05;11 Поверхностная фотоэмиссия ультратонких пленок калия, адсорбированных на вольфраме

© М.В. Кнатько, М.Н. Лапушкин, В.И. Палеев

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: lapushkin@ms.ioffe.rssi.ru

(Поступило в Редакцию 23 ноября 2000 г.)

Исследована начальная стадия формирования ультратонких пленок калия на W (100) методом пороговой фотоэмиссионной спектроскопии с использованием p- и s-поляризованного света в диапазоне энергий квантов 1.6-3.5 eV. Найдено, что вид спектральных зависимостей тока фотоэлектронов зависит от величины покрытия поверхности щелочными атомами и в первую очередь определяется изменением с покрытием матричных элементов возбуждения фотоэмиссии. Показано, что изменение матричных элементов связано с тем, что глубина выхода фотоэлектронов мала и при облучении как p-, так и s-поляризованным светом эмиссия происходит из поверхностного слоя.

Введение

Системы, образующиеся при адсорбции атомов щелочных металлов на металлических подложках, представляют предмет многочисленных исследований в течение многих десятилетий. Интерес к этим системам вызван не только тем, что они являются модельными при изучении взаимодействия атомов с твердотельным адсорбентом, но и имеют практическое значение, поскольку щелочные адсорбаты широко применяются в приборах различного назначения. К иследованиям сравнительно недавнего времени в этой области следует отнести изучение образования и модификации поверхностных состояний (ПС), инициированных адсорбцией щелочного адсорбата на металлических адсорбентах.

На основании экспериментальных [1-3] и теоретических [4-7] исследований можно предложить следующий сценарий изменений электронной плотности ПС вблизи уровня Ферми (E_F) при нанесении щелочного адсорбата. Зона собственных поверхностных состояний (СПС) адсорбента находится ниже E_F . На начальной стадии формирования покрытия взаимодействие адсорбата с подложкой приводит к сдвигу СПС в сторону больших энергий связи и к появлению зоны ПС, индуцированных щелочными атомами (ИПС). Эта зона первоначально находится выше E_F . С ростом покрытия как зона СПС, так и зона ИПС сдвигается в сторону больших энергий связи, и при покрытиях, соответствующих минимуму работы выхода адсистемы, зона ИПС расположена ниже *E_F*. Дальнейшее увеличение покрытия изменяет как зону ИПС, так и СПС

Электронную структуру вблизи E_F систем щелочной металл-металлическая подложка легче всего исследовать методом пороговой фотоэмиссионной спектроскопии (ПФС), которая обладает намного более высокой чувствительностью к поверхностным состояниям, расположенным вблизи E_F , по сравнению с традиционно используемым методом ультрафиолетовой спектроскопии [1,8].

Методом ПФС были изучены различные системы цезий-металлическая подложка: Cs/W(100), Cs/W(111), Cs/W(110) [1], Cs/Ag [9], в которых были обнаружены зоны поверхностных состояний, индуцированных адсорбцией щелочного металла, вблизи E_F и модификация этих состояний в субмонослойном диапазоне покрытий Cs. Для системы Cs/Au [10] этим методом была исследована начальная стадия образования поверхностного сплава CsAu.

Исследования спектра ПС при адсорбции калия на металлах были проведены для систем K/Al(111) [3,11], K/Cu(110) [12], K/Cu(100) [13]. Ниже приводятся результаты исследования начальной стадии формирования электронной структуры поверхности адсорбционной системы K/W(100) в процессе нанесения на вольфрамовую подложку ультратонких пленок калия методом пороговой фотоэмиссионной спектроскопии.

1. Эксперимент

Исследования проводились в сверхвысоковакуумной установке при давлении $P \approx 5 \cdot 10^{-10}$ Тогг. В качестве подложки использовали монокристалл W (100). При комнатной температуре на подложку напылялись пленки калия толщиной до 3 монослоев из атомарночистого источника К. Степень покрытия (ϑ) определяли по известной зависимости работы выхода адсистемы К/W (100) достигается при покрытии $\vartheta = 0.6$ монослоя [7]. Регистрировали спектральные зависимости интегральных фотоэмиссионных токов $I_p(h\nu)$ и $I_s(h\nu)$ при возбуждении соответственно *p*-и *s*-поляризованным светом в диапазоне энергий 1.6–3.5 eV для различных ϑ . Угол падения света на образец $\gamma = 45^{\circ}$.

