Структура и свойства твердого сплава, нанесенного на медную подложку с помощью импульсно-плазменной технологии

© А.Д. Погребняк,¹ М.В. Ильяшенко,¹ О.П. Кульментьева,¹ Ю.Н. Тюрин,² А.П. Кобзев,³ Ю.Ф. Иванов,⁴ В.С. Иваний,⁵ В.С. Кшнякин⁵

¹ Сумский институт модификации поверхности,

40030 Сумы, Украина

² Институт электросварки им. Е.О. Патона НАНУ,

Украина

04:05:11:12

³ Лаборатория нейтронной физики. Объединенный институт ядерных исследований,

141980 Дубна, Московская область, Россия

⁴ Архитектурно-строительная академия,

634050 Томск, Россия

⁵ Сумский государственный педагогический университет, 40030 Сумы, Украина

(Поступило в Редакцию 20 октября 2000 г.)

Разработан новый принцип импульсного плазмотрона для нанесения покрытий из металлокерамики, керамики и металлов на твердую подложку. Представлены расчеты, по которым подбирались параметры плазмотрона. На примере твердого сплава (W–Co), нанесенного на подложку из Cu, показано использование данного плазмотрона. С помощью методов резерфордовского обратного рассеяния (RBS), рентгенофазового анализа, просвечивающей электронной микроскопии (*TEM*) с дифракцией, измерения твердости и адгезии исследовано покрытие из твердого сплава. Показано, что покрытие состоит из кристаллов WC с гексагональной и кубической решеткой, имеются кристаллиты α - и β -кобальта размерами около 25 nm, а по границам кристаллитов обнаружены частицы W₃Co₃C.

Введение

Современная техника нанесения качественных покрытий развивается по пути создания методов, которые обеспечивают высокую скорость наносимого материала благодаря использованию детонационных устройств [1,2], различного типа ракетных камер сгорания [3,4] или электромагнитных рельсотронов [5–7]. Исследования показывают [8], что для формирования плотного, хорошо прилегающего к поверхности изделия покрытия (даже без нагрева, достаточно иметь скорость частиц сплава на основе металлов до 600... 1000 m/s.

Устройства, где скоростная струя продуктов сгорания формируется в ракетных камерах сгорания, расходует не менее 10 m³ газа для нанесения 1 kg покрытий на основе карбидов вольфрама [4]. Максимальная скорость частиц диаметром $45 \pm 10 \,\mu$ m достигает $600 \dots 650$ m/s. Для формирования скоростного потока продуктов сгорания в камерах сгорания (КС) сжигают 30...150 m³/h горючей смеси. Однако производительность нанесения и качество покрытия, как правило, непропорциональны увеличению тепловой мощности [3]. Большой объем компонентов горючей газовой смеси необходим, как правило, только для создания скоростной струи продуктов сгорания, но проблема равномерного распределения порошкового материала по сечению струи не решена и вследствие этого не решена проблема полезного использования энергии продуктов сгорания.

Получают развитие электромагнитные методы ускорения и нагрева порошков [5–7]. В электромагнитных

ускорителях типа рельсотрона ускорение и нагрев рабочего газа и порошка осуществляются в результате взаимодействия пондеромоторных сил, образующихся при прохождении тока по электродам "рельсам" и токопроводному слою газа (плазме). Энергия, которая передается плазме, пропорциональна силе тока, и для достижения скорости 2... 4 km/s необходима сила тока в 150 kA. При этом длительность процесса разгона составляет 120 ms, а температура плазмы достигает 20 000°C [6].

Более удачный тип рельсотрона, который используют для нанесения покрытий, рассмотрен в работе [7]. Предложенный там аксиальный рельсотрон обеспечивает скорость плазменного "поршня" до 10 km/s при силе тока 20 kA. На выходе из рельсотрона скорость плазмы достигает 4 km/s, что обеспечивает ускорение порошка и формирование высококачественного покрытия из твердых сплавов на основе карбидов вольфрама и оксидов алюминия.

Локализация дуги в плазменном слое "поршне" и эрозия электродов "рельс" ограничивает область применения электромагнитных систем. Кроме того, они имеют сложные устройства для коммутации электрического тока (20...150 kA) с частотой 2...10 Hz, которые ограничивают их надежность и работоспособность.

Газовые детонационные системы для нанесения покрытий [1–3] обеспечивают ускорение напыляемых порошков до 1000 m/s и нагрев их до температуры плавления при одинаковой производительности с устройствами на основе ракетных камер сгорания, но они имеют в десятки раз меньшую тепловую мощность. Формирование скоростной газовой струи в детонационных устройствах осуществляется за счет реализации детонационного режима сгорания и не зависит от объема сгораемой горючей смеси. Несмотря на эти преимущества, применение технологии детонационного нанесения сдерживается вследствие сложности устройств, которые предназначены для дозирования и подачи порошкового материала. Кроме того, детонационные устройства имеют ограничения по мощности единичной импульсной струи продуктов сгорания, что снижает надежность технологии нанесения покрытий.

Основным между известными детонационными устройствами нанесения покрытий [1-2,9-12] является метод подачи в камеру сгорания (КС) напыляемого порошка и газов. В детонационных установках камера сгорания (КС) заполняется газами Vg и порошком Vp с трех сторон (рис. 1). В закрытую часть КС газы подаются через систему управления, что позволяет контролировать ее заполнение. Со стороны открытой части КС до места локализации газопорошковой смеси натекает воздух V₀, который тормозит перемещения этой смеси. При вводе порошкового материала по оси КС (рис. 1, a) порошок смешивается с горючим газом и занимает большой объем $V = f(h_2 - S)$, что не обеспечивает одинаковых условий для его нагрева и ускорения. При вводе порошков через боковую стенку (рис. 1, b) в КС образуется менее протяженное и более плотное порошковое облако $V = f(h_1 - S)$, что создает одинаковые условия для передачи энергии от продуктов сгорания всей массы порошка.

Разработаны устройства для нанесения покрытий, где применена боковая подача порошков и используются газодинамические системы управления [12]. Газы и порошок вводятся при понижении давления в КС, периодически после выбрасывания скоростной струи продуктов сгорания.

Описание метода получения высокоэнергетической плазменной струи

Из всей известной техники формирования импульсных плазменных струй можно выделить ускорители рельсотронной и коаксиальной геометрии. Эти ускорители наиболее эффективны для модифицирования поверхности и нанесения покрытий. Экспериментальное и теоретическое исследование импульсных ускорителей рельсотронной и коаксиальной геометрии хорошо представлено в [7].

В настоящее время создается новое направление в технологии модифицирования и нанесения покрытий. Эти технологии базируются на электромагнитных ускорителях продуктов сгорания горючих газовых смесей [12–20]. Предложено [12,13] (рис. 2) смешивание компонентов и детонацию горючей газовой смеси осуществлять в специальной камере *1*, которая выполнена отдельно от

Рис. 1. Схема заполнения камеры сгорания детонационной пушки газопорошковой смесью: *а* — осевая подача, *b* — через стенку камеры.

импульсного плазмотрона. Плазмотрон состоит из внутреннего конического электрода 2 и внешнего электрода катода 3. Между двумя коаксиальными электродами в междуэлектродном зазоре [4], который имеет длину L, наведено электрическое поле E посредством источника высокого напряжения 5. В центральном электроде встроен расходуемый металлический стержень 6. Стержень, как правило, изготавливается из тугоплавких металлов или сплавов. Импульсный плазмотрон содержит ствол 7, который предназначен для ускорения и нагрева порошка. Длина ствола H выбирается в зависимости от элементного состава и дисперсности порошка. Для напыления твердого сплава длина ствола H = 300 mm. Порошок вдувается в ствол через трубопровод 8.

В детонационную камеру 1 подают компоненты горючей газовой смеси. После их смешивания осуществляют инициирование детонации смеси. Затем продукты сгорания поступают из детонационной камеры 1 в межэлектродный зазор 4 и замыкают электрическую цепь источника 5. Электропроводный слой продуктов сгорания под влиянием газодинамической и электромагнитной силы ускоряется. Вводимый в ствол 7 порошок нагревается и ускоряется импульсной плазмой. Металлический расходуемый стержень 6 при нагреве испаряется и обеспечивает ввод в плазменную струю легирующих элементов. При выбросе импульсной плазменной струи из плазмотрона она замыкает электрическую цепь между электродом анодом и поверхностью изделия — катодом. В результате прохождения по этой струе электрического тока образуется импульсное магнитное поле, а плазма и порошок нагреваются также и за счет джоулева тепловыделения.

Энергетические параметры импульсной плазмы определяются решением известной двумерной нестационарной задачи распространения детонационной волны (ДВ)

Рис. 2. Схема импульсно-плазменного устройства с электромагнитным принципом ввода дополнительной энергии: *a* — схема плазмотрона для создания импульсной плазменной струи, *b* — график изменения напряженности электрического поля.

в электрическом поле между двумя коаксиальными телами вращения (электродами). Эта задача была упрощена, и средние значения температуры, скорости, давления и плотности продуктов сгорания по оси рабочей камеры (PK) определялись без учета изменения ее сечения [14,15].

Усреднение по ширине межэлектродного зазора РК геометрических и энергетических параметров двумерной нестационарной задачи распространения ДВ представлено в виде формулы

$$\langle X \rangle = \frac{l}{h} \int_{0}^{h} X dh, \qquad (1)$$

где X принимает значения B, E, J, w, ...; h — усредненная ширина кольцевого зазора; B — магнитная индукция; E — напряженность электрического поля; J — электрический ток; w — скорость течения плазмы, рис. 3.

Рис. 3. Схема реакционной камеры для расчета усиления детонационного режима сгорания электромагнитным полем.

Интегрирование (1) велось по нормали к поверхности электродов. Расчетные параметры зависели лишь от времени и расстояния вдоль образующей РК до места инициирования ДВ, которое обозначим l. Длину РК считаем равной L. В принятом приближении положение фронта ДВ характеризуется функцией $l = l_D(t)$, а скорость ДВ — равенством $D = dl_D/dt$. Поверхность фронта ДВ будет состоять из отрезков, нормальных к поверхности электродов РК. Усиление ДВ определяется по уравнению

$$M_D = \frac{D}{a_0} = \frac{dl_D/dt}{a_0},\tag{2}$$

где a_0 — приращение в ДВ вследствие вложения электромагнитной энергии.

Принимаем, что вектор электрического тока $\langle j \rangle$ и напряженности $\langle E \rangle$ перпендикулярны, а вектор скорости плазменной струи $\langle w \rangle$ параллелен образующей поверхности электродов. Основанием для этого служит узость зазора между электродами ($h = 6 \dots 8$ mm).

Течение газа в канале за ДВ описывается системой дифференциальных уравнений в частных производных с учетом геометрических параметров РК: длины РК L, площади сечения кольцевого зазора A, угла между коническими образующими электродов РК β . Для расчета параметров на ДВ как функции пройденного ею расстояния l применим метод Уизема [21]. Число Маха ДВ $M_D = M_D(l)$ определяется решением дифференциального уравнения с учетом постоянного числа интегрирования (акустической характеристикой c^+). Газодинамические параметры выражены через число Маха M_D стационарной ДВ. Комбинируя уравнения газовой

динамики, получаем следующую систему уравнений:

$$\frac{dp}{dl} + \rho a \frac{dw}{dl} = \frac{j_h}{w+a} \left(\frac{\gamma - l}{\sigma} j_h + \frac{a}{c} B \right) - \frac{\gamma P w}{w+a} \frac{l}{A} \frac{dA}{dl}, \qquad (3)$$

$$(w+a)\frac{d}{dl} = \frac{\partial}{\partial t} + (w+a)\frac{\partial}{\partial l},$$
 (4)

где γ — показатель адиабаты продуктов сгорания; p, P — давление и плотность; w — среднее значение скорости газа за ДВ; a — приращение энергии газа за ДВ вследствие вложения электромагнитной энергии; j_h — электрический ток; σ — проводимость плазмы; c — безразмерная постоянная, связанная с суммарной концентрацией положительных ионов; t — время; l — текущая длина РК.

