# Временные реализации коэффициентов аэродинамических сил и моментов на прямоугольном крыле на режимах статического гистерезиса

#### © И.В. Колин, Т.И. Трифонова, Д.В. Шуховцов

(Поступило в Редакцию 31 июля 2000 г.)

Приводятся результаты эксперментальных исследований статического гистерезиса в аэродинамических характеристиках прямоугольного крыла с удлинением  $\lambda = 5$ , полученных при статических испытаниях модели в потоке аэродинамической трубы. Дан анализ временны́х зависимостей аэродинамических сил и моментов в области углов атаки, при которых реализуется переход с одной границы области гистерезиса на другую.

# Введение

03:12

Проведенные в аэродинамических трубах экспериментальные исследования моделей прямоугольных крыльев большого удлинения, самолетов с прямым крылом большого удлинения показали, что наряду с существованием областей однозначной зависимости аэродинамических сил и моментов от параметров эксперимента ( $\alpha$  — углов атаки, *β* — углов скольжения, Re — число Рейнольдса) существуют области неоднозначности зависимости аэродинамический гистерезис [1-4]. Известен ряд работ, посвященных изучению особенностей формирования гистерезиса в аэродинамических зависимостях, полученных для крыльев большого удлинения [1-6]. В работе [1] рассматривался статический гистерезис аэродинамической зависимости  $c_y = c_y(\alpha)$ , полученный для прямоугольного крыла большого удлинения ( $\lambda = 5$ ) с профилем NACA-23012 в диапазоне чисел  $\text{Re} = 1 - 4 \cdot 10^6$ при дозвуковых скоростях. В работах [2-6] были получены гистерезисные зависимости аэродинамических сил и моментов в диапазоне чисел  $\text{Re} = 0.2 - 0.8 \cdot 10^6$  для крыльев большого удлинения с разными относительными толщинами ( $\bar{c} \ge 0.12$ ).

В данной работе приведены результаты экспериментальных исследований аэродинамических характеристик модели прямоугольного крыла с удлинением  $\lambda = 5$  на режимах гистерезиса. Представлены статические аэродинамические зависимости  $c_y(\alpha)$ ,  $m_z(\alpha)$ ,  $m_x(\alpha)$ , а также схематические картины структур течений на крыле, полученные при визуализации течений методом шелковинок. Весовые испытания и визуализация провдились одновременно. С целью уточнения топологии границ области гистерезиса проведены исследования временных зависимостей  $c_y(t)$ ,  $m_z(t)$ ,  $m_x(t)$  и их спектров  $A_{c_y}(f)$ ,  $A_{m_z}(f)$ ,  $A_{m_x}(f)$ , полученных при постоянных значениях углов атаки ( $\alpha = \text{const}$ ) и при медленном изменении их значений.

### Методика исследований

Экспериментальные исследования крыла проводились в аэродинамической трубе малых дозвуковых скоростей с открытой рабочей частью при числе Re =  $0.33 \cdot 10^6$ . На рис. 1 схематически показана модель крыла, закрепленная на хвостовой державке динамической установки. Установка жестко соединена с поворотным кругом аэродинамической трубы. Крыло с профилем NACA-0018 имеет следующие геометрические параметры: относительная толщина профиля  $\bar{c} = 18\%$ , площадь  $S_1 = 0.288 \, \text{m}^2$ , средняя аэродинамическая хорда  $b_2 = 0.24 \, \text{m}$ , размах крыла  $l_1 = 1.2 \, \text{m}$ . Измерения коэффициентов аэродинамических сил и моментов прово-



Рис. 1. Схема размещения динамической установки и модели в рабочей части аэродинамической трубы: 1 — установка ОВП-102Б, 2 — диффузор трубы, 3 — модель крыла, 4 — поворотный круг рабочей части трубы.

