01;05;10;11 Аналитический и численный подходы к расчету функции выхода электронов средних энергий из однородных образцов

© Л.А. Бакалейников,¹ Е.Ю. Флегонтова,¹ К.Ю. Погребицкий,¹ Hwack-Joo Lee,² Yang-Koo Cho,² Hyun-Min Park,² Yong-Won Song²

¹ Физико-технический институт им. А.Ф Иоффе РАН, 194021 Санкт-Петербург, Россия

194021 Санкт-петероург, Россия

² Korea Research Institute of Standards and Science,

Taejon, Rebuplic of Korea

(Поступило в Редакцию 29 ноября 2000 г.)

Разработана программа моделирования транспорта электронов по методу Монте-Карло. При этом использованы модель однократного рассеяния и диэлектрический подход (для расчета характеристик неупругого взаимодействия). Проведены расчеты функций выхода из алюминия, германия и золота в диапазоне энергий 0.012–20 keV. С помощью дифференциальных сечений упругого и неупругого взаимодействия для тех же элементов вычислены характерные длины, определяющие кинетику электронов (средние длины свободного пробега по упругим и неупругим взаимодействиям, длина изотропизации и длина полного пробега). Анализ соотношений между характерными длинами позволил определить области применимости аналитических выражений для функции выхода, полученных в [1]. Сравнение полученных аналитически и численно результатов подтвердило выводы работы [1] о виде аналитической аппроксимации функции выхода для электронов различных энергий и показало пригодность найденных аналитических выражений для длин выхода электронов.

Введение

Разработка новых материалов и технологий связана с созданием структур со сверхмалыми размерами активных областей. При этом особую важность приобретает развитие методов диагностики, позволяющих определять параметры исследуемых объектов с высоким разрешением. В настоящее время существует широкий ряд методов диагностики материалов, использующих рентгеновское излучение или электронные и ионные пучки для получения различной информации об исследуемых объектах. Методы, основанные на явлении электронной эмиссии, занимают в этом ряду особое место, поскольку, являясь неразрушающими, позволяют получать информацию о приповерхностных слоях сверхмалых размеров вследствие малой эффективной глубины выхода эмиттируемых электронов (10 ÷ 100 nm).

Несмотря на широкое практическое использование методов диагностики, основанных на явлении электронной эмиссии, они во многом являются полуэмпирическими. В связи с этим создание количественных методик получения информации о материале требует в первую очередь развития адекватных теоретических подходов к расчету базового явления — электронной эмиссии.

Для описания электронной эмиссии может быть использована трехступенчатая модель. Согласно этой модели, процесс индуцированной рентгеновским излучением электронной эмиссии может быть подразделен на три стадии: поглощение рентгеновского фотона веществом; генерация первичных электронов, т. е. фотоэлектронов и электронов, родившихся в ходе релаксации фотоионизованного атома; распространение первичных электронов в веществе с генерацией каскада вторичных электронов и выход рожденных электронов из образца. Последняя стадия характеризуется функцией выхода $q(E_0, z_0)$. Эта функция представляет собой вероятность выхода из образца электрона, родившегося на расстоянии z_0 от поверхности с энергией E_0 . Для отыскания функции может быть использовано кинетическое уравнение, описывающее распространение электронов, генерированных на глубине z_0 с энергией E_0 . В случае полубесконечного образца с плоской границей это уравнение имеет вид

$$\cos\Theta \cdot \frac{\partial\Phi}{\partial z} = R_{\rm col}\Phi + \frac{1}{4\pi} \cdot \delta(z - z_0) \cdot \delta(E - E_0). \quad (1)$$

Здесь $\Phi(z, \Theta, E)$ — дифференциальная плотность потока электронов с энергией E, движущихся на глубине zпод углом Θ к оси z; $R_{col}\Phi$ — интеграл столкновений, описывающий взаимодействие электронов с веществом; второй член в правой части соответствует наличию источника электронов на глубине z_0 с энергией E_0 . Уравнение (1) должно быть дополнено граничными условиями $\Phi(0,\Theta,E)|_{\cos\Theta>0} = 0$, $\Phi(z,\Theta,E)|_{z\to\infty} \to 0$, означающими отсутствие потока электронов извне и отсутствие электронов на больших глубинах. Функция выхода равна полному потоку электронов через поверхность z = 0

$$q(E_0, z_0) = \int_0^{E_0} \int_0^{2\pi} \int_0^{\pi} \cos \Theta \cdot \Phi(0, \Theta, E) \sin \Theta d\Theta d\varphi dE.$$
(2)

Уравнение (1) представляет собой линейное интегродифференциальное уравнение, отыскание аналитического решения которого сопряжено с большими трудностями. В связи с этим для определения дифференциальной плотности потока электронов можно использовать два подхода: 1) принять во внимание некоторые особенности транспорта электронов, позволяющие упростить кинетическое уравнение и найти приближенное аналитическое решение; 2) воспользоваться численным методом решения кинетического уравнения.

В работе [1] проанализированы предположения, которые ведут к упрощению кинетического уравнения (1) в разных областях начальных энергий электрона и получены приближенные аналитические выражения для функций выхода. Однако границы применимости использованных аппроксимаций выявлены лишь качественно. Для более детального выявления областей пригодности полученных решений и определения их точности необходимо сравнить аналитические результаты с численным расчетом функций выхода. Универсальным средством численного моделирования явлений переноса, позволяющим учесть особенности процесса взаимодействия электронов с веществом, является метод Монте-Карло.

Описание модели

При расчете методом Монте-Карло процесс взаимодействия электрона с веществом может описываться с помощью различных моделей. Наиболее точной является модель однократного рассеяния, в которой результат каждого акта взаимодействия электрона с веществом определяется дифференциальными сечениями упругого и неупругого рассеяния. При неупругом взаимодействии электрона с веществом кинетическая энергия теряется в ходе нескольких конкурирующих процессов (ионизация внутренних оболочек атомов, образование электроннодырочных пар, генерация плазмонов и т.д.). Единое описание неупругого взаимодействия, учитывающее различные каналы потери энергии, возможно с помощью формализма, основанного на использовании диэлектрической проницаемости є̂. В соответствии с таким подходом дважды дифференциальный обратный свободный пробег, т. е. вероятность того, что электрон с энергией Е потеряет энергию $\hbar \omega$ и импульс $\hbar q$ на единице пути, может быть записан в виде [2]

$$\frac{d^2 l_{\rm in}^{-1}}{d(\hbar\omega) d(\hbar q)} = \frac{1}{\pi a_0 q E} \operatorname{Im} \left(-\frac{1}{\tilde{\varepsilon}(q,\omega)} \right).$$
(3)

Здесь E — энергия электрона, отсчитываемая от дна зоны проводимости; $a_0 = \hbar^2/me^2$ — боровский радиус. Функция энергетических потерь

$$\operatorname{Im}\left(-rac{1}{\widetilde{\varepsilon}(q,\omega)}
ight)$$

во всей плоскости (q, ω) может быть найдена с помощью экстраполяции оптических данных $\tilde{\varepsilon}(0, \omega)$. Способ такой экстраполяции предложен в [3–5].

Распределение по потерям энергии в неупругом взаимодействии легко вычисляется из (3) интегрированием по импульсу

$$\frac{dl_{\rm in}^{-1}}{d(\hbar\omega)} = \int_{\hbar q_{-}}^{\hbar q_{+}} \frac{d^2 l_{\rm in}^{-1}}{d(\hbar\omega) d(\hbar q)} d\hbar q \tag{4}$$

Здесь q_-, q_+ — минимальное и максимальное значения переданного импульса определяемого из закона сохранения энергии и импульса. Обратный свободный пробег l_{in}^{-1} для неупругого взаимодействия электрона с веществом вычисляется интегрированием (3) по всем значениям $\hbar\omega$ и $\hbar q$ и может быть записан в виде

где Q_{\max} — максимально возможная потеря энергии.

Рассчитанный нами обратный свободный пробег для Au и Al в широком диапазоне энергий хорошо согласуется с результатами, приведенными в [5].

При моделировании траектории электрона потеря энергии Q определяется при помощи соотношения F(Q) = R, где R — равномерно распределенное в интервале [0,1] случайное число, а F(Q) задается выражением

$$F(Q) = \frac{\int\limits_{0}^{Q} \frac{dl_{\rm in}^{-1}}{d(\hbar\omega)} d\hbar\omega}{l_{\rm in}^{-1}}$$

Нами был разработан эффективный способ аппроксимации функции $F^{-1}(R)$. Параметры этой аппроксимации и дифференциальный обратный свободный пробег по энергии (4) рассчитаны для ряда веществ на основе оптических данных [6] и находятся в базе данных [7].

Для расчета упругого взаимодействия электронов с атомами вещества в модели Монте-Карло было использовано дифференциальное сечение Мотта. Оно было найдено с помощью разложения по парциальным волнам для элементов таблицы Менделеева с атомными номерами Z от 1 до 103 в широком диапазоне энергий. Эти данные также находятся в [7].

Аналитические аппроксимации функции выхода

В работе [8] показано, что упрощение кинетического уравнения может быть достигнуто за счет учета разномасштабности процессов угловой и энергетической релаксации. Характерные длины угловой и энергетической релаксации — величины $\lambda(E)$ и S(E) могут быть определены следующим образом:

$$\lambda(E) = 2 \left(2\pi \cdot N \int_{0}^{\pi} \frac{d\sigma_{\rm el}(E,\Theta)}{d\Theta} \Theta^{2} \sin \Theta \cdot d\Theta \right)^{-1},$$
$$S(E) = E/\beta(E).$$

Л.А. Бакалейников, Е.Ю. Флегонтова, К.Ю. Погребицкий, Hwack-Joo Lee...

Здесь $(d\sigma_{\rm el}(E,\Theta))/d\Theta$ — дифференциальное сечение упругого рассеяния, N — концентрация рассеивателей, $\beta(E)$ — средние потери энергии на единице длины, вычисляемые по формуле

$$eta(E) = \int\limits_{0}^{E} \hbar \omega rac{d l_{
m in}^{-1}}{d \hbar \omega} d \hbar \omega.$$

Другими характерными длинами процесса распространения электронов в веществе служат длины свободного пробега по упругим

$$l_{\rm el}(E) = (N\sigma_{\rm el})^{-1} = \left(N2\pi \int_{0}^{\pi} \frac{d\sigma_{\rm el}(E,\Theta)}{d\Theta} \sin \Theta \cdot d\Theta\right)^{-1}$$

и неупругим

$$l_{\rm in}(E) = (l_{\rm in}^{-1})^{-1} = \left(\int_{0}^{Q_{\rm max}} \frac{dl_{\rm in}^{-1}}{d\hbar\omega} d\hbar\omega\right)^{-1}$$

столкновениям. Если изменение угла или энергии в одном акте рассеяния мало́, то длины свободного пробега существенно отличаются от длин релаксации.

В том случае, когда длина угловой релаксации меньше длины энергетической релаксации, т. е. полного пробега электрона, введение величины $\sqrt{\lambda(E_0)S(E_0)}$ в качестве единицы длины позволяет выделить в кинетическом уравнении параметр малости $\varepsilon = \sqrt{\lambda(E_0)/S(E_0)}$ и упростить кинетическое уравнение с помощью методов теории возмущений. Заметим прежде всего, что в рассматриваемом случае угловое перераспределение при взаимодействии электрона с веществом определяется в основном упругим рассеянием и интеграл столкновений $R_{\rm col}\Phi$ может быть приближенно представлен в виде суммы упругой ($R_{\rm el}\Phi$) и неупругой ($R_{\rm in}\Phi$) частей

$$\begin{split} R_{\rm el} \Phi &= N \int_{4\pi} \frac{d\sigma_{\rm el}(E, \overline{\Omega}' \overline{\Omega})}{d\Omega} \Phi(z, \overline{\Omega}', E) d\overline{\Omega}' \\ &- N \Phi(z, \overline{\Omega}, E) \int_{4\pi} \frac{d\sigma_{\rm el}(E, \overline{\Omega} \overline{\Omega}')}{d\Omega} d\overline{\Omega}', \\ R_{\rm il} \Phi &= \int_{0}^{E_0} \frac{dl_{\rm in}^{-1}(E + \hbar\omega, \hbar\omega)}{d(\hbar\omega)} \Phi(z, \overline{\Omega}, E + \hbar\omega) d\hbar\omega \\ &- \Phi(z, \overline{\Omega}, E) l_{\rm in}^{-1}(E), \end{split}$$

где *N* — концентрация рассеивателей.

Кинетическое уравнение для дифференциальной плотности потока заменяется при этом на уравнение для изотропной части распределения, зависящей лишь от глубины и энергии. В безразмерных переменных это уравнение имеет вид [8]

$$\frac{1}{3\nu_1(E)} \cdot \frac{\partial^2 U}{\partial z^2} - S(E_0) R_{\rm in} U - \delta(z - z_0) \delta(E - 1) = 0.$$
(5)

Здесь за единицу длины принята величина $\sqrt{\lambda(E_0)S(E_0)}$, как было указано выше, за единицу энергии — начальная энергия электрона E_0 , а ν_1 — первое собственное число упругой части интеграла столкновений. Как отмечено в [8], собственными функциями оператора $R_{\rm el}\Phi$ являются сферические гармоники $Y_{i,k}(\Omega)$ и ν_1 может быть найдено из соотношения $R_{\rm el}Y_{1.0} = \nu_1Y_{1.0}$.

Возможности дальнейшего упрощения описания кинетики электронов связаны с особенностями неупругого взаимодействия электронов с веществом. При этом форма функции выхода определяется соотношением между длиной свободного пробега по неупругим столкновениям l_{in} и полным пробегом электрона S. Если потери энергии в неупругом столкновении сравнимы с энергией электронов и электрон теряет всю энергию за несколько неупругих столкновений, то длина свободного пробега по неупругим столновениям будет величиной порядка полного пробега электрона. В том случае, когда электрон полностью теряет свою энергию в первом неупругом столкновении, увеличение числа частиц в элементарном фазовом объеме за счет столкновений отсутствует и неупругий интеграл столкновений может быть представлен в виде

$$R_{\rm in}U = -\frac{U}{l_{\rm in}(E)}.$$
 (6)

После замены $R_{in}U$ выражением (6) уравнение (5) превращается в обыкновенное дифференциальное уравнение, решение которого приводит к функции выхода вида

$$q(z_0) = C_1 \exp\left(-\frac{z_0}{L_1}\right),\tag{7}$$

где длина выхода L₁ определяется выражением

$$L_1(E_0) = \sqrt{\lambda(E_0) l_{\rm in}(E_0) / 3|\nu_1(E_0)|}.$$
(8)

Другая ситуация возникает при рассмотрении быстрых электронов. В этом случае длина свободного пробега по неупругим столкновениям оказывается много меньше полного пробега, что позволяет воспользоваться приближением непрерывного замедления

$$R_{\rm in}U = \frac{\partial}{\partial E} \Big(\beta(E)U\Big).$$

Кинетическое уравнение при этом сводится к уравнению диффузии [8], решение которого даст

$$q(z_0) = C_2 \left[1 - \operatorname{erf}\left(\frac{z_0}{L_2}\right) \right].$$
(9)

Здесь длина выхода L₂ связана с длинами угловой и энергетической релаксации соотношением

$$L_2(E_0) = 2\sqrt{\lambda(E_0)S(E_0)\tau^*},$$
 (10)

а безразмерный коэффициент τ^* имеет вид

$$\tau^* = \int_{E_0}^0 \frac{dE}{3S(E_0)\lambda(E_0)\beta(E)\nu_1(E)}.$$
 (11)

Журнал технической физики, 2001, том 71, вып. 7

Диффузионное приближение применимо вдали от поверхности (на глубинах порядка длины изотропизации и больших), поэтому решения (7), (9) найдены с точностью до зависящих от энергии множителей C_1 , C_2 , которые определяются условием сращивания решения кинетического уравнения в диффузионной области с решениями в пограничном слое. На практике коэффициенты C_1 , C_2 могут быть найдены с помощью результатов численного расчета функции выхода.

Результаты и обсуждение

С помощью разработанной программы нами были проведены расчеты функции выхода для веществ с существенно различающимися атомными номерами Al (Z = 13), Ge (Z = 32), Au (Z = 79) в широком диапазоне начальных энергий электронов (от десятков eV до десятков keV).

Таблица 1. Средние длины свободного пробега по упругим и неупругим столкновениям $l_{\rm el}$ и $l_{\rm in}$ длина изотропизации λ , длина энергетической релаксации *S* и отношение λ/S для Al

E, keV	$l_{\rm el} \cdot 10^{-9} \mathrm{m}$	$l_{\rm in} \cdot 10^{-9} \mathrm{m}$	$\lambda \cdot 10^{-9}\mathrm{m}$	$S \cdot 10^{-9} \mathrm{m}$	λ/S
0.01	1.15	41.7	1.12	69.6	0.016
0.015	0.890	26.3	0.857	42.8	0.020
0.02	0.693	4.44	0.640	5.25	0.122
0.025	0.576	0.589	0.496	0.726	0.684
0.03	0.508	0.448	0.413	0.635	0.650
0.04	0.447	0.429	0.340	0.771	0.441
0.05	0.429	0.411	0.322	0.895	0.360
0.06	0.422	0.430	0.319	1.10	0.290
0.07	0.423	0.451	0.326	1.32	0.246
0.08	0.453	0.473	0.379	1.56	0.242
0.09	0.462	0.497	0.402	1.83	0.220
0.1	0.474	0.523	0.428	2.11	0.203
0.2	0.631	0.769	0.879	5.40	0.163
0.3	0.780	0.977	1.48	8.53	0.174
0.4	0.919	1.18	2.21	12.0	0.185
0.5	0.106	1.37	3.14	15.9	0.198
0.6	0.117	1.56	3.96	19.9	0.199
0.7	0.129	1.74	4.92	25.0	0.197
0.8	0.141	1.92	6.08	30.1	0.202
0.9	0.152	2.10	7.17	36.0	0.199
1.0	0.163	2.27	8.54	42.1	0.203
2.0	0.266	3.94	25.4	130	0.196
3.0	0.363	5.49	49.2	262	0.188
4.0	0.458	6.98	79.4	425	0.187
5.0	0.553	8.41	116	620	0.186
6.0	0.647	9.82	158	850	0.186
7.0	0.739	11.2	206	1120	0.184
8.0	0.831	12.6	259	1420	0.183
9.0	0.922	13.9	317	1740	0.182
10.0	10.1	15.2	381	2080	0.184
15.0	14.6	21.6	774	4320	0.179
20.0	19.1	27.7	1280	7080	0.181

Таблица 2. То же, что в табл. 1, для Ge

E, keV	$l_{\rm el} \cdot 10^{-9} \mathrm{m}$	$l_{\rm in} \cdot 10^{-9}{ m m}$	$\lambda \cdot 10^{-9}\mathrm{m}$	$S \cdot 10^{-9} \mathrm{m}$	λ/S
0.01	0.188	19.9	0.235	4.24 <i>E</i> -06	0.00553
0.015	0.316	8.67	0.379	1.76 <i>E</i> -06	0.0215
0.02	0.455	3.71	0.579	7.06	0.082
0.025	0.577	1.97	0.807	3.70	0.218
0.03	0.659	1.29	1.00	2.50	0.4
0.04	0.701	0.868	1.12	1.85	0.606
0.05	0.664	0.759	1.02	1.82	0.562
0.06	0.626	0.748	0.925	1.98	0.467
0.07	0.595	0.750	0.845	2.18	0.389
0.08	0.566	0.764	0.757	2.40	0.316
0.09	0.548	0.784	0.714	2.64	0.270
0.1	0.536	0.808	0.683	2.90	0.236
0.2	0.575	1.08	0.713	5.59	0.128
0.3	0.656	1.33	0.908	8.45	0.108
0.4	0.737	1.57	1.17	11.6	0.101
0.5	0.817	1.81	1.48	15.2	0.0977
0.6	0.889	2.04	1.82	19.3	0.0942
0.7	0.958	2.28	2.18	23.6	0.0924
0.8	1.03	2.50	2.60	28.4	0.0917
0.9	1.09	2.73	3.01	33.1	0.0908
1.0	1.15	2.95	3.50	38.0	0.0923
2.0	1.69	4.98	9.44	107	0.0885
3.0	2.14	6.88	17.3	203	0.0855
4.0	2.56	8.70	26.9	320	0.0840
5.0	2.96	10.5	38.0	461	0.0825
6.0	3.34	12.2	50.6	620	0.0815
7.0	3.71	13.8	64.5	803	0.0803
8.0	4.06	15.5	79.7	1010	0.0792
9.0	4.41	17.1	96.1	1230	0.0784
10.0	4.75	18.7	114	1470	0.0774
15.0	6.40	26.5	219	2950	0.0743
20.0	7.99	34.0	352	4830	0.0728

Для определения диапазонов энергии, в которых справедливы предположения, сделанные при выводе (7), (9), были вычислены характерные длины, определяющие кинетику электронов. При этом использовалось дифференциальное сечение упругого рассеяния Мотта и дифференциальный обратный свободный пробег по энергии (4). Полученные значения характерных длин для алюминия, германия и золота приведены в табл. 1-3. Из приведенных данных видно, что начиная с некоторой энергии порядка сотен eV отношение λ/S не превосходит 0.2 для всех элементов. При этом значение λ/S уменьшается с ростом атомного номера вещества. При меньших энергиях, за исключением области очень малых энергий $(E < 20 \,\mathrm{eV}$ для Al и Ge, $E < 50 \,\mathrm{eV}$ для Au), это отношение нельзя считать малым и разделение процессов угловой и энергетической релаксации необоснованно. Как видно из табл. 1-3, длина свободного пробега по неупругим столкновениям в области энергий $E > 1 \, \mathrm{keV}$ много меньше полного пробега, что позволяет использо-

Таблица 3. То же, что в табл. 1 и 2, для Аи

E, keV	$l_{\rm el} \cdot 10^{-9} \mathrm{m}$	$l_{\rm in} \cdot 10^{-9} \mathrm{m}$	$\lambda \cdot 10^{-9}\mathrm{m}$	$S \cdot 10^{-9} \mathrm{m}$	λ/S
0.01	0.510	3.49	0.212	5.75	0.0369
0.015	0.735	2.30	0.226	4.20	0.0538
0.02	0.612	1.76	0.211	3.41	0.0621
0.025	0.430	1.44	0.188	2.88	0.0652
0.03	0.313	1.22	0.169	2.51	0.0672
0.04	0.211	0.999	0.161	2.20	0.0731
0.05	0.181	0.852	0.183	1.91	0.0959
0.06	0.168	0.736	0.218	1.68	0.130
0.07	0.161	0.650	0.262	1.50	0.175
0.08	0.174	0.592	0.322	1.39	0.232
0.09	0.173	0.554	0.394	1.33	0.296
0.1	0.174	0.530	0.483	1.31	0.368
0.2	0.222	0.542	0.869	1.90	0.457
0.3	0.290	0.644	0.873	3.03	0.288
0.4	0.351	0.760	0.891	4.49	0.199
0.5	0.405	0.871	0.982	6.07	0.153
0.6	0.442	0.980	0.982	7.80	0.126
0.7	0.475	1.09	1.04	9.63	0.108
0.8	0.507	1.19	1.11	11.6	0.0965
0.9	0.533	1.29	1.19	13.6	0.0878
1.0	0.560	1.39	1.28	15.6	0.0819
2.0	0.766	2.32	2.46	41.3	0.0596
3.0	0.932	3.18	4.06	76.4	0.0531
4.0	1.08	4.01	5.97	121	0.0491
5.0	1.21	4.80	8.13	174	0.0469
6.0	1.33	5.57	10.5	231	0.0456
7.0	1.45	6.32	13.1	299	0.0439
8.0	1.56	7.06	15.9	371	0.0430
9.0	1.67	7.70	18.9	451	0.0420
10.0	1.77	8.51	22.1	535	0.0413
15.0	2.23	12.0	40.3	1060	0.0381
20.0	2.66	15.4	62.0	1720	0.0361

