01;09 Широкополосное излучение релятивистского электронного сгустка в полубесконечном волноводе

© В.А. Балакирев, И.Н. Онищенко, Д.Ю. Сидоренко, Г.В. Сотников

Национальный научный центр "Харьковский физико-технический институт" 61108 Харьков, Украина e-mail: sotnikov@kipt.kharkov.ua

(Поступило в Редакцию 27 марта 2001 г. В окончательной редакции 6 июля 2001 г.)

Исследовано возбуждение импульса переходного излучения при инжекции сгустка заряженных частиц через торцевую металлическую стенку в полубесконечный цилиндрический волновод. Получены точные аналитические выражения для полей тонкого кольцевого сгустка, содержащие функции Ломмеля от двух переменных. С помощью численных расчетов определены коэффициент полезного действия, мощность, спектр излучения, возбуждаемого заряженным сгустком конечных размеров в вакуумном волноводе, при этом учтен многомодовый характер поля. Показано, что при определенных условиях возбуждаемый электромагнитный импульс характеризуется малой длительностью, высокой интенсивностью и широким частотным спектром. Исследовано влияние различных параметров системы волновод–заряженный сгусток (ток, длительность сгустка, радиус волновода) на эффективность генерирования переходного импульса.

Введение

В настоящее время уделяется большое внимание проблеме получения и излучения мощных коротких электромагнитных импульсов, у которых ширина частотного спектра соизмерима со средней частотой. Такие импульсы получили название сверхширокополосных импульсов (СШПИ) [1,2]. Актуальность исследования вопросов импульсного излучения мощных электромагнитных сигналов обусловлена прежде всего их применением в сверхширокополосной радиолокации. СШПИ находят также применение для решения задач экологии, обнаружения предметов под поверхностью Земли, георазведки морского шельфа, обеспечения безопасности воздушного и автомобильного транспорта [1–6].

Наряду с традиционными методами, основанными на применении сверхширокополосных антенн (ТЕМрупоры, спиральные антенны, биконические антенны и целый ряд других [4]), для получения и излучения коротких СШПИ могут быть использованы импульсные сильноточные релятивистские электронные пучки (СРЭП). Короткие электронные пучки с длительностью 1–100 рs, энергией 0.5–1 MeV и пиковыми токами 1–100 kA могут быть получены либо преобразованием непрерывных СРЭП в последовательности электронных импульсов (модулированные пучки) [7], либо прямой генерацией СРЭП короткой и ультракороткой длительности в сильноточных устройствах (диоды со взрывной эмиссией).

Для эффективной генерации электромагнитных СШПИ целесообразно использовать нерезонансные (ударные) механизмы излучения СРЭП. Длительность возбуждаемого СШПИ будет определяться длительностью тока импульсного СРЭП, а мощность излученного СШПИ — величиной тока пучка и его энергией. В работе [8] экспериментально исследован ударный механизм возбуждения СШПИ релятивистским электронным пучком при зарядке штыревой антенны. В [9] представлены результаты экспериментальных исследований излучения СШПИ ТЕМ-рупором при его ударном возбуждении СРЭП. Помимо прямых процессов возбуждения широкополосных антенн при помощи СРЭП для генерации мощных СШПИ может быть использован эффект когерентного переходного излучения [10].

Переходное излучение отдельной заряженной частицы принадлежит к числу фундаментальных элементарных процессов излучения [11]. Эффект переходного излучения возникает при движении заряженной частицы через электрически неоднородную среду. Возникновение излучения заряда в неоднородной среде может интерпретироваться следующим образом. Распределение электромагнитного поля в пространстве определяется как скоростью заряженной частицы, так и диэлектрической (магнитной) проницаемостью среды, в которой эта частица движется. Если частица движется в неоднородной среде, то перестройка поля частицы будет сопровождаться излучением даже в случае равномерного и прямолинейного движения. Аналогичная картина имеет место при ускоренном движении частицы в однородной среде с той лишь разницей, что поле частицы перестраивается из-за изменения ее скорости. Эффект переходного излучения может быть многократно усилен, если использовать сгустки заряженных частиц [12]. Поля излучения частиц сгустка, размеры которого существенно меньше длины волны, когерентно складываются. В результате интенсивность излучения сгустка из N частиц оказывается в N^2 раз больше по сравнению с одной частицей. Благодаря этому эффекту электронные сгустки могут быть использованы для получения интенсивного переходного электромагнитного излучения.

В настоящей работе теоретически исследован процесс возбуждения сверхширокополосного переходного излучения при инжекции короткоимпульсного СРЭП в полубесконечный волновод круглого сечения, закороченный со стороны инжекции пучка проводящей диафрагмой. Особенностью процесса переходного излучения в такой системе является сильная дисперсия электромагнитных волн. Поэтому при распространении переходного СШПИ в волноводе будет происходить его деформация.

Поле тонкого кольцевого сгустка

Рассматриваемая система представляет собой полубесконечный ($0 \le z < \infty$) цилиндрический металлический волновод радиуса *b*, заполненный однородным диэлектриком с диэлектрической проницаемостью ε . С торца z = 0 он закорочен металлической стенкой, прозрачной для электронов. В волновод со стороны стенки влетает и затем движется с постоянной скоростью $v_0 < c/\sqrt{\varepsilon}$ вдоль оси *z* аксиально-симметричный моноэнергетический электронный сгусток. Пренебрежем влиянием узкого вакуумного пролетного канала на электродинамику системы и для упрощения расчетов будем считать диэлектрическое заполнение сплошным. Полученное решение будет точным в важном случае вакуумного волновода, когда $\varepsilon = 1$.

Найдем поле бесконечно короткого и тонкого заряженного кольца с плотностью

$$\rho = -\frac{eN}{2\pi r_0 v_0} \,\delta(r - r_0) \delta(t - t_0 - z/v_0),$$

где -e — заряд электрона; N — число электронов в кольце; v_0 , r_0 и t_0 — соответственно скорость, радиус и момент влета кольца в волновод.

Решая систему уравнений Максвелла методом преобразования Фурье с учетом граничного условия на торцевой металлической стенке ($E_r = 0$), получаем выражение для радиального электрического поля аксиальносимметричной *E*-волны

$$E_r(t, r, z, t_0, r_0) = \frac{2Ne}{\pi b \varepsilon v_0}$$

$$\times \sum_n \frac{\omega_{0n}^2 J_0(\lambda_n r_0/b) J_1(\lambda_n r/b)}{\lambda_n J_1^2(\lambda_n)} \{I_{2n} - I_{1n}\}, \quad (1)$$

$$I_{1n} = \int_{-\infty}^{+\infty} d\omega \, \frac{\exp[-\iota\omega t + \iota\omega(t_0 + z/v_0)]}{(\omega - \iota\omega_{0n})(\omega + \iota\omega_{0n})}, \qquad (2)$$

$$I_{2n} = \int_{-\infty}^{+\infty} d\omega \, \frac{\exp(-\iota\omega\tau + \iota\xi\sqrt{\omega^2 - \alpha_n^2})}{(\omega - \iota\omega_{0n})(\omega + \iota\omega_{0n})}, \qquad (3)$$

где $\tau = t - t_0$, $\xi = z\sqrt{\varepsilon}/c$, $\omega_{0n} = \lambda_n v_0/(b\sqrt{1 - \varepsilon v_0^2/c^2})$, $\alpha_n = \lambda_n c/(b\sqrt{\varepsilon})$, λ_n — п-й корень функции Бесселя J_0 .

Интеграл (2) описывает кулоновское поле, создаваемое зарядом, движущимся в бесконечном волноводе. Он равен

$$I_{1n} = \begin{cases} \frac{\pi}{\omega_{0n}} \exp\left[-\omega_{0n}\left(t-t_{0}-\frac{z}{v_{0}}\right)\right] & \text{при } t-t_{0}-\frac{z}{v_{0}} \ge 0, \\ \frac{\pi}{\omega_{0n}} \exp\left[\omega_{0n}\left(t-t_{0}-\frac{z}{v_{0}}\right)\right] & \text{при } t-t_{0}-\frac{z}{v_{0}} < 0. \end{cases}$$
(4)

Интеграл (3) соответствует свободным колебаниям цилиндрического волновода и описывает переходное излучение. Впервые аналитическое решение для подобного интеграла было получено в работе [13] при изучении распространения электромагнитного сигнала в ионизированном газе. Ниже мы будем придерживаться метода, предложенного в [13].

Функция $\sqrt{\omega^2 - \alpha_n^2}$ имеет в точках $\omega = \pm \alpha_n$ точки ветвления. Сделаем разрез в комплексной плоскости ω по отрезку ($-\alpha_n, \alpha_n$). При интегрировании (3) необходимо обходить разрез сверху, так как в этом случае полное поле (1) будет обращаться в нуль при $t < t_0$.

При $t - t_0 - z\sqrt{\varepsilon}/c < 0$ значение интеграла (3) будет определяться вычетом подынтегральной функции в полюсе $\omega = \iota \omega_{0n}$

$$I_{2n} = \frac{\pi}{\omega_{0n}} \exp\left[\omega_{0n}\left(t - t_0 - \frac{z}{v_0}\right)\right].$$
 (5)

При $t - t_0 - z\sqrt{\varepsilon}/c > 0$, применяя теорему о вычетах, можно показать, что

$$I_{2n} = I_{el} + \frac{\pi}{\omega_{0n}} \exp\left[\omega_{0n} \left(t - t_0 - \frac{z}{v_0}\right)\right].$$
(6)

Здесь I_{el} — интеграл от подынтегральной функции (3) по замкнутому контуру с отрицательным направлением обхода, охватывающему оба полюса $\omega = \pm \iota \omega_{0n}$ и разрез ($-\alpha_n, \alpha_n$). В качестве такого контура возьмем эллипс C_{ω}^{-} с фокусами в точках ветвления $\omega = \pm \alpha_n$. Проделаем ряд преобразований в интеграле I_{el} . Сначала выполним замену $p = -\iota \omega$. Потом перейдем к новой переменной $\alpha_n \xi = \sqrt{p^2 + \alpha_n^2} - p$. Далее сделаем замену $\xi = -\beta \omega$, где $\beta = \sqrt{(\tau - \xi)/(\tau + \xi)}$. В результате I_{el} принимает вид

$$I_{el} = \frac{\iota}{2\omega_{0n}} \int_{C_w^+} dw \exp\left[\frac{\alpha_n}{2}\sqrt{\tau^2 - \xi^2} \left(w - \frac{1}{w}\right)\right] \\ \times \left\{\frac{1}{w - w_1} - \frac{1}{w - w_2} - \frac{1}{w - w_3} + \frac{1}{w - w_4}\right\},$$
(7)

где $w_{1,2} = \beta^{-1} \sqrt{(c \pm \sqrt{\varepsilon}v_0)(c \pm \sqrt{\varepsilon}v_0)^{-1}}, w_{3,4} = -w_{1,2}.$ Эллиптический контур C_{ω}^- преобразовался в контур C_w^+ — окружность в комплексной плоскости w с центром в точке w = 0, которая обходится в положительном направлении и не содержит внутри себя никаких особых точек, кроме w = 0. Поскольку контур интегрирования C_w^+ не охватывает полюсов $w = w_j$, то на нем справедливы следующие разложения:

$$-\frac{1}{w-w_j} = \frac{1}{w_j} \sum_{k=0}^{\infty} \left(\frac{w}{w_j}\right)^k.$$
 (8)

Заметим также, что [14]

$$\frac{1}{2\pi\iota}\int\limits_{C_w^+} dw \cdot w^k \exp\left[\frac{x}{2}\left(w-\frac{1}{w}\right)\right] = (-1)^{k+1}J_{k+1}(x).$$
(9)

Подставляя в (7) ряды (8) и меняя местами порядок интегрирования и суммирования, с учетом (9) получаем

$$I_{el} = \frac{2\pi\iota}{\omega_{0n}} \sum_{m=0}^{\infty} (-1)^m \big[(\iota r_2)^{1+2m} - (\iota r_1)^{1+2m} x \big] J_{1+2m}(y_n),$$
(10)

где $y_n = \alpha_n \sqrt{\tau^2 - \xi^2}$, $r_{1,2} = w_{2,1}^{-1}$. Согласно [15], функция Ломмеля *n*-го порядка от двух

Согласно [15], функция Ломмеля *n*-го порядка от двух аргументов $U_n(q, x)$ определяется как

$$U_n(q,x) = \sum_{m=0}^{\infty} (-1)^m \left(\frac{q}{x}\right)^{n+2m} J_{n+2m}(x).$$
(11)

Учитывая (6), (10) и (11), записываем при $t - t_0 - z\sqrt{\varepsilon}/c > 0$

$$I_{2n} = \frac{2\pi}{\omega_{0n}} \left\{ \iota U_1(\iota r_2 y_n, y_n) - \iota U_1(\iota r_1 y_n, y_n) + \frac{1}{2} \exp\left[\omega_{0n} \left(t - t_0 - \frac{z}{v_0}\right)\right] \right\}.$$
 (12)

