02;04;07;12 Поляризационный оптогальванический эффект в натрий-гелиевой газоразрядной плазме

© С.П. Дмитриев, Н.А. Доватор, Р.А. Житников, В.А. Картошкин

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: sergei.dmitriev@pop.ioffe.rssi.ru

(Поступило в Редакцию 8 августа 2000 г.)

Описывается эксперимент по наблюдению эффекта изменения электропроводности Na–He газоразрядной плазмы, одновременно облучаемой поляризационно-модулированным лазерным излучением, возбуждающим резонансные переходы атомов Na, и циркулярно-поляризованным светом гелиевой лампы.

В недавних работах [1-3] сообщалось об экспериментах по лазерной оптической ориентации атомов натрия в газовом разряде, возбуждаемом в смеси пары натриягелий. Так, в работе [1] была осуществлена спиновая поляризация 2³S₁-метастабильных атомов гелия в Na-He газоразрядной плазме при оптической ориентации в ней 3²S_{1/2}-атомов натрия лазерным излучением. Регистрация этой поляризации осуществлялась по изменению поглощения света гелиевой лампы при магнитном резонансе в $2^{3}S_{1}$ -состоянии атомов Не. В [2,3] была разработана и испытана методика, позволяющая осуществлять регистрацию спиновой ориентации атомов гелия по изменению поглощения резонансного гелиевого света без применения техники магнитного резонанса. Речь шла о наблюдении эффекта возникновения циркулярного дихроизма ансамбля триплетных метастабильных атомов гелия в Na-He плазме при накачке в ней атомов натрия поляризационно-модулированным лазерным излучением.

В настоящей работе продолжены исследования по изучению влияния лазерного излучения, возбуждающего резонансные переходы атомов натрия, на физические процессы в Na-He плазме. Целью настоящей работы является наблюдение и исследование оптогальванического эффекта [4] в Na-He плазме при одновременном воздействии на нее поляризационно-модулированного лазерного излучения, резонансно возбуждающего атомы натрия, и циркулярно-поляризованного света гелиевой лампы. Известно [5,6], что взаимная спиновая ориентация метастабильных атомов гелия и атомов щелочного металла влияет на вероятность процесса пеннинговской ионизации при столкновении этих атомов в плазме. Поэтому разрушение или изменение ориентации с помощью магнитного резонанса приводит к изменению электропроводности щелочно-гелиевой плазмы, что и было обнаружено экспериментально в работах [5,7]. В данной работе для наблюдения влияния спиновой ориентации на процессы ионизации в плазме используется методика, предложенная в [2] и основанная на модуляции поляризации лазерного излучения. Следует отметить, что, поскольку наблюдаемым сигналом в этой работе является изменение электропроводности плазмы, существенно меньшее влияние имеют амплитудные шумы лазерного света, создававшие значительные помехи при оптическом детектировании спиновой поляризации атомов в предыдущих экспериментах.

На рис. 1 представлена схема экспериментальной установки. Газоразрядная камера (стеклянный цилиндр, диаметр 5 ст, длина 6 ст), содержащая гелий (0.5–1 Тогг) и металлический натрий, помещалась в магнитное поле $H_0 \sim 10$ Ое, создаваемое парой катушек Гельмгольца. Необходимое давление паров натрия обеспечивалось нагревом газоразрядной камеры в термостате (~ 140°C). В газоразрядной камере с помощью внешних электродов возбуждался высокочастотный (~ 45 MHz, напряжение на электродах 20–100 V) разряда. Высокочастотный контур, обеспечивающий возбуждение разряда, включал в себя индуктивность L, переменную емкость C_1 и емкость C_2 , образованную электродами и находящейся между ними газоразрядной камерой. Рядом с катушкой L размещалась антенна A_D с диодным детектором D, с

Рис. 1. Схема экспериментальной установки: 1 — газоразрядная камера, 2 — ВЧ генератор, 3 — гелиевая лампа, 4 — перестраиваемый лазер на красителе, 5 — аргоновый лазер, 6 — усилитель и синхронный детектор, 7 — самописец, P — поляроид, $\lambda/4$ — четвертьволновая пластинка, $\lambda/4(\Omega)$ — вращающаяся слюда, A_d — антенна детектора, D — ВЧ детектор, LC_1C_2 — ВЧ контур.

57

помощью которого регистрировалась амплитуда ВЧ напряжения на антенне A_D. Изменение электропроводности плазмы приводило к изменению напряжения на ВЧ контуре, включающем в себя газоразрядную камеру и соответственно амплитуды ВЧ поля, излучаемого контуром. Это изменение амплитуды излучаемого поля проявлялось в изменении напряжения на контуре антенны А_D и регистрировалось детектором D. При этом увеличение электропроводности разряда приводило к падению напряжения на электродах поджига разряда и соответственно к уменьшению ВЧ напряжения на антенне U. Вдоль поля H_0 на газоразрядную камеру направлялся циркулярно-поляризованный луч от резонансной гелиевой лампы, осуществлявший оптическую ориентацию триплетных метастабильных атомов гелия. Навстречу лучу света гелиевой лампы газоразрядная камера облучалась светом перестраиваемого непрерывного лазера на красителе родамин-6G, изготовленного в лаборатории. В качестве лазера накачки использовался аргоновый лазер ЛГР-404а. Мощность аргонового лазера составляла ~ 4 W. Максимальная мощность излучения перестраиваемого лазера была ~ 50 mW при спектральной ширине ~ 0.01 nm. Длина волны лазерного излучения изменялась в спектральной области, соответствующей разонансному дублету атомов натрия. Луч лазера проходил через четвертьволновую пластину, ориентация которой определяла знак циркулярной поляризации лазерного излучения (σ^{\pm}). Механическое вращение четвертьволновой пластинки в плоскости, перпендикулярной лучу, с частотой $\Omega/2\pi \sim 10 \, {
m Hz}$ приводило к периодическому (с частотой 2Ω) изменению знака циркулярной поляризации ($\sigma^+ \leftrightarrow \sigma^-$) лазерного излучения. Сигнал оптогальванического детектирования δU регистрировался в виде изменения с частотой 2Ω амплитуды высокочастотного напряжения на антенне при настройке длины волны лазерного света на каждую из линий резонансного дублета атомов натрия ($\lambda = 589.6$ nm (D_1) и $\lambda = 589.0 \,\mathrm{nm} \, (D_2)$). Для увеличения отношения сигнал/шум в работе применялось узкополосное усиление и синхронное детектирование (на частоте 2Ω) с последующей записью сигнала δU на двухкоординатном самописце.

Суть эксперимента состояла в следующем. Циркулярно-поляризованным светом гелиевой лампы производилась оптическая ориентация метастабильных атомов гелия, возбужденных в разряде. Одновременно газоразрядная плазма облучалась лазерным светом со знакопеременной циркулярной поляризацией. Наблюдалось изменение электропроводности плазмы с частотой изменения знака поляризации лазерного излучения при сканировании его длины волны через область резонансного поглощения атомов натрия. Наблюдаемые сигналы δU приведены на рис. 2. Сигналы δU регистрировались при температуре порядка $120-140^{\circ}$ С. Максимальная амплитуда сигнала $\delta U \sim 100 \,\mu V (t^0 = 140^{\circ}$ С) наблюдалась при напряжении на электродах $\sim 25 \, V$ вблизи порога самостоятельного горения разряда, при этом ВЧ

Рис. 2. Сигналы изменения электропроводности Na-He плазмы при сканировании длины волны перестраиваемого лазера $(t^0 = 135^{\circ}\text{C})$ в районе $\lambda = 589.6$ nm (D_1) (a) и 589 nm (D_2) (b).

напряжение на антенне $U \sim 4 \,\mathrm{V}$, т.е. относительное изменение ВЧ напряжения $\delta U/U \sim 2.5 \cdot 10^{-5}$. Увеличение наблюдаемых сигналов δU с приближением к порогу горения разряда связано с уменьшением влияния процессов релаксации спиновой ориентации атомов натрия и метастабильных атомов гелия, обусловленными столкновениями с электронами разряда. Кроме того, в этих условиях, возможно, реализуется оптимальный механизм формирования оптогальванического сигнала δU [4]. Принудительное возбуждение (или тушение) разряда вблизи порога горения приводило к уменьшению (или увеличению) детектируемого напряжения на антенне (U) на величину $\Delta U \sim 0.5$ V, т.е. относительное изменение ВЧ напряжения $\Delta U/U \sim 0.1$. Считая величину $\Delta U/U$ грубой оценкой относительного вклада проводимости плазмы в общий импеданс газоразрядного промежутка, можно оценить относительный вклад исследуемого в работе влияния взаимной спиновой ориентации атомов Na и Не на электропроводность плазмы $\delta U/\Delta U \sim 2.5 \cdot 10^{-4}$. Точный расчет импеданса газоразрядного промежутка и его изменения при оптической ориентации атомов в газоразрядной плазме является сложной задачей и в настоящей работе не рассматривается.

Изменение знака циркулярной поляризации гелиевого света приводило к изменению полярности сигнала δU . Амплитуда сигналов линейно зависела от интенсивности гелиевого света, т.е. определялась степенью спиновой ориентации триплетных метастабильных атомов гелия. Зависимость δU от интенсивности и знака циркулярной поляризации гелиевого света представлена на рис. 3. Максимум амплитуды сигналов соответствовал максимальной интенсивности света гелиевой лампы.

Рис. 3. Зависимость амплитуды оптогальванического сигнала δU от интенсивности света гелиевой лампы при лазерной накачке атомов натрия (с настройкой на D_1 -линию атомов Na). $\delta U(I) = 100 \,\mu$ V при максимальной интенсивности света гелиевой лампы.

Рис. 4. Зависимость амплитуды оптогальванического сигнала δU от интенсивности лазерного излучения (настройка на D_1 -линию атомов Na) при накачке атомов гелия светом σ^+ - и σ^- поляризации (соответственно I и 2). $\delta U(I) = 100 \,\mu\text{V}$ при мощности лазерного излучения 50 mW.

Зависимость наблюдаемых в эксперименте сигналов от интенсивности лазерного излучения, осуществляющего накачку атомов натрия, была существенно иной. При малых интенсивностях наблюдался линейный рост амплитуды сигнала. С увеличением интенсивности света при мощности лазерного излучения ≥ 10 mW наблюдался явно выраженный эффект насыщения. Кривые 1 и 2 на рис. 4, соответствующие этой зависимости и записанные при противоположных знаках циркулярной поляризации гелиевого света, были симметричны относительно оси $\delta U = 0$. В отсутствие гелиевого света и амплитуде шума, соответствующей $\delta U \sim 5 \mu$ V, изменения электропроводности под действием лазерного излучения, как правило, не наблюдалось.¹ Сигналы δU при накачке D_1 или D_2 -линиями атомов натрия имели одинаковую полярность. Изменение ВЧ напряжения (δU) при настройке на D_1 -линию были в 4–5 раз больше, чем при настройке на D_2 -линию. Других существенных отличий в поведении сигналов δU (D_1) и δU (D_2) обнаружено не было.

Таким образом, результаты работы, представленные на рис. 2–4, свидетельствуют о том, что поляризационный оптогальванический эффект в Na–He газоразрядной плазме, содержащей оптически ориентированные 2^3S_1 -метастабильные атомы He, при облучении ее циркулярно-поляризованным лазерным излучением, соответствующим D_1 - и D_2 -переходам атомов Na, связан с величиной и взаимной ориентацией спиновых моментов ансамблей атомов гелия и щелочного металла. Такая связь может быть объяснена [5–7] зависимостью вероятности процесса пеннинговской ионизации от взаимной ориентации спиновых моментов сталкивающихся атомов

$$Na(3^{2}S_{1/2}) + He^{*}(2^{3}S_{1}) \rightarrow Na^{+}(2^{1}S_{0}) + He(1^{1}S_{0}) + e.$$
 (1)

При одинаковой ориентации спиновых моментов сталкивающихся атомов реакции пеннинговской ионизации (1) запрещена законом сохранения полного спина и его проекции. Изменение ориентации одного из партнеров относительно ориентации другого (здесь изменение с частотой 2Ω ориентации атомов натрия либо изменение знака поляризации гелиевого света) на противоположную снимают этот запрет, что увеличивает выход свободных электронов в плазму газового разряда и проявляется в эксперименте как изменение на частоте 2Ω электропроводности газоразрядной плазмы.

