05;12 Размерный эффект в сверхнизкочастотном электрическом спектре возбуждения неустойчивости Бриджмена

© Е.Г. Фатеев

Институт прикладной механики УрО РАН, 426001 Ижевск, Россия e-mail: fateev@ipm.uni.udm.ru

(Поступило в Редакцию 23 августа 2000 г.)

Установлено, что при увеличении размеров кристаллогидратов происходит существенное снижение амплитуды сверхнизкочастотного (СНЧ) электрического поля, способного вызвать глубокое падение у них механической устойчивости в условиях сильного одноосного сжатия. Существование этого явления продемонстрировано в экспериментах со взрывоподобной неустойчивостью Бриджмена на примере кристаллогидратов щавелевой кислоты $H_2C_2O_4 \cdot 2H_2O$. Показано, что при увеличении размеров кристаллогидратов в СНЧ спектре устойчивости появляется не менее трех узких провалов на фоне более широкого и соответствующих им пиков в спектрах всплесков диэлектрической проницаемости. Эти явления можно объяснить на основе представления сжимаемых кристаллогидратов в виде дисперсных систем с нелинейными взаимодействиями на СНЧ в цепочках гигантских (с размерами дисперсной частицы) дипольных осцилляторов с переменными моментами.

Введение

Глубокое падение порога механической устойчивости сильно сжимаемых кристаллогидратов под влиянием весьма слабых сверхнизкочастотных (СНЧ) $10 < \omega_1 < 100 \, \text{Hz}$ электрических полей продемонстрировано уже на модельных [1-3] и природных объектах [4,5]. Необходимо заметить, что такие явления наблюдаются в экспериментах с эффектом Бриджмена, который представляет собой взрывоподобную неустойчивость, возбуждаемую при сильном одноосном сжатии диэлектриков на наковальнях с открытыми границами в области высоких давлений $P_c < 10$ GPa [6–10]. Причем это явление существует в СНЧ полях напряженностью $E < 0.1 - 2 \, \text{kV/cm}$, которые в $10^3 - 10^4$ раз слабее пробойных полей для подобных кристаллогидратов [11]. Интерес к этому эффекту обусловлен, в частности, глобальной распространенностью кристаллогидратов в литосфере и возможностью проникновения в нее лишь СНЧ электромагнитных колебаний, скин-слой для которых составляет не менее 10 km [12].

Обычно частотный спектр порога устойчивости P_c на наковальнях с рабочей площадкой диаметром $d_1 = 5$ mm имеет один узкий глубокий провал в интервале частот $20 < \omega_1 < 40$ Hz и второй более широкий в области $\omega_2 \sim 10^4$ Hz. Глубина падения $\Delta P = P_c(U = 0) - P_c(U)$ порога P_c растет в зависимости от амплитуды СНЧ импульсов напряжения U в соответствии с правилом $\Delta P(U) \propto U^2$. Причем для импульсов с амплитудой $U \approx 65$ V для толщин образцов $h \sim 0.25$ mm с разными кристаллогидратами максимальная относительная глубина провалов составляет $\Delta P/P_c(U = 0) \approx 0.5$ [1–5].

В одном принципиальном эксперименте был также установлен и предсказанный ранее [2] для кристаллогидратов частотный сдвиг глубокого провала в СНЧ электрическом спектре $P_c(\omega)$ [5]. Этот сдвиг следовал из двух предложенных ранее моделей описываемого эффекта [3–5], но, как будет далее показано, это совпадение достаточно формально. В этой работе при проверке гипотезы о возможности существования СНЧ глубоких провалов в спектрах $P_c(\omega)$ для кристаллогидратных объектов с бо́лышими характерными размