01;09 Моделирование планарного ЛСЭ-усилителя с ленточным релятивистским электронным пучком

© Н.С. Гинзбург, Р.М. Розенталь, Н.Ю. Песков, А.В. Аржанников, С.Л. Синицкий

Институт прикладной физики РАН, 603600 Нижний Новгород, Россия e-mail: ginzburg@appl.sci-nnov.ru

(Поступило в Редакцию 19 марта 2001 г.)

Проведено моделирование мощного лазера на свободных электронах (ЛСЭ)-усилителя планарной конфигурации на длине волны 4 mm, разрабатываемого на базе ускорителя У-3 (ИЯФ СО РАН), формирующего ленточный релятивистский электронный пучок (РЭП) с энергией до 1 MeV и полным рабочим током до 2 kA. Моделирование проведено с использованием различных подходов, включая прямое численное моделирование уравнений Максвелла и уравнений движения макрочастиц PIC-кодом KARAT. Показано, что примененные подходы дают достаточно близкие результаты.

Очевидным достоинством использования сильноточных релятивистских электронных пучков ленточной геометрии для генерации и усиления микроволнового излучения является возможность обеспечения достаточно высокой интегральной мощности излучения при умеренных плотностях энергии на единицу поперечного сечения [1–3]. При этом важной проблемой является обеспечение пространственной когерентности излучения от разных частей электронного потока. Для генераторных схем подобная задача может быть с использованием двумерной распределенной обратной связи, которая реализуется с помощью брэгговских структур планарной геометрии с двоякопериодической гофрировкой боковых стенок [4,5].

Как показано в [6], двумерные брэгговские решетки целесообразно использовать и для ввода излучения в усилитель, запитываемый ленточным РЭП. При этом оказывается возможным обеспечить равномерную по поперечному сечению электронного потока энергоотдачу и фазовый фронт выходного излучения, близкий к плоскому. Указанный усилитель разрабатывается в настоящее время на базе ускорителя У-3 (ИЯФ СО РАН), формирующий ленточный РЭП с энергией до 1 MeV и полным рабочим током до 2 kA.

В данной работе проведено моделирование процесса усиления с использованием различных подходов. В разделе 1 получена полная неусредненная система самосогласованных уравнений, описывающих процесс взаимодействия частиц, движущихся в поле плоского ондулятора и однородном ведущем магнитном поле, с ТЕМ-модой планарного волновода. В разделе 2 при выполнении условия ондуляторного резонанса проведено усреднение указанных уравнений и на этой основе исследована линейная и нелинейная стадии процесса усиления. Продемонстрировано хорошее совпадение с результатами моделирования неусредненных уравнений. В разделе 3 для геометрии системы, близкой к реальной геометрии разрабатываемого усилителя, выполнено моделирование в рамках двумерной версии PIC-кода KARAT. Показано, что эти подходы дают достаточно близкие результаты.

1. Основная модель и уравнения

Предположим, что ленточный электронный пучок с начальной скоростью $\mathbf{v}_0 = v_0 \mathbf{z}_0$ транспортируется в поле планарного ондулятора и однородное ведущее магнитное поле $\mathbf{H}_0 = H_0 \mathbf{z}_0$ через плоский волновод, образованный двумя параллельными металлическими плоскостями, разнесенными по оси *у* на расстояние *а*. Будем полагать систему однородной по координате *x* и преположим, что электронный пучок возбуждает ТЕМ-моду указанного волновода. Периодическое ондуляторное поле и поле рабочей моды зададим с помощью вектор-потенциалов

$$\mathbf{A}_{u} = \operatorname{Re}\{A_{u}\operatorname{ch}(\bar{h}y)e^{ihz}\mathbf{x}_{0}\},\$$
$$\mathbf{A}_{s} = \operatorname{Re}\{A_{s}(z)e^{i(\omega t - kz)}\mathbf{y}_{0}\},\qquad(1)$$

где $A_s(z)$ — медленно меняющаяся амплитуда сигнальной волны; $\bar{h} = 2\pi/d$, d — период ондулятора; $k = \omega/c$; **x**₀, **y**₀, **z**₀ — единичные орты декартовой системы координат.

