# 01;10,11 Моделирование процесса двухпучковой высокодозной ионной имплантации в твердотельные мишени

#### © А.Ф. Комаров

Научно-исследовательский институт прикладных физических проблем им. А.Н. Севченко, 220064 Минск, Белоруссия e-mail: kff@rfe.bsu.unibel.by

(Поступило в Редакцию 27 июля 2000 г. В окончательной редакции 18 января 2001 г.)

Разработана физико-математическая модель и программа динамического моделирования BEAM2HD, которая позволяет моделировать процесс одно- или двухпучковой высокодозной ионной имплантации в многослойные и многокомпонентные мишени. При этом число слоев не превышает трех, а число разных типов атомов в каждом слое не превышет семи. Моделирование реализовано методом Монте-Карло. Приводятся численные результаты работы по формированию сверхтвердных слоев  $C_{x\to3}N_{y\to4}$  путем двухпучковой высокодозной ионной имплантации азота в многослойную систему Si<sub>3</sub>N<sub>4</sub>/C/Si<sub>3</sub>N<sub>4</sub>/Si.

## Введение

В настоящее время существуют два основных метода моделирования пробегов ионов в твердых телах. Первый использует подход Монте-Карло [1-4] и рассматривает историю движения каждого иона в отдельности, второй основан на решении интегродифференциальных уравнений переноса частиц [5-8]. Метод Монте-Карло отличается гибкостью, он позволяет производить точные расчеты для многокомпонентных и многослойных мишеней, в том числе в случае облучения поверхностей сложной формы, что позволяет моделировать, например, современные технологические процессы производства СБИС или взаимодействие плазмы с поверхностью вакуумной камеры. Однако большинство стандартных методов моделирования ионной имплантации (в том числе и указанные выше [1-8]) сформулировано в приближении низких доз легирования. Такой подход не учитывает целого ряда эффектов, проявляющихся при высокодозной ионной имплантации и связанных с процессом накопления имплантированной примеси, каскадного перемешивания, распыления и распухания мишени. Между тем высокодозная ионная имплантация широко используется для синтеза соединений, применяемых в промышленности и микроэлектронике. Недавно были разработаны программы динамического моделирования [9–12], частично основанные на хорошо известных статистических программах TRIM [4] и MARLOWE [1] для учета некоторых из упомянутых выше дозовых эффектов. К существенным недостаткам вышеуказанных методов следует отнести невозможность моделирования процесса одновременной многопучковой имплантации. Однако следует ожидать, что структурная перестройка и соответственно формирование новых фаз в процессе одновременной многопучковой ионной имплантации будут принципиально отличаться по сравнению с раздельным процессом имплантации пучком одного сорта ионов, а затем другого.

В данной работе дается описание программы ВЕАМ2HD, основанной на методе Монте-Карло, которая позволяет моделировать торможение ионов

аморфных твердых телах. Данная программа представляет возможность моделировать процесс одноили двухпучковой высокодозной ионной имплантации в многослойные и многокомпонентные мишени. При этом число слоев не превышает трех, а число разных типов атомов в каждом слое не превышает семи. Обсуждаются возможности данной программы для предсказания выхода распыления и имплантационных профилей, а также исследуется влияние отдельных высокодозных эффектов на профили распределения имплантированной примеси. Коэффициенты распыления определяются программой BEAM2HD для диапазона энергий от 1 до 300 keV при облучении кремния ионами аргона при нормальном угле падения. Рассчитаны глубинные концентрационные профили ионов азота с энергией 150 keV для доз от 4.5 · 10<sup>17</sup> до 1 · 10<sup>18</sup> N/cm<sup>2</sup>.

Предполагается модель по формированию сверхтвердых слоев  $C_{x\to3}N_{y\to4}$  путем высокодозной двухпучковой ионной имплантации азота в многослойную систему Si<sub>3</sub>N<sub>4</sub>/CSi<sub>3</sub>N<sub>4</sub>/Si. На основании программы BEAM2HD проведен расчет профилей распределения атомов азота в данной многослойной системе, определена толщина послойной эрозии за счет распыления в процессе имплантации, а также предложены оптимальные энергии и дозы имплантации азота для формирования слоя, близкого по стехиометрии к C<sub>3</sub>N<sub>4</sub>.

