05;07 Нелинейные волны деформации и плотности дефектов в металлических пластинах при воздействии внешних потоков энергии

© Ф. Мирзоев, Л.А. Шелепин

Физический институт им. П.Н. Лебедева РАН, 117942 Москва, Россия

(Поступило в Редакцию 27 января 2000 г. В окончательной редакции 17 октября 2000 г.)

Предложена и развита модель распространения нелинейных периодических бегущих волн деформации в облучаемых лазерными импульсами металлических пластинах с квадратичной нелинейностью среды с учетом взаимодействия полей упругой деформации и концентрации точечных дефектов. Рассмотрено влияние генерационно-рекомбинационных процессов на эволюцию нелинейных локализованных волн. Приведено уравнение, описывающее изменение амплитуды нелинейных волн, и на его основе рассмотрены характерные особенности затухания этих волн с учетом низкочастотных и высокочастотных потерь.

Одним из наиболее ярких проявлений нелинейного поведения твердого тела при интенсивных импульсных воздействиях (в частности, при лазерном и электроннолучевом воздействиях, при ударно-волновом нагружении) являются возникновение и распространение уединенных волн (в частности, солитонов) различной природы. Исследованию этого явления посвящены многочисленные теоретические и экспериментальные работы [1-6]. Скорости уединенных волн пропорциональны их амплитуде, а их форма практически не зависит от времени. При рассмотрении эволюции нелинейных упругих волн в кристалле весьма важным является учет различных структурных нарушений кристаллической решетки (имеющихся в среде или генерирующихся в процессе внешних воздействий), создающих заметную деформацию среды. На динамику волн заметное влияние также оказывает дисперсия, обусловленная конечностью толщины кристалла. Пространственная дисперсия, связанная с конечностью периода кристаллической решетки [7], может сказываться на достаточно высоких частотах, где длина свободного пробега фонона меньше длины волны. Исследование динамики волн с учетом их взаимодействия с дефектами структуры представляет несомненный теоретический и практический интерес, в частности при анализе механизмов аномального массопереноса, обнаруженного при лазерной и ионной имплантации металлических материалов [8], при изучении процессов механической активации компонентов в твердофазных химических реакциях.

Целью настоящей работы является исследование динамики распространения нелинейной волны продольной деформации в кристалле в виде пластины, в котором под воздействием внешнего потока энергии (лазерное излучение, потоки частиц) создаются точечные дефекты (вакансии, межузлия) с объемной концентрацией $n_j(x, t)$ (j = v - для вакансий, j = i - для межузлий). Припрохождении продольной волны в областях растяженияи сжатия изменяется энергия активации образованиядефектов, что приводит к их пространственному перераспределению [9]. Дефекты мигрируют по кристаллу, рекомбинируют на различного рода центрах (ρ_s — плотность центров), роль которых могут играть дислокации, примеси внедрения и т.д. Считается, что длина распространяющихся волн λ больше толщины пластины *h*. В рамках перечисленных допущений нелинейное динамическое уравнение, описывающее распространение упругих волн в пластине с квадратичной нелинейностью упругого континуума с учетом генерации дефектов, можно представить следующим образом:

$$\frac{\partial^2 u}{\partial t^2} - c_s^2 \frac{\partial^2 u}{\partial x^2} - \frac{\beta_N}{\rho} \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial x} - l^2 \left(\frac{\partial^4 u}{\partial t^2 \partial x^2} - c_\tau^2 \frac{\partial^4 u}{\partial x^4} \right) = -\frac{K\Omega_j}{\rho} \frac{\partial n_j}{\partial x}.$$
 (1)

Здесь u(x,t) — смещение среды, $c_s = (E/\rho(1-\sigma^2))^{1/2}$; $c_{\tau} = (\mu/\rho(1-\sigma^2))^{1/2}$ — скорости продольной и поперечной волн в кристалле; ρ — плотность среды; коэффициент нелинейности β_N и параметр дисперсии l [10]

$$\beta_N = \frac{3E}{1 - \sigma^2} + 3B \left[\frac{1 - 4\sigma + 6\sigma^2}{(1 - \sigma)^3} \right]$$
$$+ A \left[1 - \left(\frac{\sigma}{1 - \sigma} \right)^3 \right] + C \left(\frac{1 - 2\sigma}{1 - \sigma} \right)^3,$$
$$l^2 = \frac{h^2 \sigma^2}{12(1 - \sigma)^2}$$

 $(A, B, C - модули Ландау третьего порядка; <math>E, \sigma$ — модуль Юнга и коэффициент Пуассона); K — модуль всестороннего сжатия; Ω_j — дилатационный параметр, характеризующий изменение объема кристалла, при образовании в нем одного точечного дефекта (для j = v $\Omega_j < 0$, для $j = i \ \Omega_j > 0$). Для большинства твердых тел (металлов, многих полимеров) $\beta_N < 0$.