дились с помощью внутримодельных тензометрических весов в связанной системе координат 0*XYZ*. Положение центра масс модели  $\bar{x}_{\rm T} = 0.5$  (в долях  $b_2$ ). Углы атаки задавались поворотным кругом трубы и изменялись в диапазоне  $\alpha = -3-27^{\circ}$ . Непрерывное отклонение модели из одного положения в другое реализовывалось с помощью поворотного круга со скоростью  $\alpha = 0.5$  grad/s. По фотографиям крыла с шелковинками в потоке приближенно оценивалось расположение границ отрывного и безотрывного течений.

#### Результаты исследований

На рис. 2 представлены статические аэродинамические зависимости  $c_v(\alpha), m_z(\alpha), m_x(\alpha),$  полученные для модели прямоугольного крыла при прямом ( $\dot{\alpha} > 0$ ) и обратном ( $\dot{\alpha} < 0$ ) ходе изменения угла атаки в диапазоне  $\alpha = -3-27^{\circ}$  ( $\Diamond$ ). Видно, что внутри диапазона углов атаки 12.5  $\leq \alpha \leq 19^{\circ}$  в зависимостях  $c_y(\alpha), m_z(\alpha)$ имеет место статический гистерезис. Характеристика  $m_x(\alpha)$  однозначна, значения коэффициентов  $m_x$  в исследуемом диапазоне углов атаки малы. На рис. 2 также приведены условные схемы структур течений на крыле. Незаштрихованная область соответствует безотрывному течению (ОБТ), а заштрихованная — отрывному течению (ООТ). Данные визуализации подтверждают весовые измерения коэффициентов аэродинамических сил и моментов, указывая на различие структур течений на крыле, соответствующих верхней и нижней границам области гистерезиса. Верхняя граница в гистерезисных зависимостях  $c_v(\alpha)$ ,  $m_z(\alpha)$  при малых углах атаки характеризуется наличием на крыле области отрывного течения в окрестности задней кромки крыла. При увеличении углов атаки площадь этих областей увеличивается. Переход на нижнюю границу области гистерезиса характеризуется смещением линии отрыва к передней кромке крыла. При испытаниях с уменьшением угла атаки на режимах нижней границы гистерезиса площадь области отрывного обтекания уменьшается, но линия отрыва всегда располагается у передней кромки крыла.

На том же рис. 2 приведены статические зависимости  $c_v(\alpha), m_z(\alpha),$  полученные в двух сериях повторных испытаний модели. В первой серии испытаний (•) при прямом ходе изменения угла атаки начальное значение угла атаки выбиралось равным  $\alpha_i = 13^\circ$ , а конечное значение —  $\alpha_f = 19^\circ$ . При этом в зависимостях  $c_v(\alpha), m_z(\alpha)$  реализуется переход с верхней границы статического гистерезиса на нижнюю. Во второй серии испытаний (•) с уменьшением угла атаки выбрано начальное значение угла атаки  $\alpha_i = 15^\circ$  и конечное значение  $\alpha_f = 12^\circ$ . В эксперименте установлено, что реализация зависимостей  $c_v(\alpha)$ ,  $m_z(\alpha)$  на нижней границе области гистерезиса зависит от последовательности включения трубы и отклонения модели на угол атаки. Если модель устанавливается на начальный угол атаки  $\alpha_i$  до включения потока трубы, то всегда реа-



**Рис. 2.** Зависимости коэффициентов статических аэродинамических сил и моментов  $c_y, m_z, m_x$  от углов атаки. I — ОБТ; II — ООТ.

лизуются значения сил и моментов, соответствующие нижней границе области гистерезиса. После включения потока трубы и последующем дискретном уменьшении угла атаки до  $\alpha_f = 12^\circ$  наблюдается переход значений сил и моментов с нижней границы области гистерезиса на верхнюю. Следует отметить, что данные, полученные в обеих сериях повторных испытаний модели, хорошо согласуются с исходными зависимостями  $c_y(\alpha), m_z(\alpha)$  ( $\diamond$ ).

