03;04;09;12

Двухзеркальный резонатор для исследования СВЧ безэлектродного разряда в газах высокого давления

© Л.П. Грачев, И.И. Есаков, С.Г. Малык, К.В. Ходатаев

Федеральное государственное унитарное предприятие Московский радиотехнический институт РАН, 113519 Москва, Россия e-mail: esakov@dataforce.net

(Поступило в Редакцию 22 марта 2000 г. В окончательной редакции 17 июля 2000 г.)

Исследован квазиоптический двухзеркальный открытый резонатор сантиметрового диапазона электромагнитных волн. Определен спектр его собственных частот. Измерена добротность. Картина стоячих волн в резонаторе визуализирована с использованием безэлектродного СВЧ разряда. Полученные результаты сопоставлены с теоретическими соотношениями.

Введение

Электродинамические системы, получившие названия открытых резонаторов, в простейшем случае образуются расположенными одно против другого плоскими или сферически вогнутыми зеркалами. Первоначально интерес к таким устройствам возник в связи с предложением об их использовании в генераторах электромагнитных (ЭМ) колебаний светового, субмиллиметрового и миллиметрового диапазона длин волн [1,2]. Позже они нашли применение для диагностики некоторых плазменных параметров [3] и изучения СВЧ безэлектродных газовых разрядов высокого давления [4,5].

Безэлектродные СВЧ разряды — это разряды в волновых пучках, существенно удаленные от элементов, формирующих эти пучки. Для их реализации при давлении газов $p \leq 100$ Тогг можно использовать сфокусированные пучки ЭМ волн [6,7]. При $p \leq 150$ Тогг широко применяют резонаторы, размеры которых соизмеримы с длиной волны поля λ [8]. При больших же p, до десятков атмосфер, и, главное, для исследования именно безэлектродных разрядов возможно использование открытых квазиоптических резонаторов.

В [4] описан атмосферный разряд в поле двухзеркального резонатора. Воздух пробивался в середине резонатора, и разряд отстоял на десятки сантиметров от ближайших элементов конструкции. Он имел вид тонкого плазменного канала и эффективно поглощал энергию, накопленную в резонаторе к моменту пробоя. Эта энергия кумулировалась в центре разрядного канала в малом ядре, имеющем природу микропинча [9,10]. Такой способ реализации пинч-эффекта открывает уникальные возможности для его исследования и применения [11].

К настоящему времени имеется теория, связывающая геометрию окрытого резонатора со сферическими круглыми зеркалами с типами колебаний ЭМ поля в его объеме и резонансными условиями их реализации [12]. Опубликовано несколько сообщений по измерению добротности *Q* резонаторов такого типа в миллиметровом диапазоне длин волн [13,14]. Проведены исследования по зажиганию СВЧ разряда в поле открытого резонатора в восьмимиллиметровом и десятисантиметровом диапазоне длин волн [4,5]. Однако ряд принципиальных аспектов, связанных, например, с обеспечением эффективной связи резонатора с питающим его СВЧ генератором, величиной поля в резонаторе E_0 , накопленной в нем ЭМ энергией $W_{\rm ac}$, и т.п., остался еще недостаточно исследованным.

Структура ЭМ поля в резонаторе с круглыми сферическими зеркалами

Рассмотрим резонатор, образованный круглыми сферическими зеркалами, расположенными одно против другого вдоль полярной оси Ox, начало которой помещено в его центр [12]. Пусть радиус кривизны зеркал равен $R_{\rm mir}$, их диаметр $2a_{\rm mir}$, а расстояние между ними по оси Ox $2L < 2R_{\rm mir}$. Если размеры резонатора и λ запитывающего его ЭМ поля связаны соотношением

$$2L/(\lambda/2) = q + (2/\pi)(m + 2n - 1) \arcsin \sqrt{L/R_{\text{mir}}},$$
 (1)

где q — большое целое число; m = 0, 1, 2, ...;n = 1, 2, ..., и характеризуют соответственно вариации поля вдоль оси Ox, по полярному углу φ и радиусу r, то в его объеме возможны "резонансные" колебания ЭМ волны. Нас будет интересовать их простейшая азимутально-симметричная мода с m = 0 и n = 1. Для нее поле вдоль оси резонатора имеет вид стоячей волны, а распределение амплитуды его электрической компоненты при нечетных q вдоль Ox в центральной области резонатора может быть записано в виде

$$E = E_0 \cos(2\pi x / \lambda_{\rm res}), \qquad (2)$$

где $\lambda_{\rm res}$ — длина волны поля в резонаторе, согласно (1), равная

$$\lambda_{\rm res} = \lambda \Big(1 + [2/(\pi q)] \arcsin \sqrt{L/R_{\rm mir}} \Big).$$
 (3)

В фокальной плоскости при *x* = 0 по *r* она распределена по закону

$$E = E_0 e^{-(r/a)^2}$$
, c $a = \sqrt{\lambda/\pi} \sqrt[4]{L^2(R_{\min}/L - 1)}$.
(4), (5)

