученную ранее [9,10] и имеющую место при $K_2 = 0$, а второе решение уравнений (2), (3), соответствующее фазе $(\Phi_{<}^{\rm III})_2$, теряет смысл. Оно появляется только в случае $K_2 \neq 0$, т.е. при учете вклада легких осей КА типа [011] в спектр однородных магнитных состояний пластины. Это следует хотя бы из совпадения областей устойчивости фазы $(\Phi^{\rm III}_{<})_2$ и фазы $\langle 011 \rangle$ [11] по параметрам K_1 и K_2 . Этим же обстоятельством объясняется и возникновение фазы типа [uvw], область

Рис. 1. Фазовая диаграмма однородных магнитных состояний пластины (011) в нулевом поле для случая $K_u > 0$. \varkappa_2 : a = -4, b = -4. Сплошные кривые — СПФП, штриховые — границы областей метастабильного существования фаз.

Рис. 2. То же, что на рис. 1, для случая $K_u < 0$, $\varkappa_1 = -1.5$.

существования которой показана на фазовой диаграмме (рис. 2) в координатах (κ_p , κ_2).

Другой особенностью ориентационной фазовой диаграммы пластины (011) является наличие на ней (рис. 1) пятерной точки. Это находится в соответствии с правилом фаз Гиббса, которое утверждает, что данная термодинамическая система находится в равновесном состоянии под действием трех типов внутренних полей, обусловленных тремя типами анизотропий разной симметрии: одноосной, ромбической и кубической [6].

Магнитные фазовые диаграммы при наличии внешнего поля

Для того чтобы исследовать влияние магнитного поля на основное состояние кристалла, необходимо учесть зеемановское взаимодействие ($H \neq 0$), вклад которого в (1) зависит от ориентации **H** относительно кристаллографических осей. С этой целью рассмотрим три характерных направления поля: **H** || [011], **H** || [100], **H** || [011].

1) Н || [011]. В этом случае магнитная симметрия кристалла понижается в D_{2h} до C_{2v}. Потеря элемента симметрии σ ($\sigma_h(m)$ — плоскость зеркального отображения, совпадающая с (011)) приводит к расщеплению угловых фаз $\Phi^{\rm I}_<$ и $\Phi^{\rm III}_<$ на два типа состояний: устойчивых, в которых вектор намагниченности М образует острый угол Θ с направлением поля и метастабильных, где $\pi/2 < \Theta < \pi$. При этом области их существования уже не совпадают. Так, если границей существования кривая I (рис. 3, a), то устойчивая $\left(\Phi^{\mathrm{I}}_{<}\right)^{z}_{1}$ занимает область на фазовой диаграмме, ограниченную кривыми 2, 3. Сливаясь со скошенной полем фазой $\Phi_{[01\bar{1}]}$ (являющейся симметричной в отсутствие поля), она образует единую угловую фазу $\left(\Phi^{\rm I}_{[01\bar{1}]}\right)_1^z$ с $\varphi = \pi/2, 3\pi/2,$ область существования которой ограничена линией СПФП II рода: $(\Phi^{I}_{[01\overline{1}]})_{1}^{z} \leftrightarrow (\Phi^{II}_{<})^{z}$ (кривая 4). Таким образом, под