Уравнение (1) в отсутствии концентрационных напряжений, носящее название уравнения с двумя дисперсиями, было детально изучено в работах [2–4]. Обобщение этого уравнения на случай наличия в системе упругих концентрационных напряжений в рамках гамильтонова подхода проведено в работе [9].

Правая часть уравнения (1) определяется распределением дефектов в среде, зависящем в свою очередь от деформаций и напряжений. Поэтому для полного описания распространения упругой волны необходимо уравнение (1) замкнуть уравнением для плотности дефектов. Если принять, что основными процессами, контролирующими поведение дефектов во времени, являются процессы генерации, рекомбинации и диффузии, для плотности n_j можно записать следующее диффузионнокинетическое уравнение:

$$\frac{\partial n_j}{\partial t} = q_0 + q_{\varepsilon} \frac{\partial u}{\partial x} + D_j \frac{\partial^2 n_j}{\partial x^2} - \beta_j n_j, \qquad (2)$$

где q_o — темп генерации точечных дефектов в отсутствие деформации, второе слагаемое в правой части (2) — деформационная добавка в генерацию ($\varepsilon = u_x$ — деформация среды), D_j — коэффициент диффузии дефекта типа *j*, β_j — скорость рекомбинации на стоках, объемная взаимная рекомбинация разноименных дефектов не учитывается.

Система уравнений (1) и (2) замкнута. Она полностью описывает взаимообусловленные изменения плотности точечных дефектов и смещение среды: неоднородное распределение дефектов влияет на смещения среды, которые в свою очередь воздействуют на распределение дефектов согласно уравнению (2).

Исключая концентрацию дефектов, из системы уравнений (1) и (2) для смещения среды получаем следующее уравнение:

$$\frac{\partial}{\partial t} \left[\frac{\partial^2 u}{\partial t^2} - c_s^2 \frac{\partial^2 u}{\partial x^2} - \frac{\beta_N}{\rho} \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial x} - l^2 \left(\frac{\partial^4 u}{\partial t^2 \partial x^2} - c_\tau^2 \frac{\partial^4 u}{\partial x^4} \right) \right] \\ = \frac{K\Omega_j}{\rho} q_\varepsilon \frac{\partial^2 u}{\partial x^2} + D \left[\frac{\partial^4 u}{\partial t^2 \partial x^2} - c_s^2 \frac{\partial^4 u}{\partial x^4} - \frac{\beta_N}{2} \frac{\partial^3}{\partial x^3} \left(\frac{\partial u}{\partial x} \right)^2 \right] \\ - l^2 \frac{\partial^2}{\partial x^2} \left(\frac{\partial^4 u}{\partial t^2 \partial x^2} - c_\tau^2 \frac{\partial^4 u}{\partial x^4} \right) - \beta \left[\frac{\partial^2 u}{\partial t^2} - c_s^2 \frac{\partial^2 u}{\partial x^2} \right] \\ - \frac{\beta_N}{\rho} \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial x} - l^2 \left(\frac{\partial^4 u}{\partial t^2 \partial x^2} - c_\tau^2 \frac{\partial^4 u}{\partial x^4} \right) \right].$$
(3)

Уравнение (3) является дифференциальным аналогом уравнений, характерных для диссипативных сред с деформационной памятью (или с релаксацией) [1]. При l = 0 (отсутствие дисперсии) и $q_{\varepsilon} = \beta = 0$ (отсутствие генерации дефектов) оно имеет тот же вид, что и для продольной волны в свободном пространстве. В общем виде уравнение (3) допускает решение, по-видимому, только численно. Однако если эффекты диссипации малы, то правую часть (3) можно рассматривать как малое отклонение волновых процессов от "невозмущенного" состояния. Тогда, полагая, что в нулевом приближении

 $u_{tt} \approx c_s^2 u_{xx}$, из (3) имеем

$$\frac{\partial^2 u}{\partial t^2} - c_s^2 \frac{\partial^2 u}{\partial x^2} - \frac{\beta_N}{\rho} \frac{\partial^2 u}{\partial x^2} \frac{\partial u}{\partial x} - l^2 (c_s^2 - c_\tau^2) \frac{\partial^4 u}{\partial x^4}$$
$$= -\frac{K\Omega_j}{\rho c_s^2} q_\varepsilon \frac{\partial u}{\partial t} + \frac{\beta l^2}{c_s^2} \frac{\partial^3 u}{\partial x^2 \partial t} - Dl^2 \frac{\partial^5 u}{\partial t \partial x^4}. \tag{4}$$

Уравнения типа (4) исследовались в ряде теоретических работ [11–13]. Ниже ограничимся случаем длинноволнового приближения ($\lambda/h > 1$). Следуя работе [13], перейдем от уравнения (4) к уравнениям связанных нормальных волн. Вводя переменные ε_1 и ε_2

$$\frac{\partial u}{\partial x} = \varepsilon_1 + \varepsilon_2, \quad \frac{\partial u}{\partial t} = c_s(\varepsilon_1 - \varepsilon_2) + \frac{l^2 c_s}{2} \frac{\partial^2}{\partial x^2}(\varepsilon_1 - \varepsilon_2), \quad (5)$$

переходим к следующей системе уравнений:

$$\frac{\partial \varepsilon_{1}}{\partial t} - c_{s} \frac{\partial \varepsilon_{1}}{\partial x} - \beta_{d} \frac{\partial^{3} \varepsilon_{1}}{\partial x^{3}} - \frac{\beta_{N}}{\rho c_{s}} \frac{\partial}{\partial x} (\varepsilon_{1} + \varepsilon_{2})^{2}$$

$$= g(\varepsilon_{1} - \varepsilon_{2}) + \zeta \frac{\partial^{2}}{\partial x^{2}} (\varepsilon_{1} - \varepsilon_{2}) + \mu \frac{\partial^{4}}{\partial x^{4}} (\varepsilon_{1} - \varepsilon_{2}),$$

$$\frac{\partial \varepsilon_{2}}{\partial t} + \frac{\partial \varepsilon_{2}}{\partial x} + \beta_{d} \frac{\partial^{3} \varepsilon_{2}}{\partial x^{3}} + \frac{\beta_{N}}{\rho c_{s}} \frac{\partial}{\partial x} (\varepsilon_{1} + \varepsilon_{2})^{2}$$

$$= g(\varepsilon_{2} - \varepsilon_{1}) + \zeta \frac{\partial^{2}}{\partial x^{2}} (\varepsilon_{1} - \varepsilon_{2}) - \mu \frac{\partial^{4}}{\partial x^{4}} (\varepsilon_{1} - \varepsilon_{2}). \quad (6)$$

Здесь коэффициент $g = q_{\varepsilon} K \Omega_j / \rho c_s^2$ характеризует диссипацию энергии волны на низких частотах, а коэффициенты $\zeta = \beta l^2$ и $\mu = D l^2$ — на высоких частотах. Третье слагаемое в левой части (6) описывает дисперсию энергии ($\beta_d = l^2 (c_s^2 - c_{\tau}^2)/2$ — коэффициент дисперсии). Нелинейное слагаемое вида $\varepsilon \varepsilon_x$ дает возможность энергии перекачиваться от колебаний с низкой частотой к высокочастотным колебаниям.

Как видно из системы уравнения (6), функции ε_1 и ε_2 представляют собой бегущие навстречу друг другу волны деформации, взаимодействующие за счет нелинейности и диссипации.