На основе уравнений возбуждения и уравнений движения электронов можно получить самосогласованную систему уравнений, описывающих процесс электронноволнового взаимодействия в однопроходном усилителе

$$\frac{da_s}{dZ} = iJ_0 \int_0^{2\pi} \frac{P_y}{P_z} e^{-i(\tau-Z)} d\tau_0, \qquad (2a)$$

$$\frac{dP_x}{dZ} = -\frac{P_y}{P_z} \left(\tilde{H}_u^z + \tilde{H}_0 \right) + \tilde{H}_y^u, \tag{2b}$$

$$\frac{dP_y}{dZ} = -\frac{\gamma}{P_z} \tilde{E}_y^s - \frac{P_x}{P_z} \left(\tilde{H}_z^u + \tilde{H}_0 \right) + \tilde{H}_x^s, \qquad (2c)$$
$$d\gamma \qquad P_y \underset{\tilde{\sigma}_x}{\to} \quad dY \qquad P_y \ d\tau \qquad \gamma$$

$$= -\frac{1}{P_z} E_y^s, \quad \frac{1}{dZ} = \frac{1}{P_z} \frac{1}{dZ} = \frac{1}{P_z},$$
$$P_z = \sqrt{\gamma^2 - 1 - P_x^2 - P_y^2}$$
(2d)

с граничными условиями $a_s|_{Z=0} = a_0, P_x|_{Z=0} = P_y|_{Z=0} = 0,$ $\gamma|_{Z=0} = \gamma_0, Y|_{Z=0} = ky_0, \tau|_{Z=0} = \tau_0 \in [0, 2\pi),$ где Z = kz,

dZ

Y = ky — продольная и поперечная координаты; y_0 — координата инжекции пучка в пространство взаимодействия; $\tau = \omega t$ — время; $P_{x,y,z} = p_{x,y,z}/m_0c$ — нормированные компоненты импульсов электронов;

$$egin{aligned} & ilde{E}_y^s = - ilde{H}_x^s = \mathrm{Im}\{a_s e^{i(au-Z)}\}, \ & ilde{H}_y^u = -\mathrm{Im}\{ar{h}_k a_u ch(ar{h}_k Y) e^{iar{h}_k Z}\}, \ & ilde{H}_Z^u = -\mathrm{Re}\{ar{h}_k a_u sh(ar{h}_k Y) e^{iar{h}_k Z}\}, \ & ilde{H}_0 = eH_0/m_0 c\omega \end{aligned}$$

— нормированные компоненты полей, $\bar{h}_k = \bar{h}/k$, $a_{u,s} = eA_{u,s}/m_0c^2$ — амплитуды полей ондулятора и сигнальной волны, $J_0 = 2ej_0/m_0c\omega^2 a$ — параметр тока, j_0 — линейная плотность тока.

В уравнениях движения сделан переход от дифференцирования по времени к дифференцированию по продольной координате $d/dt = v_z d/dz$.

Следует отметить, что система уравнений (2) носит достаточно универсальный характер, поскольку при ее выводе не делалось предположений о выполнении условий синхронизма или удаленности от циклотронного резонанса. Соответственно в уравнениях (2) отсутствует усреднение по быстрым колебаниям. Это затрудняет проведение аналитического исследования, в частности построения линейной теории. Тем не менее представляется целесообразным контроль на основе указанной системы точности результатов, получаемых с помощью усредненных уравнений. В целом система уравнений (2) занимает промежуточное положение между прямым численным моделированием уравнений Максвелла (в частности, на основе PIC-кода KARAT, раздел 3) и подходом, основанном на использовании усредненных уравнений (раздел 2).

2. Усредненные уравнения

Для получения усредненных уравнений рассмотрим взаимодействие электронов с рабочей волной в условиях ондуляторного синхронизма

$$\omega - h v_{\parallel} \approx \Omega, \tag{3}$$

где $\Omega = \bar{h}v_{\parallel}$ — частота колебаний электронов в поле ондулятора (баунс-частота).

При этом будем предполагать, что сигнальная электромагнитная волна и поле ондулятора далеки от циклотронного резонанса с электронами

$$\begin{split} |\omega - hv_{\parallel} - \omega_H | T \gg 2\pi, \\ |\bar{h}v_{\parallel} - \omega_H | T \gg 2\pi, \end{split} \tag{4}$$

где $\omega_H = eH_0/m_0 c\gamma_0$ — гирочастота, v_{\parallel} — продольная скорость электронов, T — характерное время взаимодействия.

При таких предположениях, приближенно интегрируя уравнения движения (2b), (2c), найдем амплитуду поперечных осцилляций электронов в поле сигнальной волны и поле ондулятора

$$p_{+} = \frac{e}{2c} \Biggl\{ \frac{k}{\bar{h}} \frac{iA_{s}(1/\beta_{\parallel} - 1)e^{i(\omega t - hz)}}{1 - u - g} + \frac{k}{\bar{h}} \frac{iA_{s}^{*}(1/\beta_{\parallel} - 1)e^{-i(\omega t - hz)}}{1 - u + g} - \frac{A_{u}\mathrm{ch}(\bar{h}y)e^{i\bar{h}z}}{1 - u - g} + \frac{A_{u}^{*}\mathrm{ch}(\bar{h}y)e^{-i\bar{h}z}}{1 - u + g} \Biggr\}, \qquad (5)$$

где $p_+ = p_x + ip_y$, $g = \omega_H / \Omega$ — отношение циклотронной и баунс частот, $u = 1 - \gamma / \gamma_0$ — относительное изменение энергии электронов, звездочкой обозначается операция комплексного сопряжения.