Фазы	Ориентация вектора намагниченности	Область существования
$\Phi_{[011]}$	$\vartheta = 0; \pi; \mathbf{M} \parallel [011]$	$K_1 > -2(2K_u + K_1), K_1 < K_u + K_p$
$\Phi_{[100]}$	$\vartheta = \pi/2; \varphi = 0, \pi; \mathbf{M} \parallel [100]$	$K_1 > K_u, K_1 < -K_p$
$\Phi_{[01\overline{1}]}$	$v = \pi/2, \phi = \pi/2, 3\pi/2; \mathbf{M} \parallel [011]$	$K_1 < -(K_u + K_p), K_1 > 2K_p - K_2/2$
$\Phi^{\mathrm{l}}_{<}$	$\sin \varphi = \left\{ [K_1 - (K_u + K_p)]/2K_1 \right\}^{1/2}, \vartheta = \pi/2, 3\pi/2;$	$K_1 > -(K_u + K_p), K_1 > K_u + K_p,$
	$\mathbf{M} \parallel [0uv]$	$4K_1^3 + 2K_1^2(K_u - K_p) + K_2(K_u + K_p)^2 > 0$
$\left(\Phi^{\rm II}_{<}\right)_1$	$\vartheta = \pi/2, \sin \varphi = \pm \sqrt{\frac{A_1+B_1}{3K_2}}, \mathbf{M} \parallel [uv\bar{v}]$	
$\left(\Phi^{\rm II}_{<}\right)_2$	$\vartheta = \pi/2, \sin \varphi = \pm \sqrt{\frac{A_1 - B_1}{3K_2}}, \mathbf{M} \parallel [uv\bar{v}]$	
$\left(\Phi^{\rm III}_{<}\right)_1$	$\sin arphi = \pm \sqrt{rac{A_1+B_1}{3K_2}}, artheta = 0, \pi, \mathbf{M} \parallel [uvv]$	
$\left(\Phi^{\mathrm{III}}_{<} ight)_{2}$	$\sin arphi = \pm \sqrt{rac{A_1 - B_1}{3K_2}}, artheta = 0, \pi, \mathbf{M} \parallel [uvv]$	
$\Phi^{ m IV}_<$	$\mathbf{M} \parallel [uvv]$	

Магнитные фазы в пластине (011) в нулевом поле (H = 0)

Примечание. $A_1 = K_2 - 3K_1$, $B_1 = \sqrt{A_1^2 + 12K_2(K_1 + K_2)}$, $A_1 = K_2 + 3K_1$, $B_1 = \sqrt{A_2^2 - 3K_2(K_u + 2K_1 + K_2)}$. Отсутствие записи в последней клетке означает, что область устойчивости соответствующей фазы невозможно выразить в виде простых формул; они находятся из общих условий (3).

действием поля разрушается СПФП II рода $\Phi_{[01\bar{1}]} \leftrightarrow \Phi_{<}^{I}$ (рис. 3, *b*) и точка *A* оказывается уже не пятерной, а четверной. Области существования стабильной $(\Phi_{<}^{III})_{1}^{z}$ и метастабильной $(\Phi_{<}^{III})_{2}^{z}$ фаз в поле также расходятся друг относительно друга: границы их существования на фазовой диаграмме представлены кривыми 5, 6 и 7, 8.

Угловые фазы $(\Phi_{<}^{II})_{1,2}^{}$ трансформируются в фазы общего вида $(\Phi_{<}^{II})^{z}$ без снятия вырождения, так как в рассматриваемом случае **H** $\| 2_{z}$ и не меняет их группу симметрии. С возрастанием величины приведенного поля $h = M_{s}H/|K_{u}|$ линия СПФП I рода: $(\Phi_{<}^{II})^{z} \leftrightarrow (\Phi_{<}^{III})^{z}$ смещается в сторону меньших значений параметра \varkappa_{p} (рис. 3, *a*, кривая 9). По этой же причине остается вырожденной и $\Phi_{[100]}$, которая под действием поля преобразуется в угловую фазу $(\Phi_{[100]})_{<}^{z}$ типа [uvv]. Область ее существования, ограниченная на рис. 3, *a* кривой 10, с увеличение *h* вытесняется с фазовой диаграммы. Соответственно смещаются в сторону больших значений параметров \varkappa_{1} и \varkappa_{2} линии СПФП I рода: $(\Phi_{[100]})_{<}^{z} \leftrightarrow \Phi_{[011]}$ (кривая 11) и $(\Phi_{[100]})_{<}^{z} \leftrightarrow (\Phi_{[011]}^{I})_{1}^{z}$ (кривая 12).

Снимается вырождение фазы $\Phi_{[011]}$; она разбивается на две энергетические не эквивалентные симметричные фазы: устойчивую с **M** || [011], вытесняющую с возрастанием *h* остальные фазы, и метастабильную (**M** || [011]). Область существования последней ограничена значениями приведенного поля (рис. 4), удовлетворяющими соотношению

$$h_{0z} \ge -2 \operatorname{sign} K_u - \varkappa_1 - \frac{\varkappa_2}{2}.$$
 (4)

Оно по смыслу соответствует коэрцитивной силе образца. Как видно из (4), в нее также вносят вклад первая и вторая константы КА.

