01;03 Особенности диффузии примеси в потоке газа в канале

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 15 июня 2001 г.)

Рассматривается вопрос о приближенном вычислении концентрации N примеси в потоке газа, протекающего в канале. Показывается, что в ряде случаев потери примеси на стенках канала можно учесть путем введения эффективного времени жизни τ , описывающего диффузионный уход частиц примеси из потока на стенки.

1. Для определенности будем рассматривать течение молекулярного газа в канале и под примесью будем понимать небольшую долю присутствующих в газе колебательно-возбужденных (например, на первый уровень) молекул. Примерная схема течения представлена на рис. 1: газ протекает сквозь объем *I*, в котором горит разряд и создается первоначальная концентрация возбужденных молекул, а затем поступает в плоский канал *II*. В процессе течения в канале происходит потеря возбужденных молекул вследствие колебательной (v-t) релаксации в объеме и вследствие ухода возбужденных молекул на стенки канала (см., например, [1,2]).

2. Для определения времени жизни τ возбужденных молекул в потоке рассмотрим начальный участок течения в канале. Распределение концентрации возбужденных молекул по длине *x* и поперечному сечению *y* канала будем определять из уравнения конвективной диффузии

$$\mathbf{V}_0 \cdot \nabla N - D\nabla^2 N = -N/\tau_{vt},\tag{1}$$

где V₀ — скорость течения газа, которая на начальном участке течения считается постоянной и направленной по оси x; D — коэффициент самодиффузии молекул (в общем случае коэффициент диффузии примеси в основном газе); τ_{vt} — время v-t-релаксации.

На стенках канала граничные условия к уравнению (1) имеют вид [3]

$$D \frac{\partial N(x, y)}{\partial y} = \pm \frac{1}{2} N(x, y) \bar{v} \frac{\gamma}{2 - \gamma} \quad (y = \pm \frac{L}{2}), \quad (2)$$

где $\bar{v} = \sqrt{8T/\pi M}$ — средняя тепловая скорость молекул, $\gamma(\theta) = 1 - r(\theta)$ — коэффициент прилипания колебательно-возбужденных молекул к поверхности (r — коэффициент отражения).

у зависит от степени покрытия θ поверхности адсорбированными атомами и от наличия на поверхности потенциального барьера для адсорбции молекул. Величина этого барьера меняется в широких пределах от весьма малых значений, например, для Pd, до значений, существенно превышающих *T*, например, для Cu (см., например, [4,5]). На входе в канал (x = 0, $-L/2 \leq y \leq L/2$) задается начальное распределение концентрации N(0, y) возбужденных молекул. Решение уравнения (1) получается суммированием частных решений, которые находятся путем разделения переменных [6]. В результате решение представляется в виде

$$N(x, y) = \sum_{k=1}^{\infty} A_k \cos(\mu_k y/R)$$

$$\times \exp\left\{-\left[\sqrt{1 + \vartheta^2(\mu_k^2 + R^2/D\tau_{vt})} - 1\right] x/\vartheta R\right\}.$$
 (3)

Здесь обозначено $\vartheta = 2D/RV_0$, R = L/2, μ_k — положительные корни уравнения сtg $\mu = \mu/B$ (k = 1, 2, 3, ...), где $B = (R\bar{v}/2D)\gamma/(2\gamma)$;

$$A_{k} = \frac{\mu_{k}}{\mu_{k} + \sin \mu_{k} \cos \mu_{k}} \frac{1}{R} \int_{-R}^{R} N(0, y) \cos(\mu_{k} y/R) dy \quad (4)$$

— коэффициенты разложения по Фурье начального распределения концентрации N(0, y).

Параметр ϑ по порядку величины равен отношению членов

$$-D \frac{\partial^2 N}{\partial x^2}$$
 и $V_0 \frac{\partial N}{\partial x}$

в (1), т.е. определяет отношение продольной диффузии к конвекции. При $\vartheta \gg 1$ конвективный член в (1) несуществен. В этом случае распределение концентрации

Рис. 1. Схема течения: I — разрядная камера, II — канал, V_0 — скорость течения газа на входе в канал. Поперечное сечение потока на входе в канал (x = 0) заштриховано.

примеси в канале определяется исключительно диффузией и, как следует из (3), имеет вид

$$N(x, y) = \sum_{k=1}^{\infty} A_k \cos(\mu_k y/R)$$
$$\times \exp\left\{-\frac{x}{R}\sqrt{\mu_k^2 + R^2/D\tau_{vt}}\right\}.$$
 (5)

Плотность потока Γ воздужденных молекул, поступающих в канал, определяется как

$$\langle \Gamma(0, y) \rangle \equiv -D \left. \frac{\partial \langle N(x, y) \rangle}{\partial x} \right|_{x=0}$$

$$= \frac{D}{R} \sum_{k=1}^{\infty} A_k \frac{\sin \mu_k}{\mu_k} \sqrt{\mu_k^2 + \frac{R^2}{D\tau_{vt}}}.$$
(6)

В (6) проведено усреднение по поперечному сечению канала, обозначаемое символом $\langle ... \rangle$. Видно, что характерная длина диффузии примеси вдоль канала $\sim R$ при $R \ll \sqrt{D\tau_{vt}}$ или порядка $\sqrt{D\tau_{vt}}$ в противоположном случае. Полный поток молекул примеси, поступающих в канал, определяется умножением $\langle \Gamma(0, y) \rangle$ на площадь *S* поперечного сечения канала.