В уравнения подставляются следующие значения: $B = 0, j_h = \sigma E_0$. Здесь E_0 — усредненный вектор напряженности электрического поля перед ДВ. Он равен разности потенциалов на электродах, деленной на ширину кольцевого зазора. Введем новые безразмерные величины Z и x вместо M_D и l

$$Z = \sqrt{l - M_j^2 / M_D^2}, \quad x = l/L.$$
 (5)

По известному значению Z = Z(x) найдем формулы для расчета газодинамических параметров за ДВ

$$D = \frac{a_0 M_j}{\sqrt{(l-Z^2)}},\tag{6}$$

$$P = \frac{P_0 M_j^2 \gamma}{(\gamma + l)(l - Z)},\tag{7}$$

$$\rho = \frac{\rho_0(\gamma + l)}{(\gamma - Z)},\tag{8}$$

$$U = \frac{M_j a_0}{\gamma + l} \sqrt{(l + Z)(l - Z)},\tag{9}$$

$$T = \frac{T_0 \gamma M_j^2 (\gamma - Z)}{(\gamma + l)^2 (l - Z)},$$
 (10)

где M_D — число Маха детонации; p — давление; ρ — плотность плазмы; U — суммарная скорость; T, T_0 — температура плазмы после усиления электромагнитным полем и без поля.

Функция Z(x) определяется решением обыкновенного дифференциального уравнения, которое интегрируется в элементарных функциях

$$\left(l = \sqrt{\frac{\gamma}{(\gamma - Z)(l + Z)}}\right) \left(1 + Z + \sqrt{\gamma(\gamma - Z)(l + Z)}\right)$$
$$\times \frac{dZ}{dx} = K(l - Z)^2 \sqrt{l - Z^2} - \gamma(l - Z^2) \frac{l}{A} \frac{dA}{dx}.$$
 (11)

Для расчета геометрических параметров импульсного плазмотрона принимаем $\gamma = 1.2$ — показатель адиабаты

продуктов сгорания; $M_j = 5.0$ — число Маха стационарной ДВ; $\rho_0 = 1 \text{ kg/m}^3$ — начальная плотность продуктов сгорания; $E_0 = 35 \text{ V/m}$ — напряженность электрического поля в межэлектродном зазоре; A = A(l) — суммарная площадь сечения кольцевого зазора перпендикулярного к оси РК. Проводим численное интегрирование обыкновенного дифференциального уравнения при заданных начальных условиях Z(x) = 0. Решение z(x) представляем в неявной форме.

Решение уравнения (11) представлено в виде формулы для расчета коэффициента усиления энергии. В случае dA/dx = 0 параметр *К* является параметром масштаб-

Рис. 4. Усиление детонации и температуры продуктов сгорания в реакционной камере при различной напряженности электрического поля (температура и число Маха). Цифры у кривых — *E*, V/m.

Рис. 5. Характеристики плазменного потока на выходе из реакционной камеры сгорания в зависимости от ее длины. По оси ординат: - Δ - — $T \times 1000$ K, -+- — $P \times 3$ MPa, -×- — $V \times 0/3$ km/s и - \Box - — $\rho \times 0.3$ kg/m³.

Журнал технической физики, 2001, том 71, вып. 7

ного подобия

$$K = \frac{\delta E_0^2 (\gamma - l) (\gamma + l)^2 L}{\gamma a_0 \rho_0 M_i^3},$$
 (12)

где

$$\delta = c \, \frac{(kT)^{3/2}}{e^2 \ln \Delta \sqrt{8\pi m_e}},\tag{13}$$

k — постоянная Больцмана; T — температура; m_e, e — масса и заряд электрона; $\ln \Delta$ — кулоновский логарифм, значение которого зависит от температуры и степени ионизации плазмы в РК.

При численном интегрировании пренебрегали переменностью $\ln \Delta$, считая $\ln \Delta = 10$. Также принимали, что сечение кольцевого зазора не изменяется dA/dx = 0, а $E_0 = 35$ V/m. В результате была найдена зависимость изменения параметра масштабного подобия

$$K = K_0 \frac{(\gamma - Z)^{3/2}}{(l - Z)^{3/2}}.$$
(14)

Графически распределение увеличения температуры T и числа Маха M_j/Md газа за фронтом детонационной волны по длине между электродного зазора реакционной камеры x/L для различных значений напряженности электрического поля E представлено на рис. 4. Энергия плазменной струи увеличивается нелинейно. Максимальные ее величины достигаются при выходе из плазмотрона.

Анализ формул (6)–(14) показывает, что температуру, давление, скорость и плотность импульсной плазменной струи можно изменять в широких пределах. Эти параметры зависят от длины РК, угла конусности, величины зазора между электродами и напряженности электрического поля (рис. 5).