2) **Н** || [100]. В этом случае частично снимается вырождение фаз $(\Phi^{II}_{<})_{1,2}$ и $(\Phi^{III}_{<})_{1,2}$, которые, оставаясь

угловыми с $\Theta = \pi/2$ (**M** || $[uv\bar{v}]$) и $\varphi = 0, \pi$ (**M** || [uvv]) соответственно, распадаются на две двукратно вырожденные фазы (устойчивую и метастабильную), каждая из которых имеет различные области существования.

Рис. 3. Фазовая диаграмма однородных магнитных состояний пластины (011) в поле **H** || [011] для случая $K_u > 0$, $\varkappa_2 = -4$, h = 0.5 (*a*) и область СПФП II рода, существующего в нулевом поле ($\varkappa_p = -5$) при h = 0 (*I*), 0.1 (*2*), 0.5 (*3*), 10 (*4*) (*b*). Обозначения кривых соответствуют рис. 1.

Журнал технической физики, 2002, том 72, вып. 5

Если граница области существования метастабильной фазы $(\Phi_{<}^{III})_{2}^{x}$ ограничена на диаграмме (рис. 5) кривой 1, то фаза $(\Phi^{III}_{<})_1^x$ занимает всю область между кривыми 10 и 5 (последняя представляет собой линию СПФП I рода: $(\Phi_{<}^{\text{III}})_{1}^{x} \leftrightarrow \Phi_{[100]}$). Метастабильная фаза $(\Phi_{<}^{\text{II}})_{2}^{x}$, лежащая ниже кривой 12, с возрастанием величины приведенного поля вытесняется вниз, в область меньших (отрицательных) значений параметра \varkappa_1 . Одновременно другая фаза $(\Phi^{\text{II}}_{<})^{x}_{1}$ "дуплета" сливается со скошенной полем фазой $\Phi_{[01\bar{1}]}$ и образует угловую фазу $\left(\Phi^{II}_{[01\bar{1}]}\right)^x$. Область существования последней лежит левее и ниже кривых 9 и 11. Здесь кривая 9 соответствует СПФП II рода между фазами $\left(\Phi_{[01\bar{1}]}^{II}\right)^x$ и $\left(\Phi_{<}^{I}\right)^x$. При этом $\left(\Phi_{<}^{I}\right)^x$ представляет собой уже фазу общего вида, которая попрежнему является четырехкратно вырожденной. Здесь необходимо отметить, что трансформация угловой фазы $\Phi^{\mathrm{I}}_{\scriptstyle{\sim}}$ в фазу общего вида $\left(\Phi^{\mathrm{I}}_{\scriptstyle{\sim}}\right)^x$ можно объяснить тем, что вектор M, соответствующей фазе $\Phi^I_<$ в нулевом поле, лежит в плоскости (001). Включение поля с Н || [100]

Рис. 4. Кривые намагничивания для $h = h_z$, $\kappa_2 = -4$, $K_u > 0$. $a - \kappa_1 = 2$, $\kappa_p = -2$; $b - \kappa_1 = 1$, $\kappa_p = -3$.

Рис. 5. Фазовая диаграмма однородных магнитных состояний пластины (011) в поле **H** || [100] для случае $K_u > 0$, $\kappa_2 = 4$, h = 0.5. Штриховка соответствует рис. 1.

как бы "вытягивает" спины из плоскости (001), что приводит к образованию фазы типа [uvw]. В то же время вектор **M** в угловых фазах $(\Phi_{<}^{II})_{1,2}$ и $(\Phi_{<}^{III})_{1,2}$ лежит в плоскостях (011) или (011). В этом случае **H** || [100] также лежит в этих плоскостях и трансформации фаз при наложении поля из одного типа в другой не происходит.