## Формулировка модели

а) Рассмотрение процессов рассеяния и торможения. В программе BEAM2HD при моделировании торможения и рассеяния влетающих ионов и атомов отдачи ядерное и электронное торможение рассматриваются как отдельные процессы. При этом для ядерного рассеяния применяется аппроксимация бинарных столкновений, в то время как электронное торможение рассматривается как непрерывный процесс. Для расчета углов рассеяния на ядрах использована приближенная формула из [4], а электронные потери энергии рассчитываются в соответствии с теорией Линдхарда и др. [13]. Учтено влияние следующих основных факторов, сопутствующих высокодозной ионной имплантации [14,15]: послойное распыление поверхности мишени, рассеяние имплантируемых ионов на ранее внедренных атомах примеси, распухание мишени в результате имплантации больших доз ионов.

Описываемая модель дает возможность описать имплантацию ионов примеси в мишень при помощи одного или двух пучков. При этом каждый пучок характеризуется своей начальной энергией, массой и зарядом ионов пучка, дозой и количеством моделируемых траекторий для каждого пучка. Каждой траектории ставится в соответствие "псевдочастица", представляющая собой некоторый интеграл внедряемой дозы, по аналогии с программами TRIDYN [11] и HIDOS [12], моделирование траекторий каждого пучка осуществляется поочередно. Мишень может состоять не более чем из трех разных физических слоев. Изначально вся толщина мишени (моделируемая область) делится на 100 равных динамических слоев, а в процессе ионного облучения динамическое изменение состава мишени рассматривалось в соответствии с подходами, предложенными в работах [11,12]. При этом изначально каждый слой мишени (физический, а не динамический) может содержать до семи разных компонент.

б) Учет фактора распухания и распыления мишени. Описание процессов распухания и распыления мишени в процессе высокодозной ионной имплантации подробно приводится в наших работах [14,15]. Если в результате моделирования очередной траектории "псевдочастица" останавливалась в некотором глубинном (динамическом) слое, то этот слой распухает и величина толщины данного слоя описывается формулой

$$\Delta(\Delta l) = \frac{\Delta D_{\rm imp} \cdot 10^{-16}}{N_{\rm imp}} \,(\text{\AA}),\tag{1}$$

где  $N_{imp}$  (Å<sup>-3</sup>) — атомарная плотность внедряемой примеси типа imp.

Если общая доза внедряемой примеси типа imp равна  $D_{\rm imp}$  и моделирование ионной имплантации осуществляется с помощью  $N_H$  траекторий, то каждой траектории ставится в соответствие доза  $\Delta D_{\rm imp} = D_{\rm imp}/N_H$ .

Розыгрыш столкновений ионов и атомов отдачи, а также изменение стехиометрического состава в каждом динамическом слое подробно описаны в работе [15].

Толщина распыляемой поверхности мишени в результате налетания одной "псевдочастицы" рассчитывается следующим образом:

$$d_{\rm imp} = \frac{Y(E_0)}{N_{\rm target}} \Delta D_{\rm imp} 10^{-16} \,(\text{\AA}), \tag{2}$$

где  $N_{\text{target}}$  (Å<sup>-3</sup>) — атомарная плотность мишени,  $Y(E_0)$  — коэффициент распыления.

Для расчета коэффициента распыления применялась эмпирическая формула, предложенная в [16,17], которая пригодна для всех имеющихся экспериментальных данных в широком диапазоне энергий в случае нормального падения пучка. Однако для определенного интервала энергий и комбинаций ион-атом целесообразно, как будет показано далее, использовать формулу Зигмунда [18] для  $Y(E_0)$  в случае перпендикулярного облучения мишени и в предположении линейного каскада.

## Результаты и обсуждение

а) Распыление Si ионами Ar. Нарис. 1 экспериментальные коэффициенты распыления из работ [19–26], приведенные в работе [12], сравниваются с расчетными данными, полученными по программе HIDOS [12] и ВЕАМ2HD. Поверхностная энергия связи для кремния была взята равной  $U_s = 7.8$  V в [12] и в данной работе для расчета по [18], а для расчета по [16,17] использовано значение  $U_s = 4.63$  eV из [17]. Наилучшее согласие между расчетными данными и экспериментом во всех случаях достигается для высоких энергий. Хорошее согласие расчета Y программой BEAM2HD с экспериментом для всего интервала энергий достигается при использовании эмпирической формулы из [16,17]. Однако для интервала энергий 5 < E < 50 keV в