Описанные выше статические аэродинамические зависимости  $c_y(\alpha)$ ,  $m_z(\alpha)$ ,  $m_x(\alpha)$  получаются в результате осреднения измеренных временны́х реализаций  $c_y(\alpha, t_k)$ ,  $m_z(\alpha, t_k)$ ,  $m_x(\alpha, t_k)$  на каждом угле атаки  $\alpha$  в момент времени  $t_k = k\Delta t$ , где k = 1, 2, ..., n — точки отсчета;  $\Delta t$  — шаг дискретизации по времени.



**Рис. 3.** Временные реализации и частотные спектры коэффициентов аэродинамических сил и моментов, соответствующие верхней границе области статического гистерезиса.  $\alpha = 13^{\circ}$ , прямой ход.



**Рис. 4.** Временны́е зависимости и частотные спектры коэффициентов аэродинамических сил и моментов, соответствующие нижней границе области статического гистерезиса. *α* = 13°, обратный ход.

В качестве примера на рис. 3–4 при  $\alpha = 13^{\circ}$  приведены характерные временные реализации  $c_y(t)$ ,  $m_z(t)$ ,  $m_x(t)$  и их частотные спектры  $A_{c_y}(f)$ ,  $A_{m_z}(f)$ ,  $A_{m_x}(f)$ , соответствующие режиму испытаний модели на верхней и нижней границах статического гистерезиса. Временны́е реализации, соответствующие верхней границе области статического гистерезиса, являются регулярными, а соответствующие им частотные спектры — плоскими (рис. 3). Таким временны́м процессам соответствует аттрактор типа точки. Временны́е реализации  $c_y(t)$ ,  $m_z(t)$ ,  $m_x(t)$ , соответствующие нижней границе гистерезиса, нерегулярны (рис. 4), а в их частотных спектрах заметно появление нескольких гармоник. Кроме того, в зависимостях  $A_{c_y}(f)$ ,  $A_{m_z}(f)$ ,  $A_{m_x}(f)$  наблюдается присутствие сплошной низкочастотной компоненты. Математическим образом таких процессов является понятие странного аттрактора [7]. Таким образом, сравнивая зависимости  $c_y(t)$ ,  $m_z(t)$ ,  $m_x(t)$  и частотные спектры  $A_{c_y}(f)$ ,  $A_{m_z}(f)$ ,  $A_{m_x}(f)$ , соответствующие верхней и нижней границам гистерезиса при одних и тех же углах атаки, можно отметить, что различие, обнаруживаемое в результате таких измерений, имеет как количественный, так и качественный характер.

Рассмотрим результаты исследований временны́х зависимостей сил и моментов в процессе перехода с верхней границы гистерезиса на нижнюю. Для этого в эксперименте были проведены испытания при непрерывном медленном изменении угла атаки с постоянной скоростью  $\dot{\alpha} = 0.5 \text{ grad/s}$ . Из анализа зависимостей  $c_y(t)$ ,  $m_z(t)$ , полученных при непрерывном изменении угла атаки в диапазоне  $\alpha = 17-21^{\circ}$ , следует, что в зависимостях  $c_y(t)$ ,  $m_z(t)$  наблюдается резкое изменение величин коэффициентов  $c_y$ ,  $m_z$ . На рис. 5 показаны реализации  $c_y(t)$ ,  $m_z(t)$  в интервале времени, в котором наблюдается переход значений  $c_y$ ,  $m_z$  с верхней границы гистерезиса на нижнюю. Этот интервал, как видно из рисунка, лежит в диапазоне  $t \approx 1.55-1.7$  s и составляет  $\Delta t \approx 0.15$  s. Из анализа зависимостей  $c_y(t)$ ,  $m_z(t)$  в ука-



**Рис. 5.** Временны́е зависимости  $c_y(t)$ ,  $m_z(t)$ , измеренные при непрерывном изменении угла атаки в диапазоне  $\alpha = 17 - 21^{\circ}$ .