Из свойств функций Ломмеля следует [15]

$$\iota U_{1}(\iota r y, y) = \begin{cases} -\sum_{m=0}^{\infty} r^{2m+1} J_{2m+1}(y) & \text{при } |r| \leq 1, \\ -\operatorname{sh}\left(\frac{ry}{2} - \frac{y}{2r}\right) - \sum_{m=0}^{\infty} \frac{J_{2m+1}(y)}{r^{2m+1}} & \text{при } |r| > 1. \end{cases}$$
(13)

Окончательно, используя (4), (5), (12) и учитывая при этом (13), мы можем записать суммарное электрическое поле (1), которое создает в полубесконечном волноводе тонкий кольцевой сгусток, движущийся с постоянной скоростью, в виде суперпозиции кулоновского поля заряда E_r^{coul} и поля переходного излучения E_r^{trans}

$$E_r(t, r, z, t_0, r_0) = E_r^{\text{coul}}(t, r, z, t_0, r_0) + E_r^{\text{trans}}(t, r, z, t_0, r_0),$$

$$E_r^{\text{coul}}(t, r, z, t_0, r_0) = -\frac{2Ne}{b^2 \varepsilon \sqrt{1 - \varepsilon v_0^2/c^2}}$$

$$\times \sum_n \frac{J_0(\lambda_n r_0/b) J_1(\lambda_n r/b)}{J_1^2(\lambda_n)}$$

$$\times \left\{ \epsilon_1 \exp\left[\omega_{0n} \left(t - t_0 - \frac{z}{v_0}\right)\right] + \epsilon_2 \exp\left[-\omega_{0n} \left(t - t_0 - \frac{z}{v_0}\right)\right] \right\}, \quad (14)$$

$$E_{r}^{\text{trans}}(t, r, z, t_{0}, r_{0}) = \frac{4Ne}{b^{2}\varepsilon\sqrt{1 - \varepsilon v_{0}^{2}/c^{2}}}$$

$$\times \sum_{n} \frac{J_{0}(\lambda_{n}r_{0}/b)J_{1}(\lambda_{n}r/b)}{J_{1}^{2}(\lambda_{n})}$$

$$\times \left\{\epsilon_{1}\left[\sum_{m=0}^{\infty}(r_{1}^{2m+1} - r_{2}^{2m+1})J_{2m+1}(y_{n})\right.$$

$$\left. + \frac{1}{2}\exp\left[\omega_{0n}\left(t - t_{0} - \frac{z}{v_{0}}\right)\right]\right]$$

$$\left. + \epsilon_{2}\left[\sum_{m=0}^{\infty}\left(r_{1}^{2m+1} - \frac{1}{r_{2}^{2m+1}}\right)J_{2m+1}(y_{n})\right.$$

$$\left. + \frac{1}{2}\exp\left[-\omega_{0n}\left(t - t_{0} - \frac{z}{v_{0}}\right)\right]\right]\right\}. \quad (15)$$

Здесь введены следующие функции (ниже $v_{pr} = c/\sqrt{\varepsilon}$):

$$\epsilon_1 = \begin{cases} 1 \, \operatorname{при} \, t - t_0 - rac{z}{v_0} \le 0 & \mathrm{u} \, t - t_0 - rac{z}{v_{pr}} \ge 0, \\ 0 \, \operatorname{прu} \, t - t_0 - rac{z}{v_0} > 0 & \mathrm{илu} \, t - t_0 - rac{z}{v_{pr}} < 0, \end{cases}$$

$$\epsilon_2 = \begin{cases} 1 & \text{при } t - t_0 - \frac{z}{v_0} > 0, \\ 0 & \text{при } t - t_0 - \frac{z}{v_0} \le 0. \end{cases}$$

Аналогичным образом получается выражение для магнитного поля тонкого кольцевого сгустка в виде суперпозиции токовой составляющей магнитного поля $H_{\varphi}^{\rm curnt}$ и поля переходного излучения $H_{\phi}^{\rm trans}$

$$\begin{aligned} H_{\varphi}(t, r, z, t_0, r_0) &= H_{\varphi}^{\text{curnt}}(t, r, z, t_0, r_0) \\ &+ H_{\varphi}^{\text{trans}}(t, r, z, t_0, r_0), \end{aligned}$$

$$H_{\varphi}^{\text{curnt}}(t, r, z, t_0, r_0) = \frac{\varepsilon v_0}{c} E_r^{\text{coul}}(t, r, z, t_0, r_0), \quad (16)$$