Подставляя (5) в уравнение возбуждения (2а) и уравнение для изменения энергии (2d) и усредняя по быстрым колебаниям, получим

$$\frac{d\alpha_s}{dZ} = I_0 \alpha_u \int_0^{2\pi} \left(\frac{1}{1 - \tilde{u} - g} - \frac{1}{1 - \tilde{u} + g} \right) e^{-i\tilde{\theta}} d\theta_0,$$
$$\frac{d\tilde{u}}{dZ} = \left(\frac{1}{1 - \tilde{u} - g} - \frac{1}{1 - \tilde{u} + g} \right) \operatorname{Re}\{\alpha_u^* \alpha_s e^{i\tilde{\theta}}\}, \quad (6)$$

где $\alpha_s = a_s/2\gamma_0$ — амплитуда рабочей волны, $\alpha_u = a_u \operatorname{ch}(\bar{h}y_0)/2\gamma_0$ — нормированное поле ондулятора, $I_0 = J_0/4\gamma_0$ — параметр тока, $\theta = \omega t - (k + \bar{h})z$ фаза электронов относительно комбинационной волны, волнистая черта над переменной обозначает операцию усреднения.

Записывая уравнения для изменения фазы электронов в виде

$$\frac{d\theta}{dz} = \frac{\omega}{v_z} - (k + \bar{h}) \tag{7}$$

и полагая в ультрарелятивистском пределе $1/\beta_z \approx 1 + 1/2\gamma^2 + \beta_{\perp}^2/2$, подставим выражение для поперечных осцилляций электронов (5) и, проводя усреднение по быстрым осцилляциям, получим самосогласованную систему уравнений (в дальнейшем черту над переменными опускаем)

$$\frac{d\alpha_s}{dZ} = I_0 \alpha_u \int_0^{2\pi} \left(\frac{1}{1-u-g} - \frac{1}{1-u+g} \right) e^{-i\theta} d\theta_0,$$

$$\frac{du}{dZ} = \left(\frac{1}{1-u-g} - \frac{1}{1-u+g} \right) \operatorname{Re} \{ \alpha_u^* \alpha_s e^{i\theta} \},$$

$$\frac{d\theta}{dZ} = \frac{1}{\gamma_0^2} \frac{u(2-u)}{2(1-u)^2} + \frac{\beta_\perp^2}{2} - \Delta,$$

$$\beta_\perp^2 = (|\alpha_s|^2 + |\alpha_u|^2) \left(\frac{1}{(1-u-g)^2} + \frac{1}{(1-u+g)^2} \right)$$

$$-2\operatorname{Im} \{ \alpha_u^* \alpha_s e^{i\theta} \} \left(\frac{1}{(1-u-g)^2} - \frac{1}{(1-u+g)^2} \right)$$
(8)

Журнал технической физики, 2001, том 71, вып. 12

Рис. 1. Зависимость оптимальной расстройки и максимума инкремента от параметра *b*.

Рис. 2. Оптимальные соотношения ведущего и ондуляторного магнитных полей и зависимость максимального коэффициента усиления от ондуляторного поля в оптимальном режиме. Сплошная кривая — неусредненные уравнения, штриховая — усредненные уравнения.

с граничными условиями $\alpha_s|_{Z=0} = \alpha_0$, $u|_{Z=0} = 0$, $\theta|_{Z=0} = \theta_0 \in [0, 2\pi)$, где $\Delta = (1 + \bar{h}_k) - 1/\beta_0$ — начальная расстройка ондуляторного синхронизма.

В режиме малого сигнала, проводя линеаризацию системы (8) и представляя решение в виде $e^{-1\Gamma CZ}$, придем к дисперсионному уравнению

$$\Gamma^3 - \tilde{\Delta}\Gamma^2 + b\Gamma + 1 = 0, \tag{9}$$

где $ilde{\Delta}=(\Delta-eta_{\perp0}^2/2)C^{-1},\,b=4C/\mu(1-g^2),$

$$C = \left(4\pi I_0 |\alpha_u|^2 \mu \, \frac{g^2}{(1-g^2)^2}\right)^{1/3} \tag{10}$$

— параметр усиления (параметр Пирса),

$$\mu = \frac{1}{\gamma_0^2} + 2|\alpha_u|^2 \frac{1+3g^2}{(1-g^2)^3} \tag{11}$$

— параметр инерционной группировки.