**Рис. 6.** Схематизация гистерезисных зависимостей: *1* — устойчивая ветвь, *2* — складка I, *3* — складка II, *4* — неустойчивая ветвь.

занном отрезке времени следует, что между начальной и конечной точками перехода не существует ни одного стационарного режима. Если рассматриваемое изменение зависимостей  $c_y(t)$ ,  $m_z(t)$  при переходе с верхней границы области гистерезиса на нижнюю аппроксимировать линейной функцией, то, зная время перехода  $\Delta t$ , а также скорость изменения угла атаки  $\dot{\alpha}$ , можно оценить диапазон углов атаки  $\Delta \alpha$ , в котором осуществляется переход. Из анализа результатов эксперимента следует, что  $\Delta \alpha = \Delta t \dot{\alpha} \approx 0.075$  grad.

Результаты исследований верхних и нижних границ статического гистерезиса, а также переходов с одной границы на другую позволяют уточнить математическую модель, приближенно описывающую гистерезис в статических аэродинамических силах и моментах. Такой моделью может служить математическая модель гистерезиса, принятая в теории катастроф. С точки зрения теории катастроф гистерезис представляет собой совокупность двух элементарных катастроф, называемых складками. У катастрофы складки пространство управления одномерное. Бифуркационное множество представляет собой точку [8–10]. При этом статическая зависимость  $c_v(\alpha)$ разбивается на три отрезка: два отрезка, соответствующих устойчивым стационарным состояниям, и отрезок, соответствующий неустойчивой ветви решений, располагающейся внутри гистерезиса (рис. 6). В точках, соответствующих бифуркационным углам атаки, происходит резкий переход с одной границы области гистерезиса на другую.

## Выводы

Из анализа экспериментальных временных зависимостей аэродинамических сил и моментов, измеренных при постоянных значениях установочных углов атаки, а также при непрерывном медленном изменении углов атаки в потоке аэродинамической трубы, можно сделать следующие основные выводы.

Временны́е зависимости  $c_y(t)$ ,  $m_z(t)$ ,  $m_x(t)$  аэродинамических сил и моментов, соответствующие верхней границе области гистерезиса, характеризуются аттрактором типа точки, а временны́е зависимости на нижней границе — странным аттрактором.

В зависимостях  $c_y(\alpha)$ ,  $m_z(\alpha)$  переход с одной границы области гистерезиса на другую осуществляется при небольших изменениях установочных углов атаки.

В процессе перехода с верхней на нижнюю границу гистерезиса не реализуется каких-либо промежуточных стационарных режимов, что подтверждает неустойчивость разрушающейся структуры обтекания на крыле при достижении бифуркационных углов атаки.

#### Список литературы

- [1] *Курьянов А.И., Столяров Г.И., Штейнберг Р.И.* // Ученые записки ЦАГИ. 1979. Т. Х. № 3.
- [2] Караваев Э.А., Прудников Ю.А., Часовников Е.А. // Ученые записки ЦАГИ. 1986. Т. XVII. № 6.
- [3] Столяров Г.И., Табачников В.Г. // Труды ЦАГИ. 1985. Вып. 2290.
- [4] Колин И.В., Трифонова Т.И., Шуховцов Д.В. Препринт ЦАГИ. М., 1996. № 87.
- [5] Колмаков Ю.А., Рыжов Ю.А., Столяров Г.И., Табачников В.Г. // Труды ЦАГИ. 1985. Вып. 2290.
- [6] Колин И.В., Трифонова Т.И., Лацоев К.Ф., Шуховцов Д.В., Яковлев В.А. Препринт ЦАГИ. М., 1996. № 85.
- [7] Берже П., Помо И., Видаль К. Порядок в хаосе. М.: Мир, 1991.
- [8] Арнольд В.И. Теория катастроф. М.: Наука, 1990.
- [9] Томпсон Джс.М.Т. Неустойчивости и катастрофы в науке и технике. М.: Мир, 1985.
- [10] Стюарт И. Тайны катастрофы. М.: Мир, 1987.