На рис. 1 и 2 приведены спектральные зависимости фототоков $I_s(h\nu)$ и $I_p(h\nu)$ для различных покрытий К на вольфраме. Как и в исследованных ранее системах Cs/W (100), Cs/W (111), Cs/W (110) [1], Cs/Ag [9]

Рис. 1. Спектральные зависимости фототока $I_s(h\nu)$ для различных калиевых покрытий. ϑ : I = 0.30, 2 = 0.60, 3 = 1.0, 4 = 2.0, 5 = 3.0, 6 = для толстой пленки калия [14].

hv,eV

Рис. 2. Спектральные зависимости фототока $I_p(h\nu)$ для различных калиевых покрытий. I-6 — то же, что и на рис. 1.

Рис. 3. Зависимости φ (1), $h\nu_{pl}$ (2), $h\nu_{m0}$ (3) от степени калиевого покрытия ϑ , а также зависимость $h\nu_{pl}$ для системы Cs/W (100), рассчитанная по данным [1] (4).

зависимости фототоков $I_p(h\nu)$ и $I_s(h\nu)$ различаются интенсивностью и формой. Изменения фототоков $I_p(h\nu)$ и $I_s(h\nu)$ при увеличении ϑ происходят по разному. Фототоки $I_s(h\nu)$ монотонно возрастают, за исключением зависимости $I_s(h\nu)$ для $\vartheta = 0.6$, которая имеет выпуклую форму. Форма зависимостей $I_p(h\nu)$ существенно изменяется со степенью покрытия.

Очевидно, что наблюдаемые различия в зависимостях фототоков $I_p(h\nu)$ и $I_s(h\nu)$ для $\vartheta = 3.0$ и для массивных образцов толщиной более 100 нм [14] связаны с тем, что нанесенные пленки К еще слишком тонкие. Форма зависимости $I_s(h\nu)$ для массивного образца во многом определяется тем, что у металлического К зона проводимости узкая, $E_{\text{band}} = 1.60 \text{ eV}$ [15].

Рассмотрим особенности полученных зависимостей при возбуждении фотоэмиссии светом различной поляризации. Фототок $I_s(h\nu)$ вблизи порога подчиняется закону Фаулера [16]

$$I_s = a(h\nu - \varphi)^2, \tag{1}$$

где *а* — постоянная.

Для металлов величина энергии кванта фотоэмиссионного порога $h\nu_0$ равна работе выхода φ , т.е. $h\nu_0 = \varphi$. Область энергий, в котором фототок подчиняется закону Фаулера, зависит от ϑ , т.е. изменение ϑ приводит к изменению диапазона энергий, в которых зависимость $I_s(h\nu)$ квадратичная. Можно выделить две области покрытий $\vartheta < 0.3$ и $1.1 < \vartheta < 2.8$, в которых зависимость $I_s(h\nu)$ квадратичная во всем исследованном диапазоне энергий возбуждения.

Обработка кривых $I_s(h\nu)$ при разных покрытиях по формуле (1) позволяет определить вид зависимости $\varphi(\vartheta)$ (рис. 3). Величина $\varphi = 2.30 \pm 0.03 \text{ eV}$ для $\vartheta = 3.0$ немного больше справочного значения $\varphi = 2.22 \text{ eV}$ [17].

В случае *p*-поляризованного возбуждения фототок вблизи порога не подчиняется закону Фаулера.

2. Теоретическое рассмотрение процесса и обработка результатов

В теории пороговой фотоэмиссии, разработанной в [18], для фототоков $I_p(h\nu)$ и $I_s(h\nu)$ получены следующие выражения:

$$I_{p}(h\nu) = |K|^{2}(h\nu - h\nu_{0})^{2}\theta(h\nu - h\nu_{0})$$

$$\times \frac{|\mathcal{E}_{0}|^{2}\sin^{2}\gamma}{\left|\varepsilon_{m}\cos\gamma + \sqrt{\varepsilon_{m} - \sin^{2}\gamma}\right|^{2}}$$

$$\times \left[|M_{1}|^{2}|\varepsilon_{m}|^{2}\sin^{2}\gamma + |M_{2}|^{2}|\varepsilon_{m} - \sin^{2}\gamma| + 2\sin\gamma\operatorname{Re}\left(M_{1}^{*}M_{2}\varepsilon_{m}^{*}\sqrt{\varepsilon_{m} - \sin^{2}\gamma}\right)\right], \quad (2)$$

Журнал технической физики, 2001, том 71, вып. 9

$$I_{s}(h\nu) = |K|^{2}(h\nu - h\nu_{0})^{2}\theta(h\nu - h\nu_{0})$$
$$\times \frac{|\mathcal{E}_{0}|^{2}\cos^{2}\gamma|M_{3}|^{2}}{\left|\cos\gamma + \sqrt{\varepsilon_{m} - \sin^{2}\gamma}\right|^{2}},$$
(3)

где ν_0 — пороговая частота; $\theta(h\nu - h\nu_0)$ — функция Хэвисайда; ε_m — диэлектрическая постоянная металла; \mathcal{E}_0 — амплитуда падающей на поверхность световой волны; M_1, M_2, M_3 — матричные элементы переходов под действием параллельных компонент $\mathcal{E}_i(i = 2, 3)$ и перпендикулярной компоненты $\mathcal{E}_i(i = 1)$ электрического вектора световой волны относительно поверхности; K постоянная, в которую входят особенности плотности состояний вблизи E_F и особенности перехода электронов на границе металл/вакуум.