3. Рассмотрим теперь противоположный случай, когда $\vartheta \ll 1$ и продольная диффузия несущественна. В этом случае слагаемым $-D(\partial^2 N/\partial x^2)$ в (1) можно пренебречь, так что перенос примеси вдоль канала осуществляется только конвективным путем, в то время как поперек канала примесь переносится исключительно путем диффузии (именно такая ситуация рассматривалась в [1,2]). В рассматриваемом теперь случае за время диффузии поперек канала на расстояние $\sim R$ примесь проходит вдоль канала расстояние x, большое по сравнению с *R*: $x/R \sim 1/\vartheta$. В этих условиях потери примесных молекул в канале, связанные с объемной v-tрелаксацией и уходом на стенку, удобно описывать с помощью эффективного времени жизни то. Для определения τ_0 перейдем к усредненной по сечению канала концентрации $\langle N(x, y) \rangle$. Полагая в (3) $\vartheta \ll 1$ и усредняя результат по у, получаем

 $\langle N(x, y) \rangle = F(\xi) \exp\{-x/V_0 \tau_{vt}\},\tag{7}$

где

$$F(\xi) = \sum_{k=1}^{\infty} A_k \frac{\sin \mu_k}{\mu_k} \exp\left\{-\frac{4\mu_k^2}{\pi^2} \xi\right\}.$$
 (8)

Здесь обозначено: $\xi = x/V_0 \tau_d$; $\tau_d = \Lambda^2/D$ и $\Lambda = L/\pi$ — время и длина поперечной диффузии примеси. Определим эффективное время жизни частиц примеси соотношением

$$\frac{d\langle \Gamma(x,y)\rangle}{dx} = -\frac{\langle N(x,y)\rangle}{\tau_0(x)}.$$
(9)

Здесь $\langle \Gamma(x, y) \rangle = V_0 \langle N(x, y) \rangle$ — усредненная по поперечному сечению канала плотность потока примеси вдоль канала. Из (7) и (9) получаем

где

$$1/\tau_0 = \frac{1}{\tau_{vt}} + \frac{1}{\tau},$$

$$\frac{1}{\tau(\xi)} = \frac{1}{\tau_d} \frac{d}{d\xi} \ln F(\xi).$$
(10)

Полные потери молекул примеси на единицу длины канала равны $-S\langle N(x, y) \rangle / \tau_0$. Величина τ в (10) определяет скорость потерь возбужденных молекул вследствие их поперечной диффузии из потока на стенки. Введенное таким образом время жизни τ фактически совпадает со временем жизни, возникающим в задаче о временной эволюции концентрации n(t, y) примеси в послесвечении $t \ge 0$ разряда [7].¹ Это связано с тем, что уравнение (1), в котором опущено слагаемое

$$-D \frac{\partial^2 N(x, y)}{\partial x^2}$$

и соответствующее уравнение для n(t, y) совпадают при замене t на x/V_0 . Подобие решений n(t, y) и N(x, y)имеет место лишь при $\vartheta \ll 1$, когда можно понизить порядок уравнения (1) по x. В общем случае, т.е. при произвольном ϑ , такое подобие отсутствует и надо пользоваться решением уравнения (1) в виде (3). При этом потери частиц примеси на стенках канала уже не могут быть описаны посредством введения диффузионного времени жизнки τ .

4. Обычно при вычислении τ с помощью выражения (10) в сумме (8) сохраняют лишь первое слагаемое. Получающееся при этом значение τ (оно обозначается ниже как τ_1) равно

$$\tau_1 = \tau_d (\pi/2\mu_1)^2, \tag{11}$$

где $\mu_1(B)$ — наименьший положительный корень уравнения ctg $\mu = \mu/B$. Такой подход заведомо справедлив при $\xi \gg 1$, когда слагаемые с $k \ge 2$ вносят малый вклад в (8). Ниже будет показано, что в действительности область применимости выражения (11) значительно шире: замена τ на τ_1 приводит к точному результату и при $\xi = 1$, а также в сравнительно широкой области значений ξ при $\xi < 1$.