Результаты численного интегрирования обыкновенного дифференциального уравнения показали, что при увеличении Е₀ в разгон ДВ включается второй фактор подвод джоулева тепла. Принимаем, что проводимость за ДВ имеет электронный механизм. Это предположение допустимо в случае, когда концентрация ионов в газе соизмерима с концентрацией электронов. При этом разгон волны сопровождается увеличением температуры, что в свою очередь приводит к возрастанию скорости и плотности плазменной струи. Напряженность поля в РК уменьшается по ходу движения плазменного поршня, что обусловлено понижением напряжения электрической энергии на обкладках конденсатора и увеличением между электродного зазора, но при этом проводимость плазменного слоя увеличивается. Это стабилизирует расход энергии с конденсаторов преобразователя и обеспечивает плавность ввода энергии в ДВ. При начальной напряженности электрического поля свыше 100 V/m скорость увеличения проводимости плазмы высока и достаточно 100 mm длины РК, чтбы наступил ее пробой электрическим разрядом.

Наиболее эффективно на энергетические характеристики импульсного потока плазмы влияет длина рабочей

Рис. 6. Энергетический спектр, измеренный с помощью резерфордовского обратного рассеяния ионов He⁺, стрелочками указаны кинематические границы элементов.

Рис. 7. Фрагменты рентгеновских дифрактограмм, измеренные на образцах с нанесенным покрытием из WC-Co.

камеры (РК). Изменяя длину РК, можно получать следующие технологические характеристики импульсной плазмы: плотность мощности струи в диапазоне от 10^4 до 10^7 W/cm², температуру от $5 \cdot 10^3$ до $3 \cdot 10^4$ K, скорость от 2 до 8 km/s. Максимальные значения энергии плазменной струи получают в плазмотроне при длине РК свыше 0.5 m (рис. 5).

Исследования показали, что в диапазоне длин РК от 0.3 до 0.5 m скорость плазменной струи изменяется мало, что было учтено при оптимизации размеров плазмотрона для нанесения покрытий. Импульсный плазмотрон [12,13,22] предназначен для модифицирования поверхности изделий и газотермического нанесения высококачественных покрытий из металлов, твердого сплава и оксидов металла. Подача компонентов горючей смеси и порошкового материала в плазмотрон осуществляется непрерывно, что удешевляет технологии нанесения покрытий и технологические устройства.

WC(cub)

Рис. 8. Электронно-микроскопические фотографии покрытия WC-Co, полученные с помощью TEM с дифракцией: а — морфологии поликристаллов кобальта, со средним размером около 25 nm, дифракция локальных участков с поликристаллами Со; b — морфология участков карбида вольфрама (WC) гранецентрированная плотноупакованная решетка, средний размер кристаллитов $0.15\,\mu$ m, по границам зерен наблюдаются наночастицы фазы W_3Co_3C со средним размером $\approx 15\,$ nm, дифракция локальных участков карбида WC и W₃Co₃C; с — морфология участков с карбидом вольфрама (WC) кубической решетки, внутри кристаллитов наблюдается дислокационная субструктура, темнопольное и светлопольное изображение, дифракция локальных участков покрытия с присутствием кубического карбида вольфрама.

Рис. 9. Поперечный шлиф покрытия из WC-Со с отпечатками, которые получены от индентора при измерении твердости.

Исследование покрытий

Импульсно-плазменная технология использовалась для нанесения покрытия из окиси алюминия [14] и твердого сплава. Исходным компонентом сплава являлись карбид вольфрама (88%) и кобальт (12%). Покрытие наносили на медную подложку, толщиной 4 mm. Производительность напыления составляла около 1 m² в час при толщине около 0.6...0.8 mm.

Для исследования покрытия из (WC 88%) и (Co 12%) использовались методы резерфордовского обратного рассеяния ионов и упругий резонанс на просвечивающую электронную микроскопию с дифракцией, а также измерение твердости и адгезии покрытия к медной подложке.