Отметим, что матричные элементы M_2 и M_3 в теории связываются с возбуждением фотоэмиссии в глубине металла, т.е. с объемной фотоэмиссией, а матричный элемент M_1 — с возбуждением фотоэмиссии на границе металл-вакуум, т.е. с поверхностной фотоэмиссией. Таким образом, *s*-поляризованный свет возбуждает только фотоэмиссию из объема металла, а *p*-поляризованный свет должен возбуждать как объемную фотоэмиссию, так и поверхностную фотоэмиссию. Для изотропных материалов справедливо равенство $M_2 = M_3$ [18].

Из уравнения (3) можно выделить следующую величину:

$$|K|^2 |M_3|^2 = \frac{I_s \left|\cos\gamma + \sqrt{\varepsilon_m - \sin^2\gamma}\right|^2}{(h\nu - h\nu_0)^2 \theta (h\nu - h\nu_0) |\mathcal{E}_0|^2 \cos^2\gamma}.$$
 (4)

На рис. 4 приведена энергетическая зависимость матричного элемента $|K|^2 |M_3|^2$, вычисленного по формуле (4). Матричный элемент поверхностной фотоэмиссии из уравнения (2) напрямую найти невозможно. Этому мешает интерференционный член $M_1^*M_2$. Пренебречь этим членом в оптическом диапазоне частот для металлов без дополнительных предположений нельзя.

Рис. 4. Вид матричных элементов $|K|^2 |M_3|^2$ и $|K|^2 |M_1|^2$.

В теории [18] величины М_i представляют в виде

$$M_i = |M_i|e^{i\delta_i},$$

где δ_i — фаза матричного элемента, не зависящая от $h\nu$.

Тогда интерференционный член в выражении (2) будет зависеть только от разности фаз $\delta = \delta_1 - \delta_2$. Следовательно, интерференционный член можно отбросить, когда сомножитель $e^{-i\delta}\varepsilon_m^*\sqrt{\varepsilon_m - \sin^2\gamma}$ близок к нулю. Для этого необходимо производить дополнительные исследования в каждом конкретном случае.

Если мы хотим найти значение $|K|^2|M_1|^2$, то нам необходимо сделать определенные предположения о виде зависимости $|K|^2|M_1|^2$. Она подбирается для каждой конкретной системы. Параметры, определяющие вид зависимости $|K|^2|M_1|^2$, находятся с помощью одного из методов поиска минимума. Ищется минимум следующего выражения:

$$\sum \left(\frac{I_p^{\exp}(h\nu)}{(h\nu - h\nu_0)^2} - |K|^2 \theta(h\nu - h\nu_0) \right) \\ \times \frac{|\mathcal{E}_0|^2 \sin^2 \gamma}{\left| \varepsilon_m \cos \gamma + \sqrt{\varepsilon_m - \sin^2 \gamma} \right|^2} \\ \times \left[|M_1|^2 |\varepsilon_m|^2 \sin^2 \gamma + |M_2|^2 |\varepsilon_m - \sin^2 \gamma| \right] \\ + 2 \sin \gamma \operatorname{Re} \left(M_1^* M_2 \varepsilon_m^* \sqrt{\varepsilon_m - \sin^2 \gamma} \right) \right]^2 \right)^2, \quad (5)$$

где $I_p^{\exp}(h\nu)$ — измеренные значения фототока.

Ниже приводятся результаты обработки экспериментальных данных по формулам (4) и (5).

1) *s*-поляризация. Все полученные из обработки экспериментальных данных зависимости $|K|^2 |M_3|^2$, вид которых иллюстрирует рис. 2, хорошо описываются уравнением

$$KM_{3} = Km_{3} (\theta(h\nu - h\nu_{0}) + \theta(h\nu - h\nu_{\text{plato}}))$$
$$\times (h^{n}\nu^{n}h^{-n}\nu_{\text{plato}}^{-n} - 1)), \qquad (6)$$

где — Km_3 — амплитуда матричного элемента (ее величина связана с плотностью состояний вблизи E_F).

В диапазоне $h\nu_0 \leq h\nu \leq h\nu_{\text{plato}}$ фототок $I_s(h\nu)$ подчиняется закону Фаулера, т. е. определяется электронными состояниями ниже E_F , плотность которых можно считать постоянной при вызывающих фотоэффект энергиях квантов. Показатель степени *n* определяет, насколько резко изменяется (уменьшается или увеличивается) плотность состояний для возбуждающих эмиссию квантов с энергией $h\nu > h\nu_{\text{plato}}$.