Журнал технической физики, 2002, том 72, вып. 2

$$H_{\varphi}^{\text{trans}}(t, r, z, t_{0}, r_{0}) = \frac{4Nev_{0}}{b^{2}c\sqrt{1 - \varepsilon v_{0}^{2}/c}}$$

$$\times \sum_{n} \frac{J_{0}(\lambda_{n}r_{0}/b)J_{1}(\lambda_{n}r/b)}{J_{1}^{2}(\lambda_{n})}$$

$$\times \left\{\epsilon_{1}\left[-\sum_{m=0}^{\infty}(r_{1}^{2m+1} + r_{2}^{2m+1})J_{2m+1}(y_{n})\right] + \frac{1}{2}\exp\left[\omega_{0n}\left(t - t_{0} - \frac{z}{v_{0}}\right)\right]\right\}$$

$$+ \epsilon_{2}\left[-\sum_{m=0}^{\infty}\left(r_{1}^{2m+1} + \frac{1}{r_{2}^{2m+1}}\right)J_{2m+1}(y_{n}) + \frac{1}{2}\exp\left[-\omega_{0n}\left(t - t_{0} - \frac{z}{v_{0}}\right)\right]\right]\right\}.$$
(17)

Квазистатические (14), (16) и переходные (15), (17) составляющие поля определены и отличны от нуля в области $z \leq (t - t_0)v_{pr}$. Введенная ранее величина v_{pr} есть не что иное, как наибольшая скорость распространения электромагнитных возмущений в волноводе. Поэтому в момент времени $t > t_0$ ни кулоновское, ни переходное поле не существуют правее точки $z_{pr} = (t-t_0)v_{pr}$. Самая быстрая и высокочастотная часть сигнала, распространяющаяся со скоростью v_{pr} , есть

Рис. 1. Первая гармоника поля стустка в форме тонкого диска радиуса a/b = 0.125. Время наблюдения tc/b = 10, радиус наблюдения $r_{obs}/b = 0.25$, $t_0 = 0$, $\varepsilon = 1.0$, $v_0/c = 0.5$.

предвестник сигнала [16]. Поскольку скорость частицы $v_0 < v_{pr}$, то поле обгоняет частицу. Для иллюстрации качественной картины распространения излучения на рис. 1 представлены продольные распределения первой гармоники суммарного радиального электрического поля и его кулоновской и переходной составляющих. В импульсе излучения присутствует широкий набор частот и самые коротковолновые и высокочастотные осцилляции располагаются в предвестнике. Амплитуда осцилляций убывает по мере приближения к предвестнику сигнала, в точке $z = z_{pr}$ суммарное поле обращается в нуль.

Результаты численных расчетов

Для численных расчетов нами был выбран сгусток электронов со следующим распределением плотности тока в сгустке:

$$j_{z}(r_{0}, t_{0}) = j_{0} \cdot J_{0}\left(\lambda_{1} \frac{r_{0}}{a}\right) \exp\left[-4\left(\frac{2t_{0}}{T_{b}} - 1\right)^{2}\right], \quad (18)$$

где j_0 — максимальное значение плотности тока; $0 \le t_0 \le T_b$, T_b — длительность сгустка; $0 \le r_0 \le a$, a — радиус сгустка.

Подобное распределение часто реализуется в экспериментальных условиях. При моделировании такой сгусток можно представить в виде набора макрочастиц — тонких колец с соответствующими значениями радиуса, заряда и продольной координаты в сгустке. Поле, создаваемое сгустком, будет равно сумме полей от всех макрочастиц, образующих сгусток.

Выше (рис. 1) для демонстрации качественной картины мы ограничивались учетом первой гармоники поля. В действительности же заряженный сгусток в цилиндрическом волноводе возбуждает целый набор радиальных гармоник. Это приводит к сжатию максимумов поля и образованию характерных пиков, амплитуда которых значительно превышает амплитуду одной гармоники [17]. Приведенные в этом разделе результаты численных расчетов были получены при учете 10 гармоник. Дальнейшее увеличение их числа не влияло существенно на форму поля при выбранных параметрах волновода и сгустка. В расчетах использовался вакуумный волновод ($\varepsilon = 1$). В этом случае радиальная неоднородность диэлектрического заполнения и потери в диэлектрике полностью отсутствуют.