вать приближение непрерывного замедления. В связи с этим использование выражения (9) для функции выхода в этой области энергий вполне оправдано. При энергиях порядка десятков eV длина свободного пробега сопоставима с полным пробегом, следовательно, для описания формы функции выхода может оказаться применимым выражение (7).

Для решения вопроса о точности тех или иных аналитических приближений было проведено сравнение полученных в результате численного моделирования зависимостей функции выхода от глубины $q_{MC}(z)$ с аналитическими выражениями (7), (9). При этом величины L_1, L_2, C_1, C_2 трактовались как свободные параметры, которые определялись путем численной минимизации функционала

$$I = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left[q_{MC}(z_i) - q(z_i) \right]^2}.$$
 (12)

Найденные значения параметров вместе со значениями функционала для Al, Ge и Au приведены в табл. 4–6. Оказалось, что в области малых энергий (порядка десятков eV) выражение (7) приводит к меньшим значениям I, чем выражение (9), т.е. выражение (7) лучше аппроксимирует функцию выхода. Обратная ситуация имеет место при энергиях E > 1 keV. В этой области энергий функция выхода лучше аппроксимируется выражением (9). Наконец, в области промежуточных энергий обе аналитические аппроксимации имеют приблизительно одинаковую точность. Значение функционала при этом оказывается приблизительно вдвое бо́льшим, чем для областей E > 1 keV, E < 50 eV. Полученные данные находятся в хорошем согласии с результатами анализа характерных длин процесса транспорта электронов.

Большой интерес представляет сравнение длин выхода, найденных путем минимизации функционала (12), с длинами выхода, рассчитанными по формулам (10), (11). Зависимости от энергии длин выхода, минимизирующих функционал (12), и длин выхода, рассчитанных по формулам (10), (11), представлены на рисунке. В случае золота и германия при энергиях электрона $E_0 > 2 \text{ keV}$, т.е. в той области энергий, где выполняются условия $\lambda \ll S$, $l_{\text{in}} \ll S$, обе зависимости совпали с точностью до

Таблица 4. Параметры аналитической аппроксимации функции выхода и погрешность аппроксимации для Al

E, keV	$L_1 \cdot 10^{-9} \mathrm{m}$	C_1	I_1	$L_2\cdot 10^{-9}\mathrm{m}$	<i>C</i> ₂	I_2
0.015	2.93	0.827	0.0010	5.79	0.694	0.0203
0.02	1.22	0.633	0.0102	2.40	0.534	0.0265
0.025	0.339	0.417	0.0119	0.652	0.348	0.0180
0.03	3.19	0.380	0.0776	6.19	0.321	0.0181
0.04	2.16	0.426	0.0212	4.64	0.314	0.0389
0.05	2.83	0.410	0.0173	5.71	0.331	0.0299
0.1	2.46	0.446	0.0188	4.93	0.363	0.0282
0.2	2.15	0.716	0.0076	4.50	0.559	0.0238
).3	2.51	0.801	0.0046	5.03	0.654	0.0143
).4	3.11	0.809	0.0089	6.13	0.669	0.1012
).5	3.78	0.805	0.0104	7.56	0.663	0.0087
).6	4.41	0.812	0.0139	8.93	0.667	0.0061
0.7	5.32	0.795	0.0137	10.7	0.659	0.0056
).8	6.21	0.789	0.0144	12.3	0.659	0.0047
).9	7.12	0.786	0.0140	14.3	0.649	0.0050
1.0	8.22	0.782	0.0147	16.4	0.652	0.0042
1.5	14.8	0.750	0.0156	29.3	0.629	0.0039
2.0	22.1	0.766	0.0160	43.6	0.642	0.0026
2.5	31.9	0.758	0.0172	62.2	0.641	0.0014
3.0	43.2	0.748	0.0166	83.7	0.637	0.0030
4.0	67.6	0.760	0.0179	131	0.645	0.0025
5.0	98.8	0.754	0.0194	190	0.647	0.0020
5.0	135	0.747	0.0194	259	0.646	0.0023
7.0	176	0.750	0.0203	333	0.649	0.0026
8.0	221	0.751	0.0200	420	0.652	0.0028
9.0	275	0.744	0.0210	517	0.648	0.0035
10.0	327	0.745	0.0211	617	0.650	0.0036
15.0	671	0.740	0.0205	1260	0.649	0.0038
20.0	1100	0.747	0.0223	2080	0.649	0.0049