Область сущестования фазы $(\Phi_{<}^{I})^{x}$, ограниченная справа кривыми 6 и 8 (СПФП І рода: $(\Phi_{<}^{I})^{x} \leftrightarrow (\Phi_{<}^{III})_{1}^{x}$), остается неизменной по сравнению со случаем нулевого поля (рис. 1, b), однако область, где она является энергетически наиболее выгодным состоянием, сужается за счет расширения области существования другой, наиболее выгодной в данном случае симметричной фазы $(\Phi_{[100]})_1$ с **М** || [100]. Последняя возникает при расщеплении под действием поля двукратно вырожденной фазы $\Phi_{[100]}$ на два магнитных состояния ("дуплета"): $(\Phi_{[100]})_1$ с **M** \parallel [100] ($\varphi = 0$) и ($\Phi_{[100]}$)₂ с **M** \parallel [$\bar{1}$ 00] ($\varphi = \pi$). В этом случае кривая 3 на рис. 5 является границей области устойчивости фазы $(\Phi_{[100]})_1$, а кривая 4 — фазы $(\Phi_{[100]})_2$; на кривых 5 и 7 имеет место СПФП I рода между фазой $\left(\Phi_{[100]}
ight)_1$ и фазами: $\left(\Phi_{<}^{\mathrm{III}}
ight)^x$ (кривая 5) и $(\Phi_{\leq}^{I})^{x}$ (кривая 7). Симметричная фаза $\Phi_{[011]}$ трансформируется в угловую фазу типа [uvv], которая сливается с фазой $\left(\Phi_{<}^{\text{III}}\right)^{x}$. В силу того, что **H** \perp [011], вырождение фаз сохраняется. В то же время исчезает СПФП II рода: $\Phi_{[011]} \leftrightarrow \Phi^{III}_{<}$, имевший место в нулевом поле.

3) **H** || $[01\bar{1}]$. Рассматриваемая ситуация изменения ориентационных фазовых диаграмм (ОФД) под действием поля совпадает со случаем **H** || [011]. Это следует из симметрии кристалла-пластины (011). Здесь на равновесную ориентацию вектора **M** оказывают влияние КА и НОА, имеющая две компоненты: перпендикулярную (одноосную) и ромбическую. Их легкие оси взаимно перпендикулярны и совпадают с осями [011] и $[01\bar{1}]$, являющимися с точки зрения кубической симметрии равноправными. Поэтому выделение полем оси $[01\bar{1}]$ вызывает тот же эффект на ОФД, что и при **H** || [011].

Рис. 6. Кривые критических полей при $K_u > 0$, $\varkappa_2 = 1$, $\varkappa_p = 1$. \varkappa_1 : a = 0.8, b = 1, c = 2. d =при $K_u < 0$, $\varkappa_1 = -1$, $\varkappa_p = -1$, $\varkappa_2 = -50$.

Кривые критических полей

Для исследования влияния магнитного поля во всем диапазоне его значений на основное состояние кристалла рассмотрим кривые критических полей, которые определяются из условий (2) и (3) с учетом (1), когда неравенства заменяются на равенства. В случае плоскости $h_x h_z$, где $h_x = H_x M_s / |K_u|$, $h_z = H_z M_s / |K_u|$, они приводят к параметрическому уравнению вида:

$$h_x = P_1 \cos \Theta - P_2 \sin \Theta,$$

$$h_z = -P_1 \sin \Theta - P_2 \cos \Theta,$$
 (5)

где

$$P_1 = \sin 2\Theta \left[\operatorname{sign} K_u + \frac{1 - 3\sin^2 \Theta}{4} \left(2\varkappa_1 + \varkappa_2 \cos^2 \Theta \right) \right].$$

$$P_{2} = 2 \operatorname{sign} K_{u} \cos 2\Theta + \varkappa_{1} \left[\sin^{2} \Theta \left(2 \sin^{2} \Theta - 9 \cos^{2} \Theta \right) + \cos^{4} \Theta \right] + \frac{\varkappa_{2}}{2} \cos^{2} \Theta \left[\cos^{4} \Theta + \sin^{2} \Theta \left(6 - 17 \cos^{2} \Theta \right) \right].$$
(6)

