04 Эксперименты с импульсным высоковольтным разрядом в атмосфере

© Ю.Я. Волколупов, М.А. Красноголовец, М.А. Острижной, В.И. Чумаков

Харьковский государственный технический университет радиоэлектроники, 61726 Харьков, Украина

(Поступило в Редакцию 10 октября 2000 г.)

Приведены некоторые результаты исследования характеристик разряда в атмосфере, возникающего между электродами при $U = 500 \,\text{kV}$ в режиме искрового пробоя и при использовании взрывающихся проводников.

При высоковольтном разряде в атмосфере, возбуждаемом с помощью генераторов импульсного напряжения (ГИН) амплитудой порядка сотен киловольт, возникает мощное излучение, спектр которого расположен как в радиочастотном диапазоне длин волн, так и в оптическом диапазоне. Визуальные исследования позволяют определить некоторые характеристики излучения, а также косвенно определить ряд особенностей процесса разряда и установить оптимальные параметры формирующих экспериментальных установок. В работе приведены некоторые результаты исследований характеристик высоковольтного разряда в атмосфере, возникающего на выходе ГИН при $U \sim 500 \, {\rm kV}$ в режиме искрового пробоя межэлектродного зазора и при нагружении ГИН электронвзрывающимся проводником (ЭВП). Получены разряды ЭВП длиной свыше 1 и исследованы зависимости импульса тока разряда от нагрузки и плотности энергии излучения от материала ЭВП.

Эксперименты проводились на ГИН колончатого типа, выполненном по десятикаскадной схеме умножения напряжения Аркадьева–Маркса [1]. Максимальное выходное напряжение составляет 600 kV при начальном энергозапасе 3.8 kJ. Разряд формировался в атмосфере двумя способами: 1) между выходными острийными электродами в режиме непосредственного пробоя, 2) с помощью ЭПВ (при этом электроды снимались). Ток разряда регистрировался поясом Роговского. Оптическое излучение разряда регистрировалось измерителем ИМО-2Н в широкой полосе $0.3-10.2 \,\mu$ m и в отдельных диапазонах спектра с помощью набора светофильтров. Временные диаграммы тока ГИН приведены на рис. 1. Как видно, в режиме оскрового разряда между острийными электродами процесс носит колебательный характер с частотой осцилляций ~ 800 Hz. Затухание Δ эквивалентного контура разрядной цепи достаточно малó, чтобы обеспечить медленный спад амплитуды колебаний тока. Такой процесс вообще характерен для разряда ГИН [1,2].

Картина изменения тока во времени при электровзрыве проводника существенно отличается (рис. 1, *b*, *c*). Происходят увеличение первого импульса тока и заметный спад амплитуды осцилляций. Такой режим разряда не вписывается в рамки линейной модели колебательного контура и может быть объяснен с помощью схемы, включающей нелинейные элементы: сопротивление и индуктивность (рис. 1). Зависимость тока от параметров ЭВП видна из сравнения рис. 1, *b* и *c*. Использование ЭВП из вольфрама диаметром 0.04 mm приводит к дальнейшему укорочению импульса тока и повышению его амплитуды. Одновременно разряд принимает апериодический характер.

Разряд ГИН приведен на рис. 2. При искровом пробое разряд представляет характерную картину одноканального или многоканального процесса, форма и размеры которого зависят от конфигурации электродов, зазора и приложенного напряжения [3]. Использование ЭВП приводит к стабилизации формы разрядной области и позволяет значительно увеличить разрядный промежуток. Расстояние между электродами на рис. 2, *а, b* составляет 25 сm, длина проводника на рис. 2, *c, d* равна 124 сm.

Рис. 1. Осциллограммы тока при разряде ГИН: *a* — остийные электроды 2kA/point, 10 µs/point; *b* — ЭВП медь 5kA/point, 5 µs/point; *c* — ЭВП вольфрам 10 kA/point, 5 µs/point.

Рис. 2. Разряд через оптические фильтры: *a* — искровой разряд, фильтр ЖЗС-17; *b* — искровой разряд, фильтр УФС-8; *c* — искровой разряд, фильтр TC-10; *d* — взрывающийся проводник Cu, фильтр КС-17; *e* — взрывающийся проводник W, фильтр HC-10; *f* — взрывающийся проводник W, фильтр УФС-8.

Применение при фоторегистрации оптических фильтров позволяет наблюдать пространственное распределение температуры в разрядном канале и оценить размеры отдельных температурных областей [4]. Как правило, выделяются 4 основные температурные области разряда. Наиболее разогретая область разряда расположена в центре и имеет диаметр не более 1 mm (рис. 2, a, c). Окружающая плазменная шуба примыкает к высокотемпературной области и имеет поперечный размер порядка диаметра электрода. Внешняя трубчатая оболочка имеет толщину кольца порядка 1 и располагается аксиально высокотемпературному каналу. Некоторые участки разрядного канала окружены низкотемпературными несимметричными оболочками. При использовании низкочастотного фильтра область разряда выглядит однородной и области с различной температурой не разрешаются (рис. 2, *d*).