19

погрешности процедуры минимизации. В этом диапазоне энергий длины выхода, рассчитанные обоими способами для германия и для золота, различаются не более чем на 3%, в то время как точность определения длин выхода путем минимизации функционала (12) составляет около 10%. В случае алюминия различие в длинах выхода оказалось равным приблизительно 15%. Причиной этого является, по-видимому, относительно большое значение величины $\lambda(E_0)/S(E_0)$.

При энергиях электрона, настолько низких, что с большой вероятностью энергия полностью теряется в результате первого неупругого столкновения, можно ожидать, что длина выхода L_1 , входящая в выражение (7), удовлетворяет соотношению (8). Для проверки этого

Таблица 5. То же, что в табл. 4, для Ge

E, keV	$L_1 \cdot 10^{-9} \mathrm{m}$	C_1	I_1	$L_2\cdot 10^{-9}\mathrm{m}$	C_2	I_2
0.012	1.61	0.800	0.0008	3.24	0.651	0.0183
0.014	1.59	0.778	0.0008	3.23	0.628	0.0182
0.015	1.59	0.758	0.0007	3.24	0.608	0.0181
0.016	1.58	0.737	0.0010	3.15	0.599	0.0173
0.017	1.57	0.709	0.0026	3.16	0.579	0.0185
0.018	1.55	0.688	0.0018	3.13	0.558	0.0174
0.02	1.57	0.657	0.0022	3.15	0.534	0.0171
0.025	1.62	0.646	0.0025	3.24	0.528	0.0169
0.03	1.62	0.676	0.0011	3.26	0.552	0.0161
0.04	1.65	0.692	0.0007	3.26	0.570	0.0157
0.05	1.66	0.699	0.0014	3.31	0.577	0.0147
0.1	1.77	0.770	0.0041	3.60	0.628	0.0144
0.2	1.97	0.859	0.0077	3.93	0.703	0.0124
0.3	2.34	0.872	0.0106	4.61	0.721	0.0096
0.4	2.69	0.891	0.0129	5.44	0.729	0.0085
0.5	3.13	0.884	0.0135	6.35	0.726	0.0079
0.6	3.63	0.887	0.0136	7.37	0.727	0.0081
0.7	4.18	0.873	0.0135	8.50	0.715	0.0076
0.8	4.77	0.870	0.0141	9.69	0.712	0.0070
0.9	5.32	0.874	0.0148	10.8	0.715	0.0069
1.0	6.07	0.853	0.0136	12.2	0.708	0.0072
1.1	6.70	0.861	0.0143	13.5	0.710	0.0065
1.2	7.56	0.844	0.0140	15.2	0.698	0.0063
1.3	8.45	0.834	0.0136	16.9	0.694	0.0066
1.5	10.3	0.840	0.0143	20.6	0.699	0.0061
2.0	14.5	0.862	0.0155	29.2	0.709	0.0058
2.5	20.3	0.832	0.0153	40.7	0.688	0.0050
3.0	25.7	0.855	0.0162	52.1	0.699	0.0047
4.0	39.3	0.845	0.0160	79.6	0.693	0.0046
5.0	56.1	0.840	0.0165	112	0.699	0.0040
6.0	74.0	0.847	0.0170	148	0.702	0.0038
7.0	94.3	0.839	0.0178	188	0.698	0.0029
8.0	117	0.843	0.0181	229	0.709	0.0023
9.0	144	0.830	0.0184	277	0.708	0.0021
10.0	168	0.833	0.0176	331	0.700	0.0031
11.0	194	0.841	0.0184	385	0.705	0.0026
12.0	225	0.844	0.0190	442	0.709	0.0015
15.0	324	0.842	0.0187	639	0.707	0.0026
20.0	612	0.774	0.0133	1030	0.711	0.0037

Таблица 6. То же, что в табл. 4 и 5, для Аи

E, keV	$L_1 \cdot 10^{-9} \mathrm{m}$	C_1	I_1	$L_2 \cdot 10^{-9} \mathrm{m}$	<i>C</i> ₂	I_2
0.012	0.626	0.624	0.0050	1.27	0.513	0.0197
0.015	0.631	0.625	0.0047	1.28	0.506	0.0188
0.02	0.626	0.666	0.0043	1.26	0.540	0.0191
0.025	0.616	0.696	0.0025	1.26	0.559	0.0183
0.03	0.616	0.715	0.0027	1.26	0.574	0.0189
0.04	0.640	0.754	0.0019	1.29	0.612	0.0189
0.05	0.654	0.771	0.0013	1.30	0.632	0.0166
0.06	0.668	0.780	0.0019	1.34	0.634	0.0161
0.08	0.691	0.799	0.0038	1.38	0.652	0.0147
0.1	0.721	0.802	0.0056	1.43	0.662	0.0132
0.2	0.888	0.815	0.0114	1.81	0.665	0.0084
0.3	1.08	0.821	0.0138	2.18	0.675	0.0061
0.4	1.26	0.832	0.0150	2.55	0.684	0.0053
0.5	1.45	0.846	0.0151	2.95	0.693	0.0054
0.6	1.65	0.854	0.0154	3.35	0.698	0.0053
0.7	1.84	0.868	0.0160	3.75	0.709	0.0052
0.8	2.08	0.864	0.0149	4.23	0.707	0.0060
0.9	2.30	0.869	0.0149	4.65	0.714	0.0062
1.0	2.56	0.870	0.0141	5.07	0.718	0.0063
1.5	3.84	0.873	0.0132	7.72	0.717	0.0077
2.0	5.25	0.877	0.0137	10.6	0.719	0.0072
2.5	6.98	0.871	0.0133	14.1	0.714	0.0074
3.0	8.69	0.881	0.0142	17.1	0.729	0.0066
4.0	12.6	0.888	0.0145	25.8	0.725	0.0070
5.0	17.5	0.880	0.0145	35.3	0.727	0.0068
6.0	22.3	0.892	0.0153	45.4	0.731	0.0064
7.0	27.9	0.902	0.0168	56.8	0.738	0.0050
8.0	33.9	0.904	0.0169	69.1	0.738	0.0050
9.0	40.8	0.898	0.0174	81.7	0.745	0.0042
10.0	48.4	0.895	0.0161	96.9	0.743	0.0057
15.0	89.1	0.905	0.0175	178	0.751	0.0045
20.0	137	0.921	0.0184	278	0.755	0.0039

предположения длины выхода L1, определяемые путем минимизации функционала (12), сравнивались с длинами, рассчитанными по формуле (8). Для электронов с энергиями 10-25 eV расхождение в значениях длин выхода составляет около 10%.

Заключение

Разработана программа моделирования транспорта электронов по методу Монте-Карло с использованием однократного рассеяния. Для расчета характеристик неупругого взаимодействия использован диэлектрический подход. Рассчитаны функции выхода электронов из алюминия, германия и золота в диапазоне энергий 0.012-20 keV.

Рассчитанные функции выхода использованы для определения областей применимости аналитических зависимостей, полученных в работе [1]. С помощью дифференциальных сечений упругого и неупругого взаимодей-

Длины выхода, найденные из приближенного решения кинетического уравнения (1) и из результатов моделирования методом Монте-Карло (2). *а* — алюминий, *b* — германий, *c* — золото.

ствия для тех же элементов вычислены характерные длины, определяющие кинетику электронов, а именно средние длины свободного пробега по упругим и неупругим взаимодействиям, длина изотропизации и длина полного пробега. Анализ соотношений между этими величинами позволил определить области справедливости предположений, использованных в [1] при выводе аналитических выражений для функции выхода. Сравнение полученных аналитически и численно результатов подтвердило выводы работы [1] о виде аналитической аппроксимации функции выхода для электронов различных энергий и показало пригодность найденных аналитических выражений для длин выхода электронов.

Список литературы

- [1] Bakaleinikov L.A., Pogrebitsky K.Ju., Tropp E.A. et al. // The Nucleus. 1997. Vol. 34. P. 1.
- [2] Пайнс Д. Элементарные возбуждения в твердых телах. М.: Мир, 1965. 382 с.
- [3] Penn D.R. // Phys. Rev. B. 1987. Vol. 35. P. 482–486.
- [4] Ding Z.-J., Shimizu R. // Surf. Sci. 1989. Vol. 222. P. 313–331.
 [5] Ding Z.-J. Fundamental Studies on the Interactions of kV
- Electrons with Solids for Applications to Electron Spectroscopies. PHD Thesis. Osaka University, 1990. 219 c.
- [6] Palik E.D. Handbook of Optical Constants of Solids. New York, 1985.
- [7] Электронный архив http://www.ioffe.rssi.ru/ES
- [8] Бакалейников Л.А., Конников С.Г., Погребицкий К.Ю. и др. // ЖТФ. 1994. Т. 64. Вып. 4. С. 9–16.