В предельных случаях $B \gg 1$ ($\mu_1 \simeq \pi/2$) и $B \ll 1$ ($\mu_1 \simeq \sqrt{B}$) выражение (11) приводит соответственно к значениям $\tau_1 = \tau_d$ и $\tau_1 = (L/\bar{v}) \cdot (2 - \gamma)/\gamma$. Первое из указанных значений соответствует условиям, когда коэффициент прилипания γ не слишком мал и время ухода молекул на стенки определяется временем τ_d их поперечной диффузии: тогда граничное условие (2) заменяется на $N(x, \pm L/2) \simeq 0$. Второе значение соответствует условиям, когда $\gamma \ll 1$ и настолько малó, что $\tau \gg \tau_d$. В этом

92

¹ Выражение (10) для τ , полученное в настоящей работе, отличается от соответствующего выражения в [7] тем, что в [7] не проводилось усреднение по сечению канала и задача решалась в цилиндрической геометрии.

Рис. 2. Распределение η(ξ) по длине канала. Величина параметра *B* для соседних кривых отличается вдвое и меняется от *B* = 0.125 до 64. *a* — примесь распределена равномерно по сечению при входе в канал, *b* — примесь на входе в канал сосредоточена в его центре.

случае распределение концентрации N по поперечному сечению канала почти однородное, а плотность потока молекул из газа на стенку $\simeq (\gamma/4) \cdot N\bar{v}$. При промежуточных значениях B (11) очень точно аппроксимируется выражением $\tau_1 = \tau_d + (L/\bar{v}) \cdot (2 - \gamma)/\gamma$ [7]. Точность расчета, достигаемая при использовании приближенного значения τ_1 вместо τ , иллюстрируется на рис. 2. Здесь отложена величина $\eta(\xi) = \tau_1(\xi)/\tau(\xi)$ для различных расстояний ξ от входа в канал для двух противоположных случаев. В случае *a* предполагается, что на входе

в канал (x = 0) примесь равномерно распределена по сечению канала $N(0, y) = N_0$, где N_0 — концентрация примеси на входе в канал. В этом случае

$$F(\xi) = N_0 \sum_{k=1}^{\infty} \frac{2\sin^2 \mu_k}{\mu_k (\mu_k + \sin \mu_k \cos \mu_k)} \exp\left\{-\frac{4\mu_k^2}{\pi^2} \xi\right\}.$$
(12)

В случае *b* предполагается, что при x = 0 примесь целиком сосредоточена в центре канала N(0, y) = $= (L\tilde{N}_0/S) \cdot \delta(y)$, где \tilde{N}_0 — число частиц на единицу длины канала при x = 0. В этом случае

$$F(\xi) = \frac{2\tilde{N}_0}{S} \sum_{k=1}^{\infty} \frac{\sin\mu_k}{\mu_k + \sin\mu_k \cos\mu_k} \exp\left\{-\frac{4\mu_k^2}{\pi^2}\,\xi\right\}.$$
 (13)

В обоих случаях при $\xi \ge 1$ в канале устанавливается одинаковое асимптотическое распределение

$$N(x, y) = A_1 \cos(\mu_1 y/R) \\ \times \exp\left\{-\left[x/V_0 \tau_{vt} + (4/\pi^2)\mu_1^2 \xi\right]\right\}.$$
 (14)

В случае *a*, который реализуется часто и представляет наибольший наибольший интерес, по мере продвижения газа в канале происходит сужение профиля концентрации N(y), связанное уходом примеси на стенки. При этом, как видно из рис. 2, *a*, даже в самом худшем случае, т. е. при $B \gg 1$, эффективное время жизни τ_1 можно использовать вместо τ с точностью не хуже чем 0.1 при $\xi \ge 0.3$. Случай *b*, когда начальное распределение $N(0, y) \sim \delta(y)$, является гипотетическим и наихудщим для использования приближенного выражения (11). Из рис. 2, *b* видно, что даже в этом случае в самом плохом варианте, когда $B \ll 1$, эффективное время τ_1 может быть использовано с точностью не хуже чем 0.1 при $\xi \ge 0.8$.

Авторы благодарят Ю.З. Иониха, обратившего их внимание на работу [7].

Список литературы

- Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1998. Т. 68. Вып. 10. С. 10–19.
- [2] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1999. Т. 69. Вып. 6. С. 15–21.
- [3] Бакшт Ф.Г., Иванов В.Г., Рыбаков А.Б., Юрьев В.Г. // Препринт ФТИ АН СССР. № 946. Л., 1985. 60 с. Бакшт Ф.Г., Рыбаков А.Б. // ЖТФ. 1986. Т. 56. Вып. 2. С. 297–306.
- [4] Andrew P.L., Haasz A.A. // J. Appl. Phys. 1992. Vol. 72. P. 2749–2757.
- [5] Rettner C.T., Michelsen H.A., Auerbach D.J. // J. Chem. Phys. 1995. Vol. 102. N 11. P. 4625–4641.
- [6] *Лыков А.В.* Теория теплопроводимости. М.: ГИТТЛ, 1952. 392 с.
- [7] Ионих Ю.З. // Опт. и спектр. 1981. Т. 51. Вып. 1. С. 76-83.