В табл. 1 приведены значения плотности потока энергии оптического излучения разряда в различных диапазонах спектра. Различие в величинах энергии излучения при использовании ЭВП из проводников с различными сечениями показывают, что параметры плазмы в разрядном канале определяются в основном проводником, а не атмосферой.

Для определения энергии, вводимой в разрядный канал при использовании ЭВП, запишем закон Джоуля–Ленца

$$\frac{\partial Q}{\partial t} = \frac{1}{\sigma} j^2, \tag{1}$$

где Q — удельная энергия в проводнике, σ — проводимость проводника, j — плотность тока в разрядном канале.

Температурная зависимость проводимости металлов до температуры испарения аппроксимируется

Нагрузка ГИН материал	Величина зазора δ , ст	Поток энергии излучения, mJ/cm					
		Без фильтра	Фильтр УФС-6	Фильтр ФС-6	Фильтр КС-17		
Межэлектродный зазор ¹	25	3.5	1.5	0	0		
$\frac{B\Pi/Cu^2}{B\Pi/W^2}$	124 124	4.0 7.5	0 0	0 1.0	0 1.5		

Таблица 1.

Примечание. 1 На расстоянии 0.75 m, 2 — на расстоянии 1.35 m.

Таблица 2.

Мате- риал	Длина проводника, т	Радиус про- водника, µm	Проводи- мость $(\cdot 10^{-6})$, $(\Omega \cdot m)^{-1}$	Удельная энергия сублимации (·10 ⁻⁵), J/kg	Температурный коэффициент (·10 ⁹)	Интеграл тока $(\cdot 10^{-17})$, $A^2 \cdot s/m^4$	Энергия, введенная в проводник, J
Al Cu W	1.25 1.25 1.25	50 50 20	39.2 63.3 18.2	105 58.2	2.15 1.31 -	1.09 1.95 -	1801 4164 -

выражением [5]

$$\sigma = \frac{\sigma_0}{1 + \beta Q},\tag{2}$$

где σ_0 — удельная проводимость металла при нулевой температуре, β — температурный коэффициент проводимости.

Подставив (2) и (1), получим

$$1 + \beta Q = \exp\left(\frac{\beta}{\sigma_0} \int_0^t j^2 dt\right).$$
(3)

С учетом (3) энергия, введенная в проводник, равна

$$W_1 = Q\pi r^2 l_1 = \frac{\pi r^2 l_1}{\beta} \left[\exp\left(\frac{\beta}{\sigma_0} I\right) - 1 \right], \qquad (4)$$

где r — радиус проводника; l_1 — длина проводника; $I = \int_{0}^{t} j^2 dt$ — интервал тока, значения которого приведены, например, в [5].

Результаты расчета энергии, введенной в разряд, показаны в табл. 2. Как видно, полученные результаты соответствуют условию эффективного электровзрыва проводника $W_1 \cong (2-3)W_2$, где W_2 — энергия сублимации материала [6].

Проведенные исследования показывают возможность применения методики визуализации сильноточного оптического разряда при исследованиях высоковольтных разрядов в атмосфере. Разработан и создан экспериментальный макет для проведения исследований плазмы в атмосфере, возникающей при искровом пробое длинных промежутков и при взрыве металлического проводника. Полученные результаты могут быть использованы для укорочения длительности высоковольтных импульсов, являющихся источниками короткоимпульсного излучения, а также в ускорителях, предназначенных для генерации пучков заряженных частиц и возбуждения мощных источников излучения ультракороткой длительности.

Список литературы

- [1] Смирнов С.М., Терентьев П.В. Генераторы импульсов высокого напряжения. М.; Л: Энергия, 1964. 239 с.
- [2] Ашнер А.М. Получение и измерение импульсных высоких напряжений: Пер. с нем. М.: Энергия, 1979. 166 с.
- [3] Мик Дж., Крэгс Дж. Импульсный пробой в газах. М.: ИЛ, 1960. 605 с.
- [4] Чумаков В.И., Острижной М.А., Волколупов Ю.А. и др. // Радиотехника. 2000. Вып. 115.
- [5] Кнопфель Г. Сверхсильные импульсные магнитные поля. М.: Мир, 1972. 392 с.
- [6] Столович Н.Н., Максимов В.Г., Миницкая Н.С. // ЖТФ. 1974. Т. 44. Вып. 10. С. 2132–2145.