Ниже анализируется только переходная составляющая поля. Численные расчеты выполнялись для тех характеристик излучения, которые могут быть легко измерены экспериментально. Поэтому, во-первых, исследовались зависимости поля от времени в точках с определенными координатами. Во-вторых, вычислялись зависимости мощности излучения от времени. В-третьих, определялись частотные спектры S(f) полученных колебаний (f -линейная частота). Для характеристики эффективности возбуждения колебаний были введены следующие

величины, выраженные в процентах: коэффициент полезного действия η , равный отношению энергии излучения к кинетической энергии частиц сгустка, и коэффициент преобразования мощности χ , равный отношению максимальной мощности излучения к максимальной токовой мощности сгустка. При таком определении η и χ прямо пропорциональны заряду сгустка. Параметры системы сгусток–волновод выбирались такими, чтобы максимальный ток сгустка был меньше предельного вакуумного тока [18].

Рассмотрим сигналы переходного излучения, полученные вблизи начала системы и вдали от него. В первом случае (рис. 2) импульс колебаний характеризуется большой напряженностью поля (15 kV/cm), большой максимальной мощностью (порядка 33 MW) и малой длительностью (менее 1 ns). Спектр этого сигнала широкий, с выраженными узкими пиками, близкими к критическим частотам волновода $f_n = \lambda_n c / (2\pi b \sqrt{\epsilon})$. Низкочастотную часть спектра $f < f_1$ можно объяснить тем, что сигнал переходного излучения прошел малое расстояние и еще не успел сформироваться. Во втором случае (рис. 3) амплитуда поля не превышает 8 kV/cm, максимальная мощность излучения уменьшилась на порядок и равна примерно 3 MW. Длительность импульса существенно возросла (более 5 ns). Максимумы спек-

Рис. 2. Характеристики сигнала переходного излучения, возбуждаемого сгустком с гауссовским распределением. Вертикальные линии — критические частоты f_n . Сигнал получен в точке с координатами $z_{obs}/b = 1$, $r_{obs}/b = 0.25$. b = 4.0 cm, $\gamma = 2.29$, a = 0.5 cm, $L_b = 2.0$ cm, $I_{max} = 1.9455$ kA.

Рис. 3. То же, что на рис. 2, но $z_{obs}/b = 20$.

тра соответствуют частотам, несколько большим, чем соответствующие f_n . В спектре отсутствуют частоты ниже f₁. Исчезли провалы между соседними критическими частотами, ширина спектра несколько возрасла. Такое изменение формы сигнала переходного излучения обусловлено следующими причинами. Когда заряженный сгусток влетает в волновод, он возбуждает с различной интенсивностью все возможные собственные колебания. Поскольку волновод обладает дисперсией, то скорость распространения этих колебаний различна. В результате изначально короткий волновой пакет расплывается, это расплывание проявляется тем сильнее, чем дальше точка наблюдения отстоит от начала системы. На рис. 3 видно, что частота регистрируемых колебаний со временем уменьшается, так как более высокочастотные колебания обладают большей скоростью распространения и первыми приходят в точку наблюдения. Энергия излучения остается постоянной, поэтому увеличение длительности импульса сопровождается падением мощности и уменьшением напряженности поля.

На рис. 4 показано, как изменяется форма спектра переходного излучения при увеличении длины заряженного сгустка L_b . Полный заряд сгустка менялся пропорционально изменению длины так, чтобы максимальный ток был одинаковым для сгустков разной длины. Ширина спектра существенно падает с ростом L_b . В волноводе радиуса b = 4 ст сгусток с $L_b = 4$ ст (кривая 1) эффективно возбуждает не менее 3 гармоник, сгусток с

Рис. 4. Зависимость формы спектра переходного излучения от длины сгустка. $z_{obs}/b = 20$, $r_{obs}/b = 0.25$, b = 4.0 cm, $\gamma = 2.29$, a = 0.5 cm, $I_{max} = 1.9455$ kA.

Рис. 5. Зависимости η , χ и радиальной структуры модуля поля в момент максимума мощности от длины сгустка. Параметры системы те же, что и на рис. 4.