Рис. 1. Рассчитанные и измеренные коэффициенты распыления для облучения кремния ионами аргона при нормальном угле падения. *а* и *b* — расчетные данные из [12] (*U*<sub>s</sub> было взято равным 7.8 и 3.9 eV соответственно); *c*, *d* — результаты настоящей работы; *c* — расчет *Y* по [15,16] (*U*<sub>s</sub> = 4.63 eV); *d* — расчет *Y* по [17] (*U*<sub>s</sub> = 7.8 eV). Экспериментальные данные:  $\Box$  — [18],  $\blacksquare$  — [19],  $\circ$  — [20],  $\bullet$  — [21],  $\nabla$  — [22],  $\bigvee$  — [23],  $\Diamond$  — [24],  $\blacklozenge$  — [25].

случае распыления кремния из [16,17]. Однако для интервала энергий 5 < E < 50 keV в случае распыления кремния аргоном расчет У по [18] лучше согласуется с экспериментальными данными. Как видно из рис. 1, программа HIDOS [12], в которой расчет распыления проводится с учетом полных каскадов столкновений, вызванных первичным ионом при условии ( $T > U_s$ , где T энергия, переданная атомам мишени), занижает коэффициент распыления в низкоэнергетическом диапазоне, в то время как использование эмпирической формулы из [16,17] позволяет достаточно хорошо рассчитывать коэффициент распыления для широкого интервала энергий 0.1-300 keV. Можно предположить, что в HIDOS [12] для случая низких энергий пучка ионов  $E < 10 \, \text{keV}$  занижено сечение ядерного торможения, так как изменение значения поверхностной энергии связи для кремния с 7.8 до 3.9 eV не приводит к удовлетворительному согласию с экспериментом в этом интервале энергий (кривые а и *b* на рис. 1).

б) Высокодозная имплантация N в Si. Для создания скрытых слоев  $Si_3N_4$  по КНИ-технологии путем ионной имплантации необходимы высокие дозы азота [27–34]. В данном случае толщина верхнего слоя кремния имеет большое значение. Если дозовые эффекты приводят к значительному изменению концентрационного профиля или пробега, следует установить необходимую имплантационную энергию с тем, чтобы достигнуть желаемых глубин.

На рис. 2 приведены рассчитанные на основании ВЕАМ2HD распределения ионов азота с энергией 150 keV и дозами  $4.5 \cdot 10^1 - 1 \cdot 10^{18}$  cm<sup>-2</sup> в кремнии в сравнении с HIDOS [12], аналитическими расчетами, выполненными на основании распределения Пирсона-IV [34], и экспериментальными данными [33]. Как видно, форма и ширина расчетных профилей практически не зависят от дозы ионов. Проективный ионный пробег, однако, уменьшается почти линейно с увеличением дозы ионов в исследованном диапазоне доз  $5 \cdot 10^{16} - 1 \cdot 10^{18} \text{ cm}^{-2}$ . При дозе  $1 \cdot 10^{18} \, \text{cm}^{-2}$ , приводящей к количеству азота, равному 65 at.%, в максимуме профиля этот сдвиг составляет ≅ 5% (24 nm). Основная причина для сдвига профиля — распыление. Определенный по формуле (4) из нашей более ранней работы [14] коэффициент распыления  $Y(E_0) = 0.119$  атомов на ион. Рассчитанные концентрационные профили распределения азота в области максимума превышают примерно на 8% профили, полученные по HIDOS [12]. Проективный пробег R<sub>p</sub> тоже несколько отличается в настоящей работе (для дозы  $1 \cdot 10^{18} \text{ cm}^{-2}$ ), он равен 321 nm, а в [12]  $R_p \cong 318 \text{ nm}$ . Это различие можно объяснить выбором сечений ядерного торможения, а не расчетом толщины послойного распыления, так как коэффициенты распыления в [12] Y = 0.12и полученный в данной работе *Y* = 0.119 почти равны.