Параметры $h\nu_{\text{plato}}$, *n* и Km_s находились исходя из минимума выражения

$$\sum \left(\frac{I_s^{\exp}(h\nu)}{(h\nu - h\nu_0)^2} - |K|^2 \theta(h\nu - h\nu_0) \right. \\ \left. \times \frac{|\mathcal{E}_0|^2 \cos^2 \gamma |M_3|^2}{|\cos \gamma + \sqrt{\varepsilon_m - \sin^2 \gamma}|^2} \right)^2, \quad (7)$$

где $I_s^{\exp}(h\nu_{\nu})$ — измеренные значения фототока.

Журнал технической физики, 2001, том 71, вып. 9

На рис. З приведена зависимость от ϑ величины $h\nu_{pl} = h\nu_{\text{plato}} - h\nu_0$.

При увеличении покрытия до значений ϑ_{\min} длина плато уменьшается. При дальнейшем напылении калия $h\nu_{pl}$ увеличивается. В области $1.2 < \vartheta < 2.0$ плато достигает максимальной величины и остается постоянным. Дальнейший рост пленки $\vartheta > 2.0$ приводит к уменьшению $h\nu_{pl}$. При $\vartheta = 3.0$ значение $h\nu_{pl} = 0.85$ eV, что больше $h\nu_{pl} = 0.40$ eV, рассчитанного для толстого слоя K по данным работы [14]. Отметим, что видна тенденция к уменьшению $h\nu_{pl}$ с ростом ϑ .

В области покрытий до $\vartheta < 0.3$ показатель степени *n* равен 0. При увеличении ϑ в области $0.3 < \vartheta < \vartheta_{\min}$ происходит уменьшение величины *n* до -3, которая достигается при ϑ_{\min} . При дальнейшем росте покрытия происходит увеличение *n* до 0 при $\vartheta = 1.0$. В области от $1 < \vartheta < 2.5$ этот параметр остается постоянным и равным 0. Дальнейшее увеличение покрытия приводит к падению *n* вплоть до значения -0.5 при $\vartheta = 3.0$. Для толстого слоя K, рассчитанного нами по данным работы [14], было найдено значение n = -11, что указывает на правильную тенденцию уменьшения *n* с ростом пленки адсорбата.

На рис. 5 приведена зависимость $|K|^2 |m_3|^2$ от ϑ . При увеличении покрытия в области $0.3 < \vartheta < \vartheta_{\min}$ происходит рост величины матричного элемента $|K|^2 |m_3|^2$, достигающей максимального значения при ϑ_{\min} . При дальнейшем увеличении покрытия $|K|^2 |m_3|^2$ уменьшается. При покрытиях $\vartheta > 2.0$ величина $|K|^2 |m_3|^2$ остается практически постоянной. Сопоставление наших данных для $|K|^2 |m_3|^2$ с толстым слоем К мы не делали, так как не производили абсолютных измерений фототоков.

Видно, что изменение экспериментально определенных параметров $h\nu_{\text{plato}}$, n, $|Km_3|^2$ с ростом покрытия коррелирует с изменением $\varphi(\vartheta)$.

2) *р*-поляризация. Форма матричного элемента поверхностной фотоэмиссии *КМ*₁ в системе К/W (100) лучше всего описывается асимметричной функцией Гаусса

$$KM_{1} = Km_{1} \left(\exp\left(-\ln(0.5) \times \sqrt{(h\nu - h\nu_{\max}) \div (\Gamma/2(1 + C_{asim}(h\nu_{\max} - h\nu)/\Gamma))} \right) \right),$$
(8)

где $h\nu_{\text{max}}$ — положение максимума функции, Γ — ширина пика на полувысоте, Km_1 — амплитуда матричного элемента, C_{asim} — коэффициент асимметрии.

На рис. 4 приведен матричный элемент M_1 . Максимум матричного элемента $h\nu_{\rm max}$ незначительно сдвинут в сторону больших энергий относительно положения максимума зоны ПС. Ширина Г матричного элемента возбуждения поверхностной зоны в пороговом приближении значительно больше, чем ширина зоны ПС [1]. Знак параметра $C_{\rm asim}$ указывает, в какую сторону уширен матричный элемент. При положительных значениях $C_{\rm asim}$ он уширен в сторону меньших энергий. Величина $|K|^2 |m_1|^2$ пропорциональна величине плотности состояний.

Рис. 5. Зависимости $|K|^2 |m_3|^2 (1)$ и $|K|^2 |m_1|^2 (2)$ от степени калиевого покрытия ϑ и зависимость $|K|^2 |m_3|^2$ для системы Cs/W (100), рассчитанная по данным [1] (3).