Адгезию покрытия к основе изделия определяли на образцах, которые были изготовлены из меди М-00. Проводили 10 измерений методом скрабирования алмазной пирамидкой по поверхности. Прочность сцепления определяли по формуле $H_v = 4P/b^2$, где P — нагрузка, b — ширина канавки. Измерения показали, что средние значения адгезии составляют 250, минимальные — 210, а максимальные — 280 МРа. Твердость покрытия имеет величины от 8000 до $1.28 \cdot 10^4$ N/mm².

Метод резерфордовского обратного рассеяния RBS ионов и упругий резонанс на протонах дают информацию о химическом составе поверхностного слоя покрытия. На рис. 6 представлен энергетический спектр резерфордовского рассеяния. На спектре отчетливо обнаруживаются пики вольфрама и кислорода, стрелкой обозначена кинематическая граница Со. Анализ покрытия, проведенный с помощью RBS и упругого резонанса на протонах, показал, что в нанесенном слое содержанием Со, W, C, О находится в следующих сочетаниях WC₈₉, Co₈, C₂, O₂. Обращает на себя внимание то, что концентрация вольфрама в поверхностном слое небольшая — около 1 at.%, а концентрация углерода высока — около 30 at.%.

Результаты химического анализа покрытия показали [23], что после напыления высокоскоростным газовым пламенем (HVOF) произошло увеличение процентного содержания вольфрама до 84.38%, а при напылении высокоскоростной плазмой (HEP) — до 87.38%. Имеет место частичная аморфизация покрытия [24]. Содержание кобальта изменилось соответственно до 12.98 и 9.22%. Содержание вольфрама в порошке — 82.9% и кобальта — 11.61%. Изменилось и содержание углерода с 4.09% в порошке до 2.54% после напыления HVOF и 2.52% НЕР процессов.

Элементный анализ, проведенный с помощью RBS, и резонанса на протонах, а также рентгенофазовый анализ показали хорошее совпадение результатов, полученных в нашей работе и в работах [23,24], где для нанесения покрытий использовали методы HVOF, HEP. В основе слоя покрытия, напыленного импульсной плазмой, находятся фазы практически одинаковые с фазами исходного порошкового материала. Фазовый анализ покрытия проводили в Сu_k излучении. Анализ рентгенограмм показывает, что основной фазой покрытия является WC с ГПУ (гранецентрированная плотноупакованная) решеткой. О наличии других фаз судили по рефлексам в интервале углов от 37 до 47° (рис. 7). В этом интервале имеет место перекрытие ряда линий, что затрудняет фазовый анализ. Рассчитанные межплоскостные расстояния по рефлексам, которые удалось выделить, позволяют говорить о наличии в покрытии следующих фаз: W_2C , Co_7W_6 , Co_3W , W, гексагональный Со. Сложные фазы в междукристаллитном пространстве имеют аморфное состояние, что подтверждается и работами [23,24]. Это состояние объясняется [24] высокотемпературным циклом при формировании покрытия.

Структурно-фазовый анализ металлокерамического покрытия (WC–Co), проведенный с помощью просвечивающей электронной микроскопии *TEM* с дифракцией, показал (рис. 8, *a*, *b*, *c*), что структура покрытия поликристаллическая и представлена кристаллитами WC с гексагональной решеткой, кристаллитами α -и β -Co и WC с кубической решеткой. Средний размер кристаллитов WC с ГПУ решеткой составляет 0.15 μ m, а кобальта — порядка 25 nm. По границам кристаллитов наблюдаются частицы фаз W₃Co₃C размерами 15 nm. Внутри кристаллитов WC с кубической решеткой с с кубической решеткой наблюдается дислокационная субструктура.

На рис. 9 представлен поперечный шлиф покрытия из WC–Co с отпечатками от алмазной пирамидки твердомера (шкала 1 ст $\approx 200 \,\mu$ m). Как видно, в покрытии имеются участки, которые различаются по твердости в диапазоне $8000 \dots 12 \, 800 \, \text{N/mm}^2$.

Выводы

В работе приведено описание магнитогазодинамического ускорения продуктов детонационного сгорания горючих газовых смесей. На основе математического моделирования и расчетов предложен метод формирования импульсно-плазменных высокоэнергетических струй. Представлены расчеты импульсного плазмотрона для нанесения покрытий, который имеет диапазон управления плотностью мощности плазменной струи от 10⁴ до 10⁷ W/cm², температуры от 5.10³ до 3.10⁴ K, скорости от 2000 до 8000 m/s.

Этот плазмотрон был использован для нанесения покрытия из порошка WC (88%), Co (12%) на медную подложку. Фазовый анализ показал, что структура покрытия представлена кристаллитами из WC с гексагональной и кубической решеткой и характерными размерами 0.15 mm, кристаллитами Со α - и β -фазы с размерами около 25 nm, по границам кристаллитов наблюдается сложный карбид W₃Co₃C, а рентгенофазовый анализ обнаружил в покрытии W₂C, Co₇W₆, Co₃W, W и гексагональный Co. Твердость покрытия достига-

ет $1.28 \cdot 10^4 \, \text{N/mm}^2$, а адгезия покрытия с подложкой достигает 250 MPa.

Работа была частично финансирована по проекту № 1472 УНТЦ (Украина).

Авторы благодарят за поддержку National Institute of Metals Research, благодаря которым были проведены исследования в Tsukuba (Japan).

Список литературы

- Gavrilebko T.P., Nikolaev Y.A., Ulianitsky V.Y. // Proc. 15th Intern. Thermal Spray Conf. Nice (France), 1998. P. 1485– 1488.
- [2] Thorpe M.L., Richter H.J. // Proc. Thermal Spray: International Advances in Coatings Technology. Orlando (Florida USA), 1992. P. 137–148.
- [3] Kreye H., Schweitzker R., Zimmerman S. // Proc. ASM Thermal Spray Society. 1996. P. 450–456.
- [4] Heath G.R., Dumola R.J. // Proc. 15th Intern. Thermal Spray Conf. Nice (France), 1998. P. 1495–1500.
- [5] Miyamoto M., Sakutat T., Tago M. // Proc. 15th Intern. Thermal Spray Conf. Nice (France), 1998. P. 1501–1506.
- [6] Uglum J.R., Bacon J.L., Davis D.G. et al. // ASM Thermal Spray Society. 1997. P. 373–391.
- [7] Лебедев А.Д., Урюков Б.А. Импульсные ускорители плазмы высокого давления. Новосибирск, 1990. 280 с.
- [8] Bhagat R.B., Amatean M.F., Papyrin A. et al. // ASM Thermal Spray Society. 1997. P. 361–376.
- [9] Харламов Ю.А. Детонационно-газовые установки для нанесения покрытий. Ворошиловград, 1998. 228 с.
- [10] Зверев А.И., Шаривкер С.Ю., Астахов Е.А. Детонационное нанесение покрытий. Л.: Судостроение, 1979. 178 с.
- [11] Семенов А.П., Федько Ю.П., Григоров А.И. // Обзор НИИ Машиностроения. 1977. С. 167.
- [12] *Тюрин Ю.Н., Арзубов А.П.* Способ детонационного нанесения. А.С. СССР. № 1045491. 1983.
- [13] Yuschenko K.A., Borisov Y.S., Tuyrin Y.N. Method and Device for Plasma-detonation Working of Metal Articles. European pat. N 0531527. A1. 1991.
- [14] Tuyrin Y.N., Pogrebnjak A.D. // Surf. and Coat. Tech. 1999. Vol. 111. P. 269.
- [15] Левин В.А. Докт. дис. М., 1975.
- [16] Edwards D.H., Lawrence T.R. // Proc. Rog. Sec. Ser. A. 1965. Vol. 286. P. 415.
- [17] Helliwell I.B. // J. Fluid Mech. 1963. Vol. 16. P. 243.
- [18] Саламандра ГД. // ФГВ. 1976. Т. 12. № 2. С. 229.
- [19] Буренин Ю.А., Швецов Г.А. // ФГВ. 1977. Т. 13. № 1.
- [20] Солоухин Р.И. // ФГВ. 1977. Т. 13. № 3.
- [21] Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 624 с.
- [22] Тюрин Ю.Н. Способ детонационного нанесения покрытий. А.с. СССР. № 879862. 1981.
- [23] Nerz J., Kushner B., Rotolico A. // J. Thermal Spray Technology. Vol. 1 (2). March. 1992. P. 147–152.
- [24] Li C.J., Ohmori A., Harada Y. // Thermal Spray Technology. Vol. 5 (1). March. 1996. P. 69–73.