Рассмотрим эволюцию одной волны деформации $\varepsilon_2 = \varepsilon(x, t)$, распространяющейся слева направо вдоль оси *x*. Из (6) для $\varepsilon(x, t)$ имеем

$$\frac{\partial \varepsilon}{\partial t} + c_s \frac{\partial \varepsilon}{\partial x} + \beta_d \frac{\partial^3 \varepsilon}{\partial x^3} + \frac{\beta_N}{\rho c_s} \frac{\partial}{\partial x} \varepsilon^2 = g\varepsilon - \zeta \frac{\partial^2 \varepsilon}{\partial x^2} + \mu \frac{\partial^4 \varepsilon}{\partial x^4}.$$

Отсюда для плотности потока энергии локализованных возмущений получаем следующее уравнение:

$$\frac{d}{dt}\left(\int_{0}^{\lambda} (\varepsilon^2/2)dx\right) = -g\int_{0}^{\lambda} \varepsilon^2 dx + \zeta\int_{0}^{\lambda} \varepsilon_x^2 dx - \mu\int_{0}^{\lambda} \varepsilon_{xx}^2 dx.$$
(7)

Здесь $E = \int_{0}^{\lambda} (\varepsilon^2/2) dx$ — энергия волны. Ввиду малости

эффектов диссипации ограничимся рассмотрением нелинейных квазистационарных волн, описываемых решением уравнения (6) без учета взаимодействия полей деформации и дефектов $g = \zeta = \mu = 0$. При этом система (6) сводится к уравнению Кортевега-де-Вриза, допускающему решения в виде стационарных периодических (кноидальных) волн или уединенных волн (солитонов) [13]. Стационарные периодические волны деформации, зависящие от одной бегущей переменной z = x - Vt (V скорость нелинейной волны), имеют вид [13]

$$\varepsilon(z) = -\frac{2a}{m^2} \left(1 - \frac{E(m)}{K(m)} \right) + 2a \mathrm{sn}^2[k_m z, m]. \tag{8}$$

Здесь a — амплитуда; $r = m^2$ — коэффициент нелинейных искажений (0 < r < 1); K(m), E(m) — соответственно полные эллиптические интегралы первого и второго рода; $k_m(-\beta_N a/3\rho c_s\beta_d m^2)^{1/2} = k_0 a^{1/2}$ аналог волнового числа для нелинейной периодической волны. Связь между амплитудой a, коэффициентом m и периодом волны λ определяется соотношением $\lambda = \sqrt{-3\beta_d \rho c_s/\beta_N m K(m) a^{-1/2}}$.

При амплитуде, стремящейся к нулю $(r \to 0)$, выражение (8) описывает линейную гармоническую волну (эллиптический синус переходит в тригонометрический синус: $\operatorname{sn}(x, 0) = \operatorname{sin}(x)$), а при больших амплитудах $(a \to \propto, r \to 1)$ — существенно нелинейные (близкие к солитонам) волны (эллиптический синус переходит в гиперболический тангенс $\operatorname{sn}(x, 1) = \operatorname{tn}(x)$). Подставляя в (7) решение (8), получаем

$$(3g_1a^{1/2} + 4g_2a)\frac{da}{dt} + 4g(g_1a^{3/2} + g_2a^2) + 4\zeta g_3a^{5/2} + 4\mu g_4a^{7/2} = 0, \quad (9)$$

где

$$g_{1} = \frac{4}{k_{0}m^{2}\lambda^{2}} \int_{0}^{\lambda k_{m}} \left[-2(1 - E/K) \operatorname{sn}^{2}(y, m) + \operatorname{sn}^{4}(y, m) \right] dy$$

$$g_{2} = \frac{4\lambda}{m^{4}} \left(1 - \left(\frac{E(m)}{K(m)}\right)^{2} \right),$$

$$g_{3} = \frac{16}{k_{0}\lambda^{2}} \int_{0}^{\lambda k_{m}} \operatorname{sn}^{2}(y, m) \operatorname{cn}^{2}(y, m) \operatorname{dn}^{2} dy,$$

$$g_{4} = \frac{16k_{0}^{3}}{\lambda^{2}} \int_{0}^{\lambda k_{m}} \left[(1 - 2\operatorname{sn}^{2}(y, m)) \operatorname{dn}^{2}(y, m) - m^{2}\operatorname{cn}^{2}(y, m) \operatorname{sn}^{2}(y, m) \right]^{2} dy.$$

Для солитоноподобных волн (при больших амплитудах) уравнение изменения амплитуды принимает вид

$$\frac{3}{2}\frac{da}{dt} = -2ga + 7\frac{\beta_N\zeta}{\rho c_s \beta_d}a^2 - \frac{24\mu k_0^4}{\lambda^2}a^3.$$
 (10)

Так как для характерных значений деформаций ($\varepsilon \leqslant 10^{-4}$) диссипация энергии на высоких частотах