Имплантация высоких доз азота приводит к изменениям в силе торможения и распуханию мишени. Ожидается, что непрерывно увеличивающаяся атомная плотность в глубинной области должна приводить к уменьшению



Рис. 2. Рассчитанные глубинные профили распределения азота в кремнии для разных доз имплантации. Сплошные кривые результаты настоящей работы: доза  $4.5 \cdot 10^{17}$  (1),  $5 \cdot 10^{17}$  (2),  $7.5 \cdot 10^{17}$  (3),  $1 \cdot 10^{18}$  cm<sup>-2</sup> (4); штриховая — работа [12]:  $5 \cdot 10^{17}$ (5),  $7.5 \cdot 10^{17}$  (6),  $1 \cdot 10^{18}$  cm-2 (7); 8 — эксперимент [33] для дозы  $4.5 \cdot 10^{17}$  cm<sup>-2</sup>; 9 — Пирсон-IV [34] для дозы  $4.5 \cdot 10^{17}$  cm<sup>-2</sup>.

в проективном пробеге и ширине профиля, но и тот и другой эффект в большей степени компенсируется распуханием мишени (34 nm после облучения до  $1 \cdot 10^{18}$  атом/сm<sup>2</sup>).

На рис. 2 проведено также сравнение расчетного (кривая 1) и экспериментального [33] (кривая 8) профилей распределения ионов азота с энергией 150 keV и для дозы 4.5 · 10<sup>17</sup> N/cm<sup>2</sup>. Как видим, наблюдается соответствие глубин залегания максимумов расчетного и экспериментального профилей распределения имплантированного азота в кремнии. Однако расчетный концентрационный профиль распределения азота в кремнии гораздо уже экспериментального и в области максимума превышает экспериментальный профиль примерно на 25%. Это отличие в некоторой степени можно объяснить несоответствием (завышением) выбранной при расчете массовой плотностью формируемых преципитатов нитрида кремния  $Si_x N_y$ , а она выбиралась равной 3.19 g/cm<sup>3</sup> [35]. Но основной причиной различия расчетного и экспериментального профилей распределения азота в кремнии является отсутствие учета как в программе BEAM2HD, так и в программах TRIDYN [11] и HIDOS [12] процесса радиационно-стимулированной диффузии (РСД) имплантированного азота в кремнии, приводящей при таких дозах имплантации к значительному уширению и соответственно уменьшению объемной концентрации в области максимального распределения. Различие между формами аналитического профиля (кривая 9), полученного на основании распределения Пирсона-IV [34], и экспериментального (кривая 8) в основном также объясняется моделированием без учета РСД.



**Рис. 3.** Распределение по глубине азота, имплантированного в режиме двухпучковой ионной имплантации в многослойную систему Si<sub>3</sub>N<sub>4</sub>/C/Si<sub>3</sub>N<sub>4</sub>/Si.

Таким образом, даже для доз 1·10<sup>18</sup> N/cm<sup>2</sup> обнаружены только небольшие изменения в пробеге ионов и ширине профиля. Послойное распыление приводит к поверхностной эрозии на 26 nm при дозе имплантации 1·10<sup>18</sup> N/cm<sup>2</sup>. Полученные результаты в основном согласуются с результатами теоретической [12] и экспериментальной [33] работ. Однако для более адекватного описания процессов взаимодействия ионных пучков с твердым телом при высокодозной ионной имплантации наряду с процессами распыления, распухания и изменения плотности мишени необходим еще учет процессов РСД и формирования новых фаз.

в) Моделирование процесса формированию сверхтвердых слоев  $C_3N_4$ . Предполагается модель по формированию сверхтвердых слоев C<sub>x→3</sub>N<sub>v→4</sub> путем высокодозной одновременной двухпучковой ионной имплантации азота в многослойную систему  $Si_3N_4/C/Si_3N_4/Si$ . Слои нитрида кремния под и над углеродным слоем служат в качестве барьера для диффузии атомов азота из углеродного слоя в данной системе, а также как затравочные слои для роста фазы C<sub>3</sub>N<sub>4</sub> с тем же типом решетки, что и в случае Si<sub>3</sub>N<sub>4</sub>. На рис. З приведены результаты моделирования одновременной двухпучковой ионной имплантации азота в систему  $Si_3N_4/C/Si_3N_4/Si$ . Массовая плотность слоев  $Si_4N_4$  выбиралась равной 3.19 g/cm<sup>3</sup> [35], а плотность углеродного слоя (структура алмаза) — равной 3.516 g/cm<sup>3</sup>. Толщины нитридных слоев и углеродного слоя в данной системе выбирались исходя из технической возможности проведения подобного эксперимента. При моделировании процесса формирования однородного концентрационного профиля азота в углеродном слое со стехиометрическим составом, близким к 4/3, решались две задачи.

1. На основании решения обратной задачи [36] (полиэнергетическая ионная имплантация) были получены приближенные значения энергий и доз для формирования однородного профиля азота с объемной концентрацией 2.35 · 10<sup>23</sup> сm<sup>-3</sup> в слое углерода. Задавался режим двух имплантаций.

2. По программе BEAM2HD (рис. 3) подобраны более точно энергия и доза каждого из двух пучков, а также рассчитан суммарный концентрационный профиль азота в углеродном слое. Значения энергий пучков выбирались из условия остановки имплантированных атомов азота в углеродном слое, а интегральные дозы каждого из пучков — из условия получения однородного суммарного концентрационного профиля азота в углероде со стехиометрическим составом, близким к 4/3.

Как видим из рис. 3, суммарный концентрационный профиль азота в области 2 максимумов (для заданных параметров имплантации каждого из пучков) несколько превышает значение  $2.35 \cdot 10^{23} \, \text{cm}^{-3}$ . Олнако следует предположить, что в силу радиационностимулированной диффузии эти два пика сгладятся. Послойное распыление приводит к поверхностной эрозии на 45 nm при суммарной дозе имплантации двух пучков  $D_{\rm imp} = 2.85 \cdot 10^{18} \, {\rm N/cm^2}$ . Для учета фактора осаждения углеродной пленки из остаточных газов в камере [37], что приводит к уменьшению пробегов атомов азота, энергии имплантации двух пучков азота при моделировании выбирались несколько завышенными. На рис. 3, как видно, моделируемый суммарный профиль распределения азота в углеродном слое заглублен на  $\cong$  50 nm для компенсации влияния вышеуказанного фактора.

Подводя итог, отметим, что на основании разработанной программы BEAM2HD можно предсказать коэффициент распыления, толщину послойной эрозии за счет распыления в процессе имплантации и имплантационный профиль для одно- или двухпучковой высокодозной ионной имплантации в многослойные и многокомпонентные мишени.

#### Заключение

Разработана физико-математическая модель и программа BEAM2HD для моделирования процесса одноили двухпучковой высокодозной ионной имплантации в твердотельные многослойные и многокомпонентные мишени. Данная программа позволяет учитывать следующие эффекты: рассеяние имплантируемых ионов на ранее внедренных атомах примеси, распыление поверхности мишени различными ионными пучками, а также влияние эффекта распухания мишени. В качестве выходных данных работы программы можно получить таблицы и графики распределений имплантированных ионов в мишени, длин пробегов ионов, распределения вакансий, созданных в процессе имплантации, распределения электронных и ядерных потерь энергии имплантированных частиц. На основании программы BEAM2HD проведен расчет профилей распределения атомов азота в многослойной системе  $Si_3N_4/C/Si_3N_4/Si$ , определена толщина послойной эрозии за счет распыления в процессе имплантации, а также предложены оптимальные энергии и дозы имплантации азота для формирования однородного слоя, близкого по стехиометрии к  $C_3N_4$ .

Данная работа выполнена при частичной финансовой поддержке Белорусского республиканского фонда фундаментальных исследований, а также Международного фонда им. Ж. Миановского (Фонд поддержки науки, Варшава).

### Список литературы

- [1] Robinson M.T., Torrens M.I. // Phys. Rev. 1974. Vol. B9. P. 5008–5024.
- [2] Guttner K., Ewald H., Schmidt H. // Rad. Eff. 1972. Vol. 13.
  P. 111–114.
- [3] Ishitani T., Shimizu R., Murata K. // Jap. J. Appl. Phys. 1972. Vol. 11. P. 125.
- [4] Ziegler J.F., Biersack J.P., Littmark U. The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985.
- [5] Gibbons J.F. // Nucl. Instr. and Meth. 1987. Vol. B22. P. 83-86.
- [6] Lizunov Yu.D., Ryazanov A.I. // Rad. Eff. 1982. Vol. 60.
  P. 95–100.
- [7] Burenkov A.F., Komarov F.F., Kumakhov M.A., Temkin M.M. Tables of Ion Implantation Spatial Distributions. New York; London; Paris: Gordon and Breach, 1986.
- [8] Буренков А.Ф., Комаров Ф.Ф., Темкин М.М. // Поверхность. 1989. № 4. С. 15–21.
- [9] Karpuzov D.S. // Phys. St. Sol. (a). 1986. Vol. 94. P. 365.
- [10] Mazzone A.M. // Appl. Phys. 1987. Vol. A42. P. 193.
- [11] Möller W., Eckstein W., Biersack J.P. // Comput. Phys. Commun. 1988. Vol. 51. P. 355–368.
- [12] Schönborn A., Heckng N., Kaat E.H. // Nucl. Instr. and Meth. 1989. Vol. B43. P. 170–175.
- [13] Lindhard J., Scharff M., Schiott H.E. // Mat. Fys. Medd. Dan. Vid. Selsk. 1963. Vol. 33. N 14. P. 1–36.
- [14] Komarov A.F., Komarov F.F., Żukowski et al. // Nukleonika. 1999. Vol. 44. N 2. P. 363–368.
- [15] Комаров А.Ф., Комаров Ф.Ф., Шукан А.Л. и др. // Изв. Национальной академии наук Беларуси. Сер. физикотехнических наук. 1999. № 3. С. 19–23.
- [16] Yamamura Y., Matsunami N., Itoh N. // Rad Eff. 1983. Vol. 71. P. 65.
- [17] Matsunami N et al. // Atomic Data and Nuclear Data Tables. 1984. Vol. 31. N 1. P. 2
- [18] Sigmund P. // Phys. Rev. 1969. Vol. 184. P. 383.
- [19] Zalm P.C. // J. Appl. Phys. 1983. Vol. 54. P. 2660.
- [20] Southern A.L., Willis W.R., Robinson M.T. // J. Appl. Phys. 1963. Vol. 34. P. 153.
- [21] Blank P., Wittmaack K. // J. Appl. Phys. 1979. Vol. 50. P. 1519.
- [22] Nisse E.P.E // J. Appl. Phys. 1971. Vol. 42. P. 480.
- [23] Poate J.M., Brown W.L., Homer R. et al. // Nucl. Instr. and Meth. 1976. Vol. 132. P. 345.
- [24] Andersen H.H., Bay H.L. // J. Appl. Phys. 1975. Vol. 46. P. 1919.
- [25] Laegreid N., Wehnwr G.K. // J. Appl. Phys. 1961. Vol. 32.
  P. 365.
- [26] Sommerfeldt H., Mashkova E.S., Molchanov V.A. // Phys. Lett. 1972. Vol. 38A. P. 237.

- [27] Pavlov P.V., Kruze T.A., Tetelbaum D.I. et al. // Phys. St. Sol. (a). 1976. Vol. 36. P. 81.
- [28] Komarov F.F., Solov'yev V.S., Tishkov V.S. et al. // Rad. Eff. 1983. Vol. 69. P. 179.
- [29] Reeson K.J. // Nucl. Instr. and Meth. 1987. Vol. B19/20. P. 269.
- [30] Kachurin G.A., Akhmetov V.D., Tyschenko I.E., Plotnikov A.E. // Nucl. Instr. and Meth. 1993. Vol. B74. P. 399–404.
- [31] Markwitz A., Arps M., Bauman H. et al.// Nucl. Instr. and Meth. 1997. Vol. B124. P. 505–514.
- [32] Кривелевич С.А., Маковийчук М.И., Паршин Е.О. // Микроэлектроника. 1999. Т. 28. № 5. С. 363–369.
- [33] Barabanenkov M.Yu., Agafonov Yu.A., Mordkovich V.N. et al. // Nucl. Instr. and Meth. 2000. Vol. B171. P. 301–308.
- [34] Буренков А.Ф., Комаров Ф.Ф., Кумахов М.А., Темкин М.М. Пространственные распределения энергии, выделенной в каскаде атомных столкновений в твердых телах. М.: Энергоатомиздат, 1985. 248 с.
- [35] Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein. New Series III/7cl / Ed. K.H. Hellwege. Heidelberg: Springer, 1978.
- [36] Буренков А.Ф., Комаров Ф.Ф. // ЖТФ. 1988. Т. 58. № 3. С. 559–566.
- [37] Komarov F.F., Komarov A.F., Pilko V.V. et al. // Proc. Intern. Symp. "Ion Implantation of Science and Technology". Lublin (Poland), 1997. P. 38–41.