Разность фаз между матричными элементами M_1 и M_3 одинакова для всех исследованных покрытий ($\delta = 1.0 \pm 0.1$). Найденное значение δ немного больше, чем $\delta = 0.8$, определенное для системы Cs/W в [1].

На рис. З приведена зависимость от ϑ смещения $h\nu_{\text{max}}$ относительно фотоэмиссионного порога $h\nu_0$, $h\nu_{m0} = h\nu_{\text{max}} - h\nu_0$.

Для области покрытий $0 < \vartheta < 2$ форма зависимости $h\nu_{m0}(\vartheta)$ очень похожа на форму зависимости $h\nu_{pl}(\vartheta)$. При малых $\vartheta < 0.6$ увеличение ϑ приводит к уменьшению величины $h\nu_{m0}$, которая достигает минимума при ϑ_{\min} . Дальнейшее увеличение ϑ приводит к росту $h\nu_{m0}$. В диапазоне $1.0 < \vartheta < 1.8$ этот параметр остается постоянным. При $\vartheta > 1.8$ происходит рост $h\nu_{m0}$.

На рис. 5 приведена зависимость $|K|^2 |m_1|^2$ от ϑ . Во всей области исследованных покрытий калием величина $|K|^2 |m_1|^2$ значительно меньше $|K|^2 |m_3|^2$. Аналогичный результат был получен в исследованиях фотоэмиссии из индия в электролит [18]. Несмотря на то что КМ1 много меньше КМ3, фотоэмиссия под действием Е₁, нормальной компоненты электрического вектора р-поляризованного света больше, чем под действием параллельной компоненты электрического вектора *p*-света, \mathcal{E}_2 . Это связано с тем, что в уравнении (2), определяющем фототок $I_p(h\nu)$, коэффициент перед M_1 в ε_m раз больше, чем перед M_2 . Для вольфрама в оптическом диапазоне частот $\varepsilon_m \approx 20$ [19]. Вид зависимости $|K|^2 |m_1|^2$ от ϑ похож на зависимость $|K|^2 |m_3|^2$. Рост $|K|^2 |m_1|^2$ наблюдается до покрытия $\vartheta = 0.80$, после чего происходит уменьшение $|K|^2 |m_1|^2$ практически до первоначальных значений.

На рис. 6 приведена зависимость параметра Γ от ϑ . С ростом начального покрытия происходит уменьшение Γ вплоть до минимального значения при ϑ_{\min} . Дальнейшее увеличение покрытия вызывает незначительный рост Γ ; в диапазоне 1.3 $< \vartheta < 2.5$ этот параметр остается постоянным. Дальнейшее увеличение покрытия приводит к росту Γ .

108

Рис. 6. Зависимости Γ (1) и C_{asim} (2) от степени калиевого покрытия ϑ .

Зависимость $C_{asim}(\vartheta)$ похожа на зависимость $\Gamma(\vartheta)$ (рис. 6). Параметр $C_{asim}(\vartheta)$ отрицательный, за исключением областей покрытий $0.4 < \vartheta$ и $\vartheta > 2.5$.

Видно, что изменение экспериментально определенных параметров $h\nu_{m0}$, Γ , $|Km_1|^2$ и C_{asim} с ростом калиевой пленки коррелирует с изменением $\varphi(\vartheta)$.

3. Обсуждение результатов

Наблюдаемое изменение фотоэмиссионных параметров от величины покрытия позволяет представить следующую качественную картину изменения электронной плотности поверхностных состояний вблизи E_F , основанную на анализе зависимости от покрытия ϑ вида и величины матричных элементов M_1 и M_3 . Общая картина модификации плотности состояний представлена на рис. 7.

1) Анализ матричного элемента M_1 ; зона поверхностных состояний, возбуждаемая \mathcal{E}_1 . Рассмотрим, как себя ведет плотность ПС $_{\perp}$ (ПС, имеющие выделенное направление по нормали к поверхности) вблизи E_F при изменении покрытия (верхняя часть рис. 7). Как известно, поверхностная фотоэмиссия происходит из зоны ПС. В идеале нам необходимо было бы рассчитать матричний элемент перехода поверхностной фотоэмиссии с учетом волновых функций адсорбата и ПС W и их изменения в процессе адсорбции К, что связано с большими трудностями. Поэтому мы качественно рассмотрим, как связаны найденные нами параметры M_1 с параметрами зоны ПС (рис. 8). В случае пороговой фотоэмиссии, когда рассматривается переход из поверхностной зоны в континуум возбужденных состояний, ширина матричного элемента Г в несколько раз больше, чем соответствующая ей ширина зоны ПС [1]. Параметр Casim указывает на асимметрию зоны ПС. Положение максимума $h\nu_{m0}$ на $0.1-0.2\,{\rm eV}$ ближе к уровню Ферми, чем положение максимума зоны ПС [1]. Положение максимума поверхностной зоны относительно уровня Ферми (E_{max}) , $E_{\text{max}} \approx -h\nu_{m0}$. Величина $|K|^2 |m_1|^2$ пропорциональна величине плотности поверхностных состояний $\rho(E)$. Мы регистрируем интегральный фотоэмиссионный ток и, следовательно, получаем сглаженную картину, не отражающую резких изменений в $\rho(E)$. Соответствующая полученным нами результатам модификация зоны ПС системы K/W (100) с увеличением покрытия представлена на верхней схеме рис. 7.