На рис. 6, *a*-*c* приведены графики соответствующих кривых. Видно, что с уменьшением величины параметра \varkappa_1 (вклад НОА по сравнению с КА возрастает) область существования четырех состояний уменьшается и при $\varkappa_1 = 1$ стягивается в точку. Кривые в плоскости $h_y h_z$, $h_y = H_y M_s / |K_u|$ имеют вид, аналогичный рассмотренному выше случаю, но повернуты по сравнению с ним на 90°. Таким образом, прослеживаются общие закономерности процессов намагничивания кубических кристаллов с наведенной одноосностью [3–5]. Наряду с этим в силу особенностей рассматриваемой пластины имеются и некоторые отличия. Так, в плоскости $h_x h_y$ (рис. 6, *d*), где условия (2), (3) приводят к параметри-

ческому уравнению вида

$$h_x = -P_3 \cos \Theta - P_4 \sin \Theta,$$

$$h_y = -P_3 \sin \Theta + P_4 \cos \Theta,$$
(7)

где

$$P_{3} = 2\varkappa_{p}\cos 2\varphi + \varkappa_{1} \left[2\cos^{4}\varphi - 9\sin^{2}\varphi\cos^{2}\varphi + \sin^{4}\varphi \right]$$
$$+ \frac{\varkappa_{2}\sin^{2}\varphi}{2} \left(\sin^{4}\varphi - 11\sin^{2}\varphi\cos^{2}\varphi + 6\cos^{4}\varphi \right),$$
$$P_{4} = \sin 2\varphi \left[\varkappa_{p} + \frac{3\cos^{2}\varphi - 1}{4} \left(2\varkappa_{1} + \varkappa_{2}\sin^{2}\varphi \right) \right], \quad (8)$$

в случае, когда вторая константа КА значительно превосходит по абсолютной величине константу одноосной анизотропии ($K_u < 0$), появляются две области, в которых возможно существование шести магнитных фаз. Наличие таких областей, соответствующих областям гистерезиса, указывает на сложный характер процесса перемагничивания рассматриваемого магнетика.

Заключение

Таким образом, воздействие магнитного поля на основное состояние пластины (011) приводит к понижению его магнитной симметрии. Вследствие этого частично или полностью снимается вырождение магнитных фаз. В результате существенно изменяется ОФД пластины (011): одни фазы полностью исчезают, другие трансформируются с изменением их симметрии. Аналогичные процессы под действием поля имеют место со СПФП. Более сложной становится картина перемагничивания таких кристаллов: она зависит не только от величины и ориентации внешнего магнитного поля, но и от констант КА и НОА (последняя описывается уже двумя параметрами). Полученные результаты, с одной стороны, восполняют пробел, связанный с отсутствием подобного анализа для пластины (011). С другой стороны, они выявляют и общие закономерности процессов перемагничивания кристаллов с комбинированной анизотропией, что представляет интерес для экспериментальных исследований.

Работа выполнена при поддержке Минобразования (грант № Е00-3.4-342).

Список литературы

- [1] Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. М., 1990. 320 с.
- [2] Тикадзуми С. Физика ферромагнетизма. Магнитные характеристики и практические применения. М., 1987. 419 с.
- [3] Мицек А.И., Колмакова Н.П., Сирота Д.И. // Металлофизика. 1982. Т. 4. № 4. С. 26–33.
- [4] Vakhitov R.M., Kucherov V.Ye. // J. Magn. Magn. Mater. 2000.
 Vol. 215–216. P. 56–59.
- [5] Гриневич В.В., Вахитов Р.М. // ФТТ. 1996. Т. 38. Вып. 11. С. 3409–3419.
- [6] Baxumos P.M. // ФММ. 2000. Т. 80. № 6. С. 16-20.
- [7] Гуфан Ю.М. // Структурные фазовые переходы. М.: 1982. 304 с.
- [8] Изюмов Ю.А., Сыромятников В.Н. // Фазовые переходы и симметрия кристаллов. М., 1984. 248 с.
- [9] Бучельников В.Д., Шавров В.Г. // ФТТ. 1981. Т. 23. № 5. С. 1296–1301.
- [10] Сабитов Р.М., Вахитов Р.М., Шанина Е.Г. // МЭ. 1989. Т. 18. № 3. С. 266–273.
- [11] Белов К.П., Звездин А.К., Кадомцева А.М., Левитин Р.З. Ориентационные переходы в редкоземельных магнетиках. М., 1979. 320 с.