мала, вторым и третьим слагаемыми в правой части уравнения (10) можно пренебречь. Тогда для амплитуды нелинейной волны получаем экспоненциальное затухание $a = a_0 \exp(-\gamma t)$ с инкрементом $\gamma = 4q_{\varepsilon}\Omega/3$. Если же доминируют первые два слагаемых, из (10) имеем следующее выражение для амплитуды:

$$a(t) = a(0) \left[e^{\frac{4}{3}q_{\varepsilon}\Omega t} - \frac{7\zeta\beta_N a(0)}{2\rho c_s \beta_d q_s \Omega} \left(e^{\frac{4}{3}q_{\varepsilon}\Omega t} - 1 \right) \right]^{-1}.$$

В общем случае изменение амплитуды происходит по сложному закону и определяется (неявным образом) формулой

$$t(a) = \int_{a(0)}^{a} \frac{d\xi}{21\beta_N \zeta/2\rho c_s \beta_d)\xi^2 - 3g\xi - (36\mu k_0^4/\lambda^2)\xi^3}$$

Анализируя эти выражения, можно сделать следующий вывод: низкочастотные (g) и высокочастотные (ζ, η) потери сказываются на свойствах нелинейных волн существенно различным образом.

В другом предельном сучае $a \to 0$ из уравнения (10) также имеем экспоненциальное затухание для амплитуды волны, но с другим инкрементом затухания $\gamma \sim q_{\varepsilon}\Omega$.

Таким образом, получено уравнение, описывающее распространение нелинейных локализованных волн упругой деформации в упругой среде с учетом генерации неравновесных дефектов под воздействием внешних потоков энергии. Оно представляет собой обобщение известного уравнения Кортевега-де-Вриза–Бюргерса [14]. Приведены уравнения для изменения амплитуды нелинейных волн и инкременты их затухания.

В заключение заметим, что значительный интерес также представляет распространение солитонообразных уединенных волн в среде с кластерами точечных дефектов (вакансионных пор, межузельных петель и т.д.) Уединенные волны, нелинейно взаимодействуя со скоплениями дефектов, могут создавать в области взаимодействия локальное повышение температуры, следовательно, усиление рекомбинационных процессов. Последние в свою очередь сопровождаются локальными тепловыделением и деформацией среды. Дальнейшее изучение нелинейного взаимодействия полей деформации и температуры с дефектами структуры (как точечными, так и их кластерами) представляет интерес как с научной точки зрения, так и с точки зрения практических приложений, в частности диагностики дефектной структуры твердых тел.

Список литературы

- [1] Энгельбрехт Ю.К., Нигул У.К. Нелинейные волны деформаций. М.: Наука, 1981. 245 с.
- [2] Самсонов А.М., Дрейден Г.В., Порубов А.В., Семенова И.В. // Письма в ЖТФ. 1996. Т. 22. Вып. 21. С. 61-68.
- [3] Дрейден Г.В., Островский Ю.И., Самсонов А.М. // ЖТФ. 1988. Т. 58. Вып. 10. С. 2040–2047.

- [4] Samsonov A.M. et al. // Phys. Rev. B. 1998. Vol. 57. N 10. P. 5778–5787.
- [5] Toda M. Springer Series in Solid State Science. Vol. 20. Theory of Nonlinear Lattices. Berlin: Springer, 1981.
- [6] Лямшев Л.М. // УФН. 1981. Т. 135. № 3. С. 637-665.
- [7] Косевич А.М. Основы механики кристаллической решетки. М.: Наука, 1972. 280 с.
- [8] Быковский Ю.А. Ионная и лазерная имплантация металлических материалов. М.: Энергоатомиздат, 1991. 320 с.
- [9] Мирзоев Ф., Панченко В.Я., Шелепин Л.А. // УФН. 1996.
 Т. 166. № 1. С. 3–32.
- [10] *Лурье А.И.* Нелинейная теория упругости. М.: Наука, 1980. 350 с.
- [11] Samsonov A.M. // Applic. Analysis. 1995. Vol. 57. P. 85-100.
- [12] Samsonov A.M. // Phys. Lett. A. 1998. Vol. 245. N 6. P. 527– 536.
- [13] Потапов А.И. Нелинейные волны деформаций в стержнях и пластинах. Горький, 1984. 107 с.
- [14] Давыдов А.С. Солитоны в молекулярных системах. Киев: Наукова думка, 1988. 303 с.