При малых покрытиях $\vartheta = 0.3$ наблюдается широкая зона ПС, на что указывает большая величина Г с небольшой плотностью состояний (небольшое значение параметра $|K|^2 |m_1|^2$), и ее максимум расположен при больших энергиях связи (большая величина парметра $h\nu_{m0}$). Логично ожидать, что эта поверхностная зона, как и в случае системы Cs/W (100) [1], является зоной СПС вольфрама.

Увеличение покрытия до ϑ_{\min} приводит к большим изменениям в зоне ПС. Во-первых, увеличивается $\rho(E)$ (увеличение $|KM_1|^2$); во-вторых, происходит сдвиг зоны ПС в сторону меньших энергий связи (на это указывает уменьшение $h\nu_{m0}$); в-третьих, зона ПС сужается (уменьшение Γ). Наблюдаемые изменения можно объяснить следующим образом, происходит сдвиг зоны валентных состояний К ниже E_F , т.е. образование зоны ИПС, индуцированных адсорбцией К. Аналогичное

Рис. 7. Изменение зоны поверхностных состояний системы K/W (100) от степени калиевого покрытия.

поведение наблюдалось при адсорбции Cs на различных гранях W [1] и при адсорбции K на Al (111) [3].

При монослойном покрытии адсорбата зона ПС сдвигается вниз, т.е. в сторону больших энергий связи (увеличивается значение параметра $h\nu_{m0}$), и незначительно уширяется. Происходит рост плотности состояний (увеличение величины $|K|^2|m_1|^2$). Зона ПС, повидимому, в основном образована уровнями валентных электронов К, на которые оказывает незначительное влияние подложка W. Наши результаты коррелируют с расчетом изолированного монослоя К [20], который дает широкую (~ 1.5 eV) зону практически без особенностей в плотности поверхностных состояний $\rho(E)$.

Наблюдаемые тенденции сохраняются в области покрытий 1.0 < ϑ < 2.2. Поверхностная зона образована уровнями валентных электронов К. W-подложка оказывает незначительное воздействие на поверхностную зону. Следовательно, продолжается формирование зоны собственно поверхностных состояний К. Этот процесс наблюдается нами до ϑ = 3.0, на что указывает изменение исследуемых параметров. Зона ПС уширяется (увеличивается Г). Плотность состояний в максимуме незначительно уменьшается (уменьшение параметра $|K|^2|m_1|^2$). Максимум зоны сдвигается в сторону больших энергий связи (увеличение $h\nu_{m0}$). Таким образом, продолжается формирование зоны СПС калия.

2) Анализ матричного элемента М₃; зона поверхностных состояний, возбуждаемая \mathcal{E}_3 . В теории [18] считается, что фотоэмиссия из объема металла описывается матричным элементом M_3 . Изначально предполагалось, что M_3 должен остаться неизменным в процессе напыления калиевых пленок (трехслойная пленка), так как глубина проникновения света в металл ~ 100 nm и глубина выхода фотоэлектронов, имеющих малые энергии, велика для малых энеригй электронов (см. универсальную кривую зависимости глубины выхода электронов от их энергии [21]). Здесь необходимо отметить, что измерение глубины выхода фотоэлектронов с малыми кинетическими энергиями (менее 1 eV) из щелочных металлов связано с большими трудностями и соответствующих данных мы не нашли. Как следует из раздела 2.1, параметры матричного элемента М₃ изменяются в процессе напыления К. Такое поведение может указывать на то, что фотоэмиссия происходит не из объемной области вольфрама, в которой $\rho(E)$ и M_3 не может изменяться при адсорбции К, а из очень узкой области (порядка нескольких слоев) вблизи поверхности. Данный результат коррелирует с результатами работы [22], в которой было показано, что глубина выхода фотоэлектронов из цезия с энергиями ~ 4 eV составляет ~ 1 nm. Следовательно, можно считать, что фотоэмиссия происходит из поверхностной зоны, которая возбуждается E₃. В дипольном приближении это означает, что ($\boldsymbol{\mu}_{\parallel}\boldsymbol{\mathcal{E}}_{3}$) $\neq 0$ (μ_{\parallel} — дипольный момент, параллельный повёрхности). Это возможно, если в поверхностном слое формируется зона ПС_{||}, которая имеет выделенное направление, параллельное поверхности. Такие состояния в фотоэмиссии регистрировались, например, для p_x - и p_y -состояний O_2 , адсорбированного на грани Ni (100) [23] (*х* и *у* — координаты в плоскости поверхности). Обработка экспериментальных данных для системы Cs/W (100), представленных в [1], также показывает зависимость параметра M_3 от ϑ (см. рис. 3 и 5).