Линейный ход зависимости амплитуды сигналов δU от интенсивности как гелиевого света I_{He} (рис. 3), так и лазерного излучения I_{Na} при малых мощностях лазера (рис. 4) объясняется линейной зависимостью степени ориентации атомов гелия и натрия от интенсивности соответствующего света накачки. При повышенной мощности лазерного излучения наблюдается нелинейный характер зависимости сигнала δU (I_{Na}). Это объясняется оптическим насыщением степени ориентации атомов щелочного металла [8], обусловленным конкуренцией процессов оптической ориентации и оптической релаксации. Что касается различия амплитуд сигналов δU (D_1) и δU (D_2) (см., например, рис. 2), то это обусловлено разной эффективностю процесса оптической

¹ В отдельных экспериментальных сериях при настройке на D_1 линию удавалось обнаружить слабые (с соотношением сигнал/шум 1.5—2) сигналы δU и в отсутствие света гелиевой лампы. Возможно, они связаны с дополнительной небольшой (в сравнении с оптической ориентацией светом гелиевой лампы) ориентацией атомов гелия в результате спин-зависимых процессов, протекающих при их столкновениях с ориентированными атомами натрия или поляризованными электронами либо обусловлены другими оптогальваническими эффектами, например фотовозбуждением атомов Na. Эти сигналы требуют отдельного исследования с обеспечением существенно лучшего отношения сигнал/шум и при анализе наблюдаемых в данной работе эффектов могут быть выведены за рамки обсуждения экспериментальных результатов.

ориентации атомов натрия для переходов $3^2 S_{1/2} - 3^2 P_{1/2}$ и $3^2 S_{1/2} - 3^2 P_{3/2}$ [8].

Итак, в работе обнаружен и исследован поляризационный оптогальванический эффект в натрий-гелиевой плазме, одновременно облучаемой резонансным для атомов Na лазерным излучением со знакопеременной циркулярной поляризацией и циркулярно-поляризованным светом гелиевой лампы. Показано, что этот эффект обусловлен зависимостью вероятности процесса пеннинговской ионизации при столкновениях оптически поляризованных атомов гелия и натрия от взаимной ориентации их спиновых моментов. Экспериментально эта зависимость проявлялась в виде изменения электропроводности газоразрядной плазмы с удвоенной частотой модуляции поляризации лазерного излучения при его настройке на линии резонансного дублета атомов натрия.

Список литературы

- [1] Дмитриев С.П., Доватор Н.А., Житников Р.А. и др. // Опт. и спектр. 1998. Т. 84. Вып. 3. С. 385–388.
- [2] Дмитриев С.П., Доватор Н.А., Житников Р.А. и др. // Письма в ЖЭТФ. 1997. Т. 65. Вып. 5. С. 385–387.
- [3] Дмитриев С.П., Доватор Н.А., Житников Р.А. и др. // ЖТФ. 2000. Т. 70. Вып. 1. С. 16–18.
- [4] Очкин В.Н., Преображенский Н.Г., Шапарев Н.Я. Оптогальванический эффект в ионизованных газах. М.: Наука, 1991.
- [5] Дмитриев С.П., Житников Р.А., Окуневич А.И. // ЖЭТФ. 1976. Т. 70. Вып. 1. С. 69–75.
- [6] Окуневич А.И. // ЖЭТФ. 1976. Т. 70. Вып. 4. С. 899–907.
- [7] Дмитриев С.П. // Опт. и спектр. 2000. Т. 88. № 5. С. 664– 666.
- [8] Happer W. // Rev. Mod. Phys. 1972. Vol. 44. P. 169-249.