 $L_b = 8 \text{ cm}$ (кривая 2) возбуждает 2 гармоники, а сгустки с $L_b = 12 \text{ cm}$ (кривая 3) и $L_b = 16 \text{ cm}$ (кривая 4) — одну гармонику, причем для наиболее длинного сгустка амплитуда этой гармоники минимальна. Такую зависимость

спектра излучения от длины сгустка можно объяснить выбранным профилем плотности тока сгустка (18). На рис. 5 представлены зависимости η, χ и соответствующей радиальной структуры переходного поля от L_b . η убывает с ростом L_b, что связано с уменьшением количества возбуждаемых гармоник и ростом кинетической энергии сгустка, которая пропорциональна числу частиц. На зависимости χ имеется максимум при $L_b = 4$ сm. Для объяснения этого обратимся к структуре поля. Увеличение L_b с 2 (кривая 1) до 4 ст (кривая 2) привело к тому, что изменился спектральный состав колебаний и максимум поля сместился к боковой стенке волновода. Следствием этого явилось возрастание мощности. Дальнейшее увеличение L_b в условиях, когда основной является первая гармоника (кривая 3 и $4 - L_b = 6 \text{ cm}$ и $L_b = 8 \text{ cm}$), не изменяет качественно зависимость поля от радиуса, но сопровождается снижением максимального поля и, как следствие, мощности излучения.

Из рис. 4 и 5 следует, что генерация переходного излучения в волноводе неэффективна, если диаметр волновода меньше или сравним с длиной заряженного сгустка. Рассмотрим, как влияет поперечный размер волновода на эффективность возбуждения переходного излучения. На рис. 6 представлены зависимости η , χ и радиальной структуры переходного поля от радиуса волновода b, полученные для сгустка с фиксированными параметрами. Величина максимального тока сгустка

Рис. 6. Зависимости η , χ и радиальной структуры модуля поля в момент максимума мощности от радиуса волновода. $z_{obs}/b = 3$, $\gamma = 2.29$, a = 0.5 cm, $L_b = 10.0$ cm, $I_{max} = 0.973$ kA.

Рис. 7. Зависимость формы спектра переходного излучения от радиуса волновода. Параметры системы те же, что и на рис. 6.

была меньше предельного вакуумного тока для волновода с наибольшим радиусом, безразмерная продольная координата точки наблюдения $z_{obs}/b = \text{const.}$ С ростом радиуса η монотонно возрастает, при больших значениях радиуса *п* стремится к насыщению. В то же время увеличение радиуса волновода приводит к уменьшению величины тока сгустка, который может быть инжектирован в волновод. Значение χ с ростом b сначала возрастает, достигает максимума, а затем медленно убывает. Радиальная структура переходного поля, соответствующая максимальной мощности излучения, меняется при этом следующим образом. В волноводах с радиусами 4 и 8 ст (кривые 1 и 2) максимум поля расположен вблизи боковой стенки, большему радиусу соответствует большая мощность излучения. В волноводах с радиусами 12 и 16 ст (кривые 3 и 4) сгусток длиной 10 ст возбуждает многомодовые колебания и максимум поля смещается к оси волновода. Значение максимального поля также уменьшается, и мощность излучения падает. Заметим, что качественный вид кривых 3 и 4 подобен зависимости переходного поля от радиуса в случае сгустка длиной 2 cm и волновода радиуса 4 cm (кривая 1 на рис. 5). На рис. 7 показано изменение формы спектра сигнала переходного излучения при увеличении радиуса волновода. Видно, что в узком волноводе $b = 4 \,\mathrm{cm}$ (кривая 1) колебания близки к одномодовым, в волноводе $b = 8 \, \text{сm}$ (кривая 2) возбуждаются 2 гармоники, в волноводе $b = 12 \,\mathrm{cm}$ (кривая 3) — 4 гармоники, при $b = 16 \,\mathrm{cm}$ (кривая 4) колебания содержат не менее 5 гармоник. Левая граница спектра смещается в область более низких частот. Ширина спектра остается примерно постоянной, также критические частоты для волновода с большим радиусом расположены плотнее.

Заключение

При влете заряженного сгустка в полубесконечный цилиндрический волновод возникает переходное излучение. Если условие черенковского резонанса не выполнено, возбуждаемое электромагнитное поле представляет собой суперпозицию квазистатического поля движущегося заряда и поля переходного излучения. Наиболее быстрая часть поля распространяется со скоростью $c/\sqrt{\varepsilon}$, которая превышает скорость движения заряженного сгустка.

В спектре сигнала переходного излучения содержатся колебания со всеми частотами и волновыми числами, являющимися собственными для данного волновода. Поскольку волновод обладает дисперсией, скорости распространения этих колебаний существенно различны. Пространственное продольное распределение поля переходного излучения, полученное в некоторый момент времени, показывает, что в голове пакета находятся самые коротковолновые колебания, по мере приближения к началу системы (хвосту пакета) пространственный период осцилляций возрастает. Пространственная огибающая сигнала по мере продвижения от головы к хвосту пакета сначала возрастает от нуля до максимума и затем плавно убывает. Зависимость поля переходного излучения от времени, полученная в некоторой точке, расположенной достаточно далеко от начала системы, показывает, что частота регистрируемых колебаний убывает со временем. Временная огибающая сигнала также сперва возрастает, достигает максимума и после этого убывает.

Спектр переходного сигнала широкий, он содержит несколько радиальных гармоник. В спектре четко выделяются широкие несимметричные пики, максимумы которых соответствуют частотам, несколько бо́льшим, чем соответствующие критические частоты волновода.

Сигнал переходного излучения, полученный вблизи начала системы, характеризуется высокой мощностью и малой длительностью. У сигнала, который получен достаточно далеко от начала системы, мощность падает, а длительность существенно возрастает.

С увеличением длины сгустка уменьшается количество гармоник поля, которые он возбуждает и колебания принимают вид, близкий к одномодовому. Эффективность возбуждения излучения при этом резко падает. Для повышения эффективности возбуждения СШПИ сгустком с большой длительностью можно использовать волновод, радиус которого превышает длину сгустка. Однако в этом случае ток сгустка будет малым из-за ограничения его предельным вакуумным значением.

Для получения наибольшей эффективности генерации импульса широкополосного излучения необходимо использовать короткие сгустки с током, близким к предельному значению тока, который может транспортироваться в волноводе.

Список литературы

- [1] Хармут Х. Несинусоидальные волны в радиолокации и радиосвязи. Пер. с англ. М.: Радио и связь, 1985. 376 с.
- [2] Астанин Л.Ю., Костылев А.А. Основы сверхширокополосных измерений. М.: Радио и связь, 1989. 191 с.
- [3] Астанин Л.Ю., Костылев А.А. // Зарубежная радиоэлектроника. 1981. № 9. С. 3–27.
- [4] Зернов Н.В., Меркулов Г.В. // Там же. С. 85–94.
- [5] Строителев В.Г. // Там же. С. 95-105.
- [6] Панько С.П. // Там же. С. 106-113.
- [7] Friedman M., Serlin V., Lay Y.Y., Krall J. // Proc. 8th Intern. Conf. on High-Power Particle Beams (BEAMS'90). Novosibirsk, 1990. Vol. 1. P. 53–60.
- [8] Гапоненко М.И., Курилко В.И., Латинский С.М. и др. // ВАНТ. Сер. Ядерно-физические исследования. 1997. Т. 11. № 4,5 (31,32). С. 151–153.
- [9] Балакирев В.А., Гапоненко М.И., Горбань А.М. и др. // ВАНТ. Сер. Физика плазмы. 2000. № 3. С. 118–119.
- [10] Балакирев В.А., Сидельников Г.Л. // ЖТФ. 1999. Т. 69. Вып. 10. С. 90–95.
- [11] Гинзбург В.Л., Франк И.М. // ЖЭТФ. 1946. Т. 16. Вып. 1. С. 15–28.
- [12] Гинзбург В.Л., Цытович В.Н. Переходное излучение и переходное рассеяние. М.: Наука, 1984. 360 с.
- [13] Денисов Н.Г. // ЖЭТФ. 1951. Т. 21. Вып. 12. С. 1354–1363.
- [14] Лаврентьев М.А., Шабат Б.В. Методы теории функции комплексного переменного. М.: Наука, 1973. 736 с.
- [15] Ватсон Г.Н. Теория Бесселевых функций. М.: ИЛ, 1949. 798 с.
- [16] Brillouin L. // Annalen der Physik. 1914. Vol. 44. N 10. P. 203–240.
- [17] Zhang T.-B., Hirshfield J.L., Marshall T.C., Hafizi B. // Phys. Rev. E. 1997. Vol. 56. N 4. P. 4647–4655.
- [18] Рухадзе А.А., Богданкевич Л.С., Росинский С.Е., Рухлин В.Г. Физика сильноточных релятивистских электронных пучков. М.: Атомиздат, 1980. 165 с.