Классическая работа Фаулера [16] рассматривает фотоэмиссию из плоской зоны. Наши результаты также указывают на то, что фотоэмиссия происходит из плоской зоны. Ниже мы рассмотрим, как связаны параметры матричного элемента перехода M_3 в формуле (6) с параметрами зоны, из которой происходит фотоэмиссия под действием \mathcal{E}_3 . В случае пороговой фотоэмиссии для эмиссии из плоской зоны (рис. 8), плотность которой обрывается при энергии E_{pl}

$$\rho(E) = r(\theta(E - E_F) - \theta(E - E_{pl})),$$

где r — постоянная величина, $E_F = 0$ и $\theta(E - E_{F,pl})$ — функция Хэвисайда, справедливо соотношение $E_{pl} = h\nu_{pl}$.

Параметр *n* указывает, насколько больше (меньше) плотность состояний в зоне *b* по сравнению с зоной *a* (рис. 8). Параметр $|K|^2 |m_3|^2$ пропорционален плотности состояний в зоне. Соответствующая этому случаю качественная картина представлена в нижней части рис. 7.

При малых покрытиях $\vartheta = 0.3$ ниже E_F существует плоская зона ($h\nu_{pl} = 1.2 \text{ eV}$). Эта зона образована ПС W (100), которые имеют симметрию в плоскости, параллельной к поверхности. Наличие ПС_{||} на W (100) вблизи E_F подтверждается расчетом [5].

Увеличение покрытия до ϑ_{\min} приводит к резким изменениям в зоне ПС_{||}, которое проявляется под действием \mathcal{E}_3 . Уменьшается значение E_{pl} (т.е. уменьшается $h\nu_{pl}$). Увеличивается плотность состояний в зоне (рост $|K|^2|m_3|^2$). При энергиях $E < E_{pl}$ плотность состояний падает (n = -3). Зона, по-видимому, образована из зоны поверхностных состояний W (100) при энергиях связи, бо́льших E_{pl} , и зоны поверхностных состояний К вблизи E_F . Полученный результат коррелирует с расчетом адсорбции натрия на алюминии, выполненном

Рис. 8. Зона поверхностных состояний.

Увеличение покрытия до $\vartheta = 1.0$ приводит к очередному изменению зоны ПС, чувствительной к возбуждению \mathcal{E}_3 . Зона снова становится плоской (n = 0). Происходит уменьшение плотности состояний (падает значение параметра $|K|^2|m_3|^2$). Судя по всему, фотоэмиссия из зоны поверхностных состояний W (100) уменьшается, и мы наблюдаем фотоэмиссию из формирующейся зоны ИПС_{||} калия.

Увеличение покрытия до $\vartheta = 2.0$ приводит к незначительному уменьшению плотности состояний в поверхностной зоне ΠC_{\parallel} (следует из уменьшения параметра $|K|^2 |m_3|^2$). Это означает, что фотоэмиссия из W (100) практически отсутствует.

Напыление пленки до $\vartheta = 3.0$ приводит к очередному изменению в поверхностной зоне ПС_{||}. Вблизи E_F мы имеем плоскую зону до E > -0.7 eV (уменьшение параметра $h\nu_{pl}$) и незначительное уменьшение плотности состояний при больших энергиях связи (n = -0.5). Плотность состояний около E_F не изменяется (параметр $|K|^2 |m_3|^2$ остается постоянным). Зона ПС для толстой пленки К, расчитанная нами по данным [14], имеет более узкую зону около E_F и очень резкий спад плотности состояний при больших энергиях связи.

Выводы

Исследована фотоэмиссия системы K/W(100) под воздействием поляризованного света видимого диапазона при концентрации адсорбата $0.3 < \vartheta < 3.0$.

Предложена методика выделения матричных элементов возбуждения фотоэмиссии M_1 и M_3 их спектральных зависимостей фототоков при *s*- и *p*-возбуждении. Исследовано изменение параметров матричных элементов от ϑ . Показана корреляция изменения параметров матричных элементов с изменением φ .

Найдено изменение плотности ПС вблизи и ниже E_F (как перпендикулярной ПС_⊥, так и параллельной ПС_{||} компонент). Изменения ПС_⊥ и ПС_{||} характеризуют процесс формирования зоны ПС калия.

Обнаружено, что при возбуждении *s*-поляризованным светом матричный элемент возбуждения фотоэмиссии изменяется при адсорбции щелочного металла даже при субмонослойном покрытии. Такое поведение его может быть в том случае, когда пороговая фотоэмиссия возбуждается на очень небольших расстояниях от поверхности, порядка нескольких слоев.

Таким образом, как нормальная компонента электрического вектора (\mathcal{E}_1) *р*-поляризованного света, так и тангенцальные компоненты (\mathcal{E}_{\parallel}) *s*- и *р*-поляризованного света вызывают фотоэмиссию из ПС адсистемы щелочной металл–металлическая подложка. Нормальная компонента электрического вектора (\mathcal{E}_1) *р*-поляризованного света вызывает фотоэмиссию из ПС адсистемы, имеющих выделенное направление, перпендикулярное к поверхности, а тангенцальные компоненты (\mathcal{E}_{\parallel}) *s*- и *p*-поляризованного света вызывают фотоэмиссию из ПС адсистемы, имеющих выделенное направление параллельное поверхности.

Работа выполнена при поддержке государственной программы МНТ РФ "Поверхностные атомные структуры" (проект № 3.14.99).

Список литературы

- Бенеманская Г.В., Лапушкин М.Н., Урбах М.И. // ЖЭТФ. 1992. Т. 102. Вып. 5(11). С. 1664–1673.
- [2] Lindgren S.A., Wallden L. // Sol. St. Commun. 1982. Vol. 28.
 N 3. P. 283–286.
- [3] Frank K.H., Sagner H.J., Heskett D. // Phys. Rev. B. 1989. Vol. 40. N 5. P. 2767–2771.
- [4] Ishida H. // Phys. Rev. B. 1988. Vol. 38. N 12. P. 8006-8021.
- [5] Wimmer E., Freeman A.J., Hiskes J.R. et al. // Phys. Rev. B. 1983. Vol. 28. N 6. P. 3074–3091.
- [6] Wu R.Q., Chen K.L., Wang D.S. et al. // Phys. Rev. B. 1988.
 Vol. 38. N 5. P. 3180–3188.
- [7] Cousty J., Riwan R., Soukiassian P. // J. Physique. 1985.
 Vol. 46. N 10. P. 1693–1698.
- [8] Feurbacher B., Wilis R.F. // J. Phys. C. 1976. Vol. 9. N 2.
 P. 169–216.
- [9] Libsch A., Benemanskaya G.V., Lapushkin M.N. // Surf. Sci. 1994. Vol. 302. N 3. P. 303–314.
- [10] Кнатько М.В., Лапушкин М.Н., Палеев В.И. // Письма в ЖЭТФ. 1998. Т. 24. Вып. 10. С. 48–53.
- [11] Horn K., Hohfield A., Somers J. et al. // Phys. Rev. Lett. 1988. Vol. 61 N 21. P. 2488-2491.
- [12] Woratschek B., Sesselmann W., Kuppers J. et al. // Phys. Rev. Lett. 1985. Vol. 55. N 11. P. 1231–1234.
- [13] Aruga T., Toshihara H., Murata Y. // Phys. Rev. B. 1986. Vol. 34. N 12. P. 8237–8257.
- [14] Monin J., Boutry G.A. // Phys. Rev. B. 1974. Vol. 9. N 4. P. 1309–1327.
- [15] Itchkawitz B.S., Lyo I.W., Plummer E.W. // Phys. Rev. B. 1990. Vol. 41. N 12. P. 8075–8084.
- [16] Fowler R.H. // Phys. Rev. 1938. Vol. 1. N 1. P. 35-56.
- [17] Фоменко В.С. Эмиссионные свойства материалов. Киев, 1981. 339 с.
- [18] Бродский А.М., Урбах М.И. Электродинамика границы металл/электролит. М., 1989. 296 с.
- [19] Weaver J.H., Olson C.G., Linch D.V. // Phys. Rev. B. 1975. Vol. 12. N. 4. P. 1293–1299.
- [20] Wimmer E. // J. Phys. F. 1983. Vol. 13. N 11. P. 2313-2321.
- [21] Seah M.P. // Surf. and Interface Analysis. 1979. Vol. 1. N 1. P. 1–11.
- [22] Smith N.V., Fisher G.B. // Phys. Rev. B. 1971. Vol. 3. N 11. P. 3662–3670.
- [23] Lapeyre G.J. // J. Vac. Sci. Technol. 1977. Vol. 14. N 1. P. 384– 390.