Для этой моды амплитуда СВЧ тока на зеркалах резонатора также не зависит от φ и имеет аналогичное (4) гауссово распределение по радиусу с характерным размером

$$a_{\rm cur} = \sqrt{\lambda/\pi} \sqrt[4]{R_{\rm mir}^2 / \left[(R_{\rm mir}/L) - 1 \right]}.$$
 (6)

Из (5) и (6) следует, что при $L \to R_{\rm mir}$ ЭМ поле все в большей степени фокусируется около оси резонатора, но характерный размер токовой области на зеркалах резонатора растет. Для высокодобротного резонатора отношение мощности дифракционных потерь за счет конечности диаметра зеркала к мощности падающей на него ЭМ волны, т.е. коэффициентом дифракционных потерь $\alpha_{\rm dif}$

$$\alpha_{\rm dif} = e^{-2(a_{\rm mir}/a_{\rm cur})^2}.$$
(7)

Реализующийся в резонаторе тип колебаний определяется не только выполнением условия (1), но и способом его возбуждения. Например, для моды с m = 0 и n = 1возбуждающие резонатор токи на его зеркалах должны локализоваться в центральной их области и быть по ней синфазными. Для возбуждения же моды с m = 0, но n = 2 распределение токов по зеркалам должно быть взаимно противофазным в центральной области и окружающем ее кольце.

2. Нормальное падение ЭМ волны на металлическое зеркало

Прежде чем перейти к анализу энергетических характеристик резонатора, в качестве справки рассмотрим известный случай нормального падения *TEM* ЭМ волны на плоское металлическое зеркало в приближении

$$(\varepsilon_0 \omega / \sigma) \ll 1,$$
 (8)

где $\varepsilon_0 = 10^{-9}/(36\pi)$, F/m; ω — круговая частота ЭМ поля; σ — проводимость материала зеркала.

В этом случае модуль отношения амплитуд поля отраженной и падающей волн

$$\rho = 1 - \sqrt{2(\varepsilon_0 \omega / \sigma)},\tag{9}$$

а отраженная волна сдвинута по фазе относительно падающей на угол $[-(\pi - \psi)]$, где

$$\psi = \sqrt{2(\varepsilon_0 \omega / \sigma)}.$$
 (10)

В сантиметровом диапазоне длин волн и при типичных для металлов с хорошей проводимостью значениях σ порядка $10^7 \ 1/(\Omega \cdot m)$ условие (8) выполняется с большим

запасом и углом ψ по сравнению с π можно пренебречь, а величина ρ близка к единице.

Отношение мощностей отраженной и падающей волн, т. е. коэффициент отражения α_{ref} , равен квадрату ρ : $\alpha_{ref} = \rho^2$. При этом из закона сохранения энергии следует, что коэффициент поглощения α_{σ} , равный отношению энергии, поглощаемой в единицу времени в скинслое зеркала, к мощности падающей на него волны, при выполнении условия (8)

$$\alpha_{\sigma} \equiv \gamma^2 = 1 - \rho^2 = 2\sqrt{2(\varepsilon_0 \omega/\sigma)}.$$
 (11)

И наконец, для хорошо проводящего зеркала выполняется приближение

$$\rho = 1 - (1/2)\alpha_{\sigma}. \tag{12}$$

Если это зеркало перфорировано отверстиями, то часть падающей на него ЭМ волны пройдет сквозь него. Пусть поле линейно поляризованно, а отверстия круглые с радиусом $r_{\rm con} \ll \lambda/(4\pi)$ и расположены по узлам сетки с размером ячеек h и $\chi < \lambda$, причем одна сторона сетки параллельна **E**, а вторая перпендикулярна. И пусть толщина зеркала $\Delta < 2r_{\rm con}$. В этом случае отношение мощностей прошедшей и падающей волн, т.е. коэффициент связи

$$\alpha_{\rm con} \equiv \Theta^2 = \left[\left(16\pi r_{\rm con}^3 \right) / (3h\chi\lambda) \right]^2.$$
(13)

В дальнейшем нас будет интересовать случай с $\alpha_{\rm con} \ll 1$ и, следовательно, справедливость соотношения

$$\rho = 1 - (1/2)\alpha_{\rm con} - (1/2)\alpha_{\sigma}.$$
 (14)

3. Энергетические характеристики двухзеркального резонатора

С учетом вышеизложенного приведем и обсудим соотношения, связывающие амплитуду поля в фокусе резонатора E_0 и накопленную в нем энергию $W_{\rm ac}$ с мощностью питающего его СВЧ генератора Pgen и характеристиками резонатора. Упростим геометрию и сначала рассмотрим резонатор с бесконечными плоскими зеркалами, размер 2L между которыми удовлетворяет резонансным условиям. На рис. 1 условно показана формируемая в нем картина ЭМ волн по истечении некоторого времени t после того, как на частично прозрачное зеркало 1 слева по нормали "упала" запитывающая резонатор волна с единичной амплитудой. На рис. 1 буквой С обозначена сумма волн, воспринимаемая как "отраженная" волна, Е₀ — сумма волн в резонаторе, причем видно, что она слагается из двух волн, распространяющихся в противоположных направлениях E_{\leftarrow} и E_{\rightarrow} . Около каждой индивидуальной волны в суммах С и Е₀ указаны их относительные амплитуды, знаки перед которыми условно учитывают их взаимные фазовые соотношения, а индексы указывают принадлежность коэффициентов ρ и γ к первому или второму зеркалу.