В области параметров, соответствующей планируемому эксперименту, циклотронная частота превышает баунс-частоту и параметр *b* отрицателен. На рис. 1 приведены зависимости оптимальной расстройки и максимума инкремента от параметра *b*. Видно, что увеличение этого параметра по абсолютной величине приводит к уменьшению максимального инкремента и смещению оптимальной расстройки синхронизма в область отрицательных значений.

Моделирование нелинейной стадии взаимодействия было проведено при параметрах, близких к условиям планируемого эксперимента на основе ускорителя У-3. Предполагается инжектировать ленточный пучок электронов шириной 12 cm с энергией порядка 900 keV и полным током 2 kA через прямоугольный волновод размером 1×20 cm в поле плоского ондулятора с периодом поля 4 cm и амплитудой поперечной компоненты магнитного поля 1.5 kOe и в ведущем магнитном поле напряженностью 11 kOe. Предполагается, что пучок будет взаимодействовать с одной из низших мод H-типа, структура поля которой в месте инжекции пучка близка к структуре TEM-волны планарного волновода. В качестве источника внешнего сигнала предполагается использовать излучение 75 GHz, 1 MW гиротрона.

На рис. 2 показано оптимальное по коэффициенту усиления соотношение между магнитными полями на нелинейной стадии взаимодействия для усредненных и неусредненных уравнений. На том же рисунке показаны зависимости максимального коэффициента усиления от ондуляторного магнитного поля в оптимальном режиме. Видно, что моделирование с помощью полных и усредненных уравнений дает практически совпадающие результаты. При этом максимум усиления достигается на полной длине пространства взаимодействия 90–100 ст и составляет 24–25 dB, что соответствует выходной мощности 250–300 MW и КПД 14–17%.

3. Моделирование процесса усиления в рамках PIC-кода KARAT

Дополнительное моделирование планарной модели убитрона-усилителя было проведено на основе двумерной версии PIC-кода KARAT, позволяющего непосредственно решать уравнения Максвелла в совокупности с уравнениями движения макрочастиц.

Рис. 3. Зависимость коэффициента усиления от продольной координаты. *1* — усредненные уравнения, *2* — неусредненные уравнения, *3* — код KARAT.

Журнал технической физики, 2001, том 71, вып. 12

На рис. 3 представлены зависимости коэффициента усиления от продольной координаты, полученные на основе решения неусредненных и усредненных уравнений, а также на основе моделирования кодом KARAT. Видно, что коэффициент усиления в последнем случае достигает 22 dB, что соответствует выходной мощности 160-170 MW и КПД порядка 9%. Меньший коэффициент усиления по сравнению с другими подходами может быть объяснен влиянием таких факторов, как низкочастотный (статический) и высокочастотный пространственные заряды. В частности, статический пространственный заряд должен вызывать расслоение электронов по продольным скоростям. Кроме того, анализ неусредненных и усредненных уравнений показывает существенное падение коэффициента усиления при неоптимальном соотношении магнитных полей. Можно предположить, что такая же чувствительность имеет место и при анализе на основе кода KARAT. При этом нахождение точного оптимума полей в последнем случае является достаточно сложной задачей.

Авторы выражают признательность В.П. Тараканову за предоставленную возможность использования PIC-кода KARAT.

Работа выполнена при поддержке гранта РФФИ № 00-02-17232.

Список литературы

- Аржанников А.В., Синицкий С.Л., Юшков М.В. Препринт ИЯФ СО РАН. Новосибирск, 1991. № 91-85.
- [2] Arzhannikov A.V., Ginzburg N.S., Nikolaev V.S. et al. // 14th Intern. FEL Conf. Kobe (Japan), 1992. P. 214.
- [3] Cheng S., Destler W.W., Granatstein V.L. et al. // IEEE Trans. on Plasma Sci. 1996. Vol. 24. N 3. P. 750–757.
- [4] Гинзбург Н.М., Песков Н.Ю., Сергеев А.С. // Письма в ЖТФ. 1992. Т. 18. Вып. 9. С. 23–28.
- [5] Ginzburg N.S., Peskov N.Yu., Sergeev A.S. et al. // Phys. Rev. E. 1999. Vol. 60. N 1. P. 935–945.
- [6] Гинзбург Н.С., Песков Н.Ю., Сергеев А.С. и др. // Письма в ЖТФ. 1999. Т. 25. Вып. 19. С. 87–95.