Входящие в эти суммы члены являются членами геометрических прогрессий и

$$C_{k} = -\rho_{1} + \frac{\Theta^{2}\rho_{2} \left[1 - (\rho_{1}\rho_{2})^{k}\right]}{1 - \rho_{1}\rho_{2}},$$
 (15)

$$C = -\rho_1 + \frac{\Theta^2 \rho_2}{1 - \rho_1 \rho_2},$$
 (16)

$$E_{k} = E_{k \to} + E_{k \leftarrow}$$

= $\frac{\Theta \left[1 - (\rho_{1} \rho_{2})^{k} \right]}{1 - \rho_{1} \rho_{2}} + \frac{\Theta \rho_{2} \left[1 - (\rho_{1} \rho_{2})^{k} \right]}{1 - \rho_{1} \rho_{2}},$ (17)
 $E_{0} = E_{\to} + E_{\leftarrow}$

$$= \frac{\Theta}{1 - \rho_1 \rho_2} + \frac{\Theta \rho_2}{1 - \rho_1 \rho_2} = \frac{\Theta(1 + \rho_2)}{1 - \rho_1 \rho_2}, \qquad (18)$$

где *C* и *E* с индексами *k* означают суммы *k*-членов, а без этого индекса — суммы бесконечного числа членов.

Из рис. 1 следует, что при переходе от числа суммируемых членов к "сглаженным" по времени t зависимостям для величин C_k и E_k нужно учитывать соотношение

$$k = t/(4L/c), \tag{19}$$

где *с* — скорость света.

Используя его и тождество $(\rho_1 \cdot \rho_2)^k \equiv \exp(k \ln(\rho_1 \cdot \rho_2))$ и введя постоянную времени

$$\tau = (4L/c) \cdot \left[1/(\alpha_{\sigma} + \alpha_{\rm con}/2) \right], \tag{20}$$

из выражений (15) и (16) получим, что отраженная волна изменяется во времени по закону

$$C_k = (C_0 - C)e^{-(t/\tau)} + C, \qquad (21)$$

где $C_0 = -\rho_1 \cong -1$, а с учетом соотношений (12) и (14) и при $\gamma_1 \cong \gamma_2 = \gamma$

$$C = -1 + 2\alpha_{\rm con}/(2\alpha_{\sigma} + \alpha_{\rm con}).$$
 (22)

Из (21) следует, что при t = 0 "упавшая" на зеркало *I* волна практически полностью отражается, а затем амплитуда отраженной волны экспоненциально "насыщается" к значению *C*, определяемому формулой (22). Из (22) же следует, что *C* обращается в нуль при

$$\alpha_{\rm con} = 2\alpha_{\sigma}.\tag{23}$$

(24)

Это и есть известное условие оптимальной связи резонатора с генератором, обеспечивающее при $t \gg \tau$ отсутствие в подводящем к резонатору ЭМ энергию СВЧ тракте отраженной волны. Проводя аналогичные преобразования в (17) и (18), получим для поля в резонаторе

 $E_k = E_0 \left(1 - e^{-(t/\tau)} \right),$

где

$$E_0 = \left(2/\sqrt{\alpha_{\sigma}}\right) \sqrt{\alpha_{\rm con}/\alpha_{\sigma}} \left/ \left[1 + \alpha_{\rm con}/(2\alpha_{\sigma})\right].$$
(25)

Из (25) видно, что условие (23) определяет и максимум поля насыщения в резонаторе

$$E_{0 \, \text{opt}} = \sqrt{2/\alpha_{\sigma}}.$$
 (26)

На рис. 2 приведена зависимость $E_0/E_{0 \text{ opt}}$ от отношения $\alpha_{\text{con}}/2\alpha_{\sigma}$.

Определенная формулой (20) величина τ позволяет написать выражение для добротности Q резонатора, которая по одному из возможных ее определений есть умноженное на π число периодов ЭМ поля, прошедшее за время τ ,

$$Q \equiv (\omega \tau)/2 = \pi \left[2L/(\lambda/2) \right] \left[1/(\alpha_{\sigma} + \alpha_{\rm con}/2) \right].$$
(27)

Это так называемая нагруженная добротность. "Собственная" добротность резонатора выше и для ее расчета в (27) надо положить $\alpha_{con} = 0$.

Описанную процедуру суммирования волн в резонаторе можно провести и для произвольного отноше-

Журнал технической физики, 2001, том 71, вып. 6

ния $2L/\lambda$. Такой подход дает поле насыщения в резонаторе

$$E_0 = \frac{\Theta \sqrt{1 + 2\rho_2 \cos[(4\pi/\lambda)2L] + \rho_2^2}}{\sqrt{1 - 2\rho_1 \rho_2 \cos[(4\pi/\lambda)2L] + (\rho_1 \rho_2)^2}}.$$
 (28)

Формула (28) описывает резонансные кривые зависимостей $E_0(\lambda)$ или $E_0(2L)$ и вблизи резонансных значений λ или 2L переходит в известные выражения

$$\frac{E_0(\lambda)}{E_0} = \frac{1}{\sqrt{1 + \left[Q(\Delta\lambda/\lambda)\right]^2}}$$

или

$$\frac{E_0(2L)}{E_0} = \frac{1}{\sqrt{1 + [Q(\Delta L/2L)]^2}},$$
 (29)

где E_0 — определяется формулой (18), Q — формулой (27), а $\Delta\lambda$ и ΔL — полная ширина резонансных кривых по уровню $1/\sqrt{2}$ от резонансного значения E_0 .

Выражения (29) также используются в качестве одного из возможных определений понятия добротности.

И наконец, запитывающая резонатор ЭМ волна может иметь собственный временной фронт, отличный от ступенчатого, например вида $[1 - \exp(-t/\tau_{in})]$. В этом случае использованная выше процедура суммирования волн в резонаторе, например при $\alpha_{con} = 2\alpha_{\sigma}$ дает следующий закон нарастания поля в нем:

$$E_{k} = E_{0} \left[1 - \left(\tau_{\text{res}} e^{-(t/\tau_{\text{res}})} - \tau_{\text{in}} e^{-(t/\tau_{\text{in}})} \right) / (\tau_{\text{res}} - \tau_{\text{in}}) \right], \quad (30)$$

где $\tau_{\rm res}$ — постоянная времени, являющаяся собственной характеристикой резонатора и определяемая по (27) его добротностью.

На рис. 3 приведены рассчитанные по (28) и (30) зависимости $E_0(t)$ при различной "расстройке" длины резонатора от резонансной для $\alpha_{\sigma} = 1.6 \cdot 10^{-4}$, $2L/(\lambda/2) = 11$, $\lambda = 8.9$ сm (раздел 4), $\alpha_{\rm con} = 2\alpha_{\sigma}$ и $\tau_{\rm in} = 1.5 \,\mu$ s. На нем расстройке $\Delta L = 0$ соответствует верхняя кривая, а с увеличением ΔL кривые лежат последовательно ниже.

Теперь мысленно проведем в рассматриваемом резонаторе с плоскими зеркалами перпендикулярно им ось Ox и будем считать, что поля в резонаторе и на его входе азимутально симметричны относительно этой оси и имеют гауссово распределение амплитуды при удалении от нее с характерным размером, равным *a*. И пусть резонатор оптимально связан с источником, а $t \gg \tau$. На входе такого резонатора существует только бегущая к нему ЭМ волна. Для нее применимо понятие вектора Пойнтинга, интеграл от модуля которого по поверхности, перпендикулярной Ox, дает мощность волны, распространяющейся от генератора к резонатору,

$$P_{\rm gen} = \left[E_{\rm in}^2 / (2z_0) \right] \left(\pi a^2 / 2 \right), \tag{31}$$

где $z_0 = 120\pi, \Omega$, а $E_{\rm in}$ — амплитуда волны на входе в резонатор.

Рис. 3. Зависимость амплитуды электрического поля в резонаторе от времени при различной величине расстройки его длины от резонансной. ΔL , 10^{-4} сm: I = 0, 2 = 1.5, 3 = 3, 4 = 4.5, 5 = 6, 6 = 7.5, 7 = 9, 8 = 10.5, 9 = 12, 10 = 13.5, 11 = 15.

Выразив отсюда E_{in} , с учетом формулы (26), справедливой при входной волне единичной амплитуды, получим связь поля насыщения в резонаторе с мощностью генератора

$$E_0 = (2/a)\sqrt{(2\eta P_{\text{gen}}z_0)/(\pi\alpha_{\sigma})},$$
(32)

где η — коэффициент использования мощности генератора, реально меньший единицы, например, из-за рассогласования фронтов на входном зеркале резонатора.

С учетом (27) и (5) соотношение (32) можно записать и в ином виде

$$E_0 = \frac{4}{\pi a} \sqrt{\frac{Q\eta P_{\text{gen}} z_0}{2L/(\lambda/2)}} = 2\sqrt{\frac{Q\eta P_{\text{gen}} z_0}{\pi L \sqrt{L(R_{\text{mir}} - L)}}}.$$
 (33)

Отметим, что формула (32) удобна для оценки E_0 на стадии проектирования. В (33) же входят величины, которые могут быть измерены в эксперименте. Кроме того, формула (32) подразумевает, что дифракционные потери энергии из резонатора, количественно оцениваемые формулой (7), малы по сравнению с тепловыми потерями на его зеркалах

$$\alpha_{\rm dif} \ll \alpha_{\sigma}.$$
 (34)

При резонансе вдоль оси резонатора реализуется стоячая волна. В ней в отличие от бегущей волны векторы **E** и **B** не только взаимно ортогональны в пространстве, но и сдвинуты по фазе на π . В этом случае понятие вектора Пойнтинга теряет смысл. В то же время стоячая волна тождественна сумме двух "бегущих" волн E_{\leftarrow} и E_{\rightarrow} половинной амплитуды, распространяющихся с одинаковой скоростью в противоположных направлениях. Для них уже можно ввести вектор Пойнтинга и аналогично (31) мощность этих волн

$$P_{\to} = P_{\leftarrow} = (E_0/2)^2 \pi a^2/4z_0. \tag{35}$$

Отсюда с учетом (32) следует, что $P_{\leftarrow} \alpha_{\rm con} = P_{\rm gen}$ и сумма $(P_{\leftarrow} \alpha_{\sigma} + P_{\rightarrow} \alpha_{\sigma}) = P_{\rm gen}$, т.е., как и должно быть,

в режиме оптимальной связи в насыщении выходящая из резонатора через отверстия связи волна полностью компенсирует отраженную волну во входном тракте и поступающая в резонатор энергия полностью "поглощается" его зеркалами.

Как показал опыт [4], в резонаторе со значительной фокусировкой поля пробой газа происходит в основном в области фокуса резонатора. Причем существенное поглощение образующимся разрядным каналом ЭМ энергии идет только на заключительном этапе его развития с длительностью около наносекунды. Это время может быть соизмеримо с минимальным временем "съема" накопленной в резонаторе энергии

$$t_{\min} = 2L/c. \tag{36}$$

Определим понятие мощности резонатора $P_{\rm res}$ как суммарную мощность волн, протекающих в обоих направлениях через его центральную плоскость. Тогда из (35) и (32) получим

$$P_{\rm res} = P_{\leftarrow} + P_{\rightarrow} = \eta P_{\rm gen}(1/\alpha_{\sigma}). \tag{37}$$

Величина $P_{\rm res}$ определяет максимально возможный темп подвода ЭМ энергии к СВЧ разряду и тем выше, чем больше $P_{\rm gen}$ и лучше проводимость материала зеркал. Если мысленно мгновенно поместить в центральную плоскость резонатора поверхность со 100%-ным коэффициентом поглощения, то произведение $P_{\rm res} \cdot t_{\rm min}$ определит накопленную в резонаторе энергию

$$W_{\rm ac} = \eta P_{\rm gen}(2L/c)(1/\alpha_{\sigma}). \tag{38}$$

С учетом вышеприведенных соотношений (38) можно преобразовать к виду

$$W_{\rm ac} = \frac{\varepsilon_0 E_0^2}{2} \frac{\pi a^2}{2} \frac{2L}{2} = \frac{2Q\eta P_{\rm gen}}{\omega} = \eta P_{\rm gen} \tau. \tag{39}$$

4. Экспериментальная установка

Исследование свойств открытого двухзеркального резонатора было проведено на установке, схема которой приведена на рис. 4. Ее отличительной чертой было использование длинноволновой части сантиметрового диапазона длин волн. В основе установки импульсный магнетрон 1, генерирующий ЭМ волну с круговой частотой $\omega = 2.12 \cdot 10^{10} \, {
m s}^{-1}$. В подключенном к его выходу волноводном тракте установлен циркулятор 2, переключатель 3, аттенюатор 4, линзовая система 5 и двухзеркальный резонатор 6 с измерительной цепью 7.

Линзовая система 5 формировала излучаемую в "свободное" пространство линейно полязированную *TEM*волну с плоским фазовым фронтом по круглой апертуре диаметром $2a_{gen} = 60$ ст. Измеренное распределение относительного уровня мощности по радиусу выходной апертуры показано на рис. 5. Измеренная максимальная излучаемая мощность $P_{gen} = 1$ MW. Излучался

Рис. 4. Схема установки.

СВЧ импульс с прямоугольной огибающей длительностью $t_{\rm pul} \cong 40 \,\mu$ s, с характерным временем нарастания $\tau_{\rm in} \cong 0.3 \,\mu$ s и спада $\tau_{\rm down} \cong 0.8 \,\mu$ s, с длиной волны $\lambda = 8.9$ cm, вектор E которой был перпендикулярен оси излучаемого пучка. В опытах время между последовательными импульсами было не меньше десятка секунд.

Резонатор 6 располагался на расстоянии H = 7.8 ст от излучающей апертуры. Его зеркала выполнялись из медного листа толщиной $\Delta = 0.2$ ст, имели диаметр $2a_{\rm mir} = 64$ ст и радиус кривизны $R_{\rm mir} = 35$ ст. Для меди справочное значение $\sigma = 5.8 \cdot 10^7 \ 1/(\Omega \cdot m)$ и, следовательно, на экспериментальной частоте ω коэффициент $\alpha_{\sigma} = 1.6 \cdot 10^{-4}$. Ближнее к излучающей апертуре зеркало закреплялось неподвижно. В своей центральной области диаметром $2a_{\rm con} = 20$ ст оно было перфорировано отверстиями диаметром $2r_{\rm con} = 0.89$ ст, распо-

Рис. 5. Относительное распределение СВЧ мощности по излучающей апертуре.

Журнал технической физики, 2001, том 71, вып. 6

ложенными по узлам сетки с шагом $h = \chi = 1.5$ сm, одна сторона которой была параллельна E, а вторая — перпендикулярна. Второе зеркало было подвижным и его перемещение позволяло варьировать расстояние между зеркалами 2L от 45 до 70 сm. Этот размер можно было первоначально устанавливать дискретным образом с точностью $\pm 5 \cdot 10^{-2}$ cm, а затем плавно менять около выбранного положения в диапазоне ± 1 сm с шагом $2.5 \cdot 10^{-2}$ сm за один оборот отсчетного нониуса, угол поворота которого измерялся с точностью $\pm 10^{\circ}$.

В центре подвижного зеркала было несколько отверстий, через которые малый контрольный сигнал из резонатора выводился на волноводно-коаксиальный переход, аттенюатор, амплитудный детектор, усилитель и "запоминающий" осциллограф, которые составляли измерительную цепь 7. Эта цепь практически без искажения воспроизводила вершину контрольного прямоугольного видео импульса с длительностью $t_{pul} = 40 \,\mu s$ и характерным временем нарастания и спада, не превышающим 0.1 μs . При этом выходной импульс имел постоянную времени переднего фронта, равную 0.17 μs , а заднего — 0.3 μs . В экспериментах с СВЧ полем ослабление аттенюатора измерительной цепи подбиралось таким образом, чтобы она работала практически в линейном режиме, а уровень наводки на экране осциллографа был пренебрежимо мал.

Привязка значений выходного сигнала измерительной цепи 7 к абсолютным значениям амплитуды поля E_0 в фокусе резонатора производилась по известной величине пробойного поля воздуха атмосферного давления $E_{\rm br} = 32 \, {\rm kV/cm}$. В опытах подача на настроенный в резонанс на моду с m = 0 и n = 1 резонатор СВЧ импульса максимальной мощности могла приводить к пробою воздуха в его фокусе. В момент пробоя контрольный сигнал на экране осциллографа 10 резко падал. Уровню, до которого дорастало его значение к этому моменту, и ставилось в соответствие поле $E_0 = 32 \, {\rm kV/cm}$.

Волноводный переключатель 3, показанный на схеме рис. 4, давал возможность подавать на резонатор сигнал с любого стандартного измерительного генератора 8 для проведения холодных измерений параметров резонатора. Волноводный тракт установки от выхода магнетрона 1 до малой линзы линзовой системы 5 был герметизирован и заполнялся элегазом до одной избыточной атмосферы. Резонатор был помещен в герметичную камеру 9, в которой можно было менять давление *р* воздуха от атмосферного p = 760 Torr до 3 Torr. СВЧ разряд в резонаторе можно было фотографировать через иллюминатор в камере с направления, перпендикулярного плоскости, содержащей вектор E_0 и ось резонатора.

5. Результаты измерений и их обсуждение

В первом опыте при p = 760 Torr резонатор возбуждался излучением от магнетрона при максимальной P_{gen} . В опыте плавно изменялся размер 2L во

Таблица 1.

Эксперимент 2L, cm	Пробой	Теория 2L, cm	m, n, q
47	+	47	0, 1, 10
48.2		48.3	0, 2, 9
51.6	+	51.6	0, 1, 11
56.25	+	56.3	0, 1, 12
61.15		60.8	0, 1, 13
66.2		65.7	0, 1, 14

всем его конструктивно возможном диапазоне. Регистрируемый контрольный сигнал из резонатора практически всегда был нулевым и лишь при некоторых значениях 2L, которые мы в дальнейшем будем называть резонансными, резко возрастал. Это возрастание поля в резонаторе могло сопровождаться СВЧ пробоем воздуха в его центральной области. Диапазон изменения расстояния между зеркалами ΔL , в котором фиксировалось возрастание контрольного сигнала, не превышал сотых долей миллиметра. В опытах при приближении размера 2L к резонансному значению на вершине контрольного сигнала наблюдались характерные "биения" (рис. 3), что субъективно помогало резонансной настройке.

Результаты этого опыта отражены в двух левых столбцах табл. 1. В первом из них указаны резонансные значения 2L, а во втором плюсами отмечено наличие пробоя. В таблице также приведены расчетные значения 2L, удовлетворяющие уравнению (1), которые наиболее близки экспериментальным значениям с соответствующим набором чисел m, n, q. Графическое решение (1) при m = 0 и n = 1 и 2 приведено на верхнем графике рис. 6. На нем в зависимости от 2L построены графики функций $F_1 = 2L/(\lambda/2) - q$ и $F_2 = (2/\pi) \cdot (m + 2n - 1) \arcsin \sqrt{2L/2R_{mir}}$. Их пересечения и дают резонансные 2L.

На рис. 6 также квадратиками помечены их измеренные значения. Видно, что при n = 1 эксперимент начинает незначительно отличаться от теории лишь при приближении конфигурации резонатора к софокусной. Из рис. 6 и табл. 1 также следует, что при данном способе питания резонатора он возбуждается и на осесимметричной моде с n = 2. И это естественно. На рис. 4 видно, что зеркало резонатора, через которое осуществляется его связь с генератором, обращено выпуклой стороной к возбуждающей волне с плоским фазовым фронтом, что приводит к существенной разности фаз возбуждающей волны в центре зеркала и на размере *a*_{con}, а это и является условием реализации этой моды. Такой тип колебаний при q > 9 в эксперименте не фиксируется, что, вероятно, связано с его низкой добротностью при этих q. Как следует из теории, с ростом числа *n* растет токовая область на зеркалах резонатора, а, следовательно, при ограниченном их диаметре существенно возрастает $\alpha_{dif.}$

На рис. 6 построены и зависимости от 2*L* величин *a*, a_{cur} и α_{dif} для колебаний 0, 1, *q*. Как и должно быть, при $L \rightarrow R_{mir}$ фокусировка поля в центре резонатора

Рис. 6. Зависимости параметров резонатора от его длины.

Рис. 7. Безэлектродные СВЧ разряды в атмосферном воздухе в открытом резонаторе.

Таблица 2.

f,GHz		<i>m</i> , <i>n</i> , <i>q</i>
эксперимент	теория	
3.48	3.47	0, 2, 10
3.38	3.38	0, 1, 11
3.18	3.18	0, 2, 9
3.09	3.09	0, 1, 10
2.9	2.9	0, 2, 8
2.8	2.8	0, 1, 9

Из формулы (3) следует, что при фиксированной частоте ω длина волны ЭМ поля в резонаторе λ_{res} больше его длины волны в свободном пространстве λ . В следующем эксперименте мы эту формулу проверили экспериментально. Для этого вдоль оси резонатора протягивалась капроновая нить диаметром 0.073 cm с нанесенными на нее мерными метками с шагом 1 ст. Резонатор при p = 760 Torr возбуждался от магнетрона при максимальной Pgen. Его размер 2L был резонансным и равным 51.65 cm, чему по (3) соответствовала $\lambda_{\rm res} = 9.4$ cm. При такой конфигурации резонатора в каждом СВЧ импульсе воздух пробивался с образованием вытянутого вдоль Е₀ разрядного канала диаметром около $7 \cdot 10^{-2}$ cm и длиной около 2.5 cm. В каждом импульсе разрядный канал случайным образом возникал в одной из пучностей стоячей волны. Разряды последовательности импульсов визуализировали положение максимумов. На рис. 7 приведено на одном кадре 40 разрядов, видна нить с метками, а вектор Е0 перпендикулярен ей. Измеренное расстояние между центрами локализации разрядных каналов равно 4.7 cm, что соответствует $\lambda_{\text{res}} = 9.4$ cm.

В следующем эксперименте резонатор с этим же фиксированным значением 2L = 51.65 ст возбуждался от маломощного генератора стандартных СВЧ колебаний, частоту которых можно было менять. При ее изменении также наблюдались резонансные "всплески" контрольного сигнала. В табл. 2 в левом столбце указаны резонансные частоты f, считанные со шкалы генераторного прибора, а во втором и третьем — их значения, рассчитанные по формуле (1). Видно их хорошее совпадение. Как и в первом опыте, при использованном способе питания резонатора он возбуждался и на моде с n = 2. При установленном значении 2L добротность этих мод была достаточна для их регистрации.

Используемый в опыте измерительный генератор позволял определять частоту генерируемых им колебаний с точностью, не лучшей 100 kHz. В свою очередь диапазоны частот, в которых фиксировались пики контрольного сигнала, также не превышали 100 kHz, т. е. с данным прибором могла быть произведена только оценка добротности резонатора для измеренных резонансных частот. Она была не хуже нескольких единиц, умноженных на 10⁴. Подключение к схеме стандартного генератора с "качающейся" частотой, предназначенного для воспроизведения

Рис. 8. Резонансные кривые.

на своем экране резонансной кривой, подтвердило эту оценку, но также не позволило произвести более точное измерение добротности исследуемого резонатора, так как его Q лежало за границей разрешимости прибора.

В следующем эксперименте добротность резонатора при его резонансном размере 2L = 51.65 ст была оценена путем механической "расстройки" его длины. Для этого резонатор запитывался от магнетрона с выходным сигналом, ослабленным аттенюатором по полю в 1.56 раз. В этом случае, как показал опыт, уровень E_0 соответствовал пробойному полю воздуха $E_{\rm br}$ при p = 760 Torr (рис. 8, кривая I). Затем камера, в которой был помещен резонатор, откачивалась до $p = 760/\sqrt{2} = 540$ Torr и определялся диапазон ΔL , в котором наблюдался пробой воздуха при этом p. Измерения дали $\Delta L = 3.1 \cdot 10^{-3}$ сm, т. е. по (29) $Q = 2L/\Delta L = 1.7 \cdot 10^4$.

В контрольном опыте для резонатора с такой же конфигурацией, но уже при полной излучаемой мощности измерялся диапазон изменения длины резонатора $(\Delta L)_1$, в котором наблюдался пробой воздуха при p = 760 Torr. Измерения дали $(\Delta L)_1 = 8.7 \cdot 10^{-3}$ cm. При измеренном $Q = 1.7 \cdot 10^4$ по формуле (29) это дает значение поля при точной резонансной настройке резонатора значение E_0 в 1.53 раз больше $E_{\rm br}$, что практически совпадает с введенным ранее ослаблением поля. Отметим, что штриховой участок кривой 2 на рис. 8 опытно не реализуем, так как при p = 760 Torr поле E_0 могло дорастать только до $E_{\rm br}$.

И наконец, добротность резонатора при этом же резонансном значении 2L оценивалась измерением постоянной времени τ нарастания поля в нем. Для этого при подключенном магнетроне возбуждающая резонатор волна ослаблялась до уровня, при котором атмосферный воздух в резонаторе не пробивался в течение всего СВЧ импульса. При этом контрольный сигнал имел типичную форму с экспоненциально насыщающимся фронтом, плоской вершиной и экспоненциально спадающим задним склоном. Измерения дали для переднего фронта значение $\tau = 2 \, \mu$ s, что по (27) соответствует $Q \cong 2 \cdot 10^4$. В заключение по формулам раздела 3 проведем "сквозной" расчет максимальной величины поля в фокусе резонатора E_0 и сравним его с экспериментальным значением $E_0 = 1.56 \cdot 32 \text{ kV/cm} = 50 \text{ kV/cm}$. В расчетах положим $P_{\text{gen}} = 1 \text{ MW}, 2L = 51.65 \text{ cm}$ и $Q = 1.7 \cdot 10^4$.

Формула (27) позволяет рассчитать "экспериментальное" $\alpha_{\rm con}$. Она дает $\alpha_{\rm con} = 3.9 \cdot 10^{-3}$. Этот же коэффициент можно рассчитать и по (13), приняв во внимание, что на перфорированную часть зеркала, через которое осуществляется возбуждение резонатора, со стороны резонатора приходится всего 70% мощности падающей на него ЭМ волны. При экспериментальных $r_{\rm con}$, h и χ этот расчет дает $\alpha_{\rm con} = 3.6 \cdot 10^{-3}$. Как видим, две эти оценки практически совпали. Таким образом, в эксперименте связь резонатора с генератором не являлась оптимальной. В нем отношение $\alpha_{\rm con}/(2\alpha_{\sigma}) \cong 12$ и по рис. 2 поле E_0 могло дорасти всего до 0.6 от $E_{0 \, {\rm opt}}$.

Для расчета E_0 воспользуемся вторым выражением в формуле (33). В ней коэффициент η определяется распределением мощности P_{gen} по излучающей апертуре (рис. 4) и соотношением площадей этой апертуры диаметром $2a_{gen}$ и перфорированной части зеркала резонатора диаметром $2a_{con}$ и равен 0.3. Расчет по (33) с учетом отношения $E_0/E_{0 \text{ opt}}$ дает $E_0 = 48 \text{ kV/cm}$, что практически совпадает с его экспериментальным значением.

Заключение

Выполненные исследования показали, что развитая к настоящему времени теория квазиоптических открытых резонаторов со сферическими зеркалами вполне удовлетворительно описывает их свойства. Это относится к возможным типам колебаний ЭМ поля в их объеме, резонансным условиям, способу связи резонатора с генератором и т.п. Некоторые несоответствия начинают наблюдаться лишь при приближении конфигурации резонатора к софокусной. Проведенные исследования позволяют приступить к проектированию систем с использованием такого типа резонатора для реализации безэлектродных СВЧ разрядов в газах сверх высокого давления [11]. Резонатор такого типа может служить и в качестве "тонкого" инструмента для исследования, например, уровней пробойных полей в различных газах при повышенных давлениях, темпа и степени диссипации безэлектродными разрядами ЭМ энергии и т.п.

Список литературы

- [1] Прохоров А.М. // ЖЭТФ. 1958. Т. 34. Вып. 6. С. 1658–1662.
- [2] Русин Ф.С., Богомолов Г.Д. // Электроника больших мощностей. 1968. № 5. С. 45–58.
- [3] Вихарев А.Л., Горбачев А.М., Иванов О.А. и др. // ЖТФ. 1996. Т. 66. Вып. 7. С. 56–71.
- [4] Грачев Л.П., Есаков И.И., Мишин Г.И. и др. // ЖТФ. 1994.
 Т. 64. Вып. 2. С. 26–37.

- [5] Вихарев А.Л., Еремин Б.Г. // ЖЭТФ. 1975. Т. 68. Вып. 2. С. 452–455.
- [6] Зарин А.С., Кузовников А.А., Шибков В.М. Свободно локализованный СВЧ разряд в воздухе. М.: Нефть и газ, 1996. 26 с.
- [7] Грачев Л.П., Есаков И.И., Князев М.П. и др. // ЖТФ. 1984. Т. 54. Вып. 7. С. 1353–1355.
- [8] Мак-Доналд А. Сверхвысокочастотный пробой в газа. М.: Мир, 1969. 205 с.
- [9] *Кис В., Деккер Г., Бернтин У.* и др. // Письма в ЖТФ. 1999. Т. 25. Вып. 20. С. 5–11.
- [10] Гулин М.А., Долгов А.Н., Николаев О.В. и др. // Физика плазмы. 1990. Т. 16. Вып. 8. С. 1015–1017.
- [11] *Грачев Л.П., Есаков И.И., Мишин Г.И.* и др. Препринт ФТИ им. А.Ф. Иоффе РАН. СПб., 1999. № 1577. 59 с.
- [12] Вайнштейн Л.А. Открытые резонаторы и открытые волноводы. М.: Сов. радио, 1966. 475 с.
- [13] Барчуков А.И., Петров Ю.Н. // РЭ. 1962. № 3. С. 414-415.
- [14] Богомолов Г.Д. // Электроника больших мощностей. 1963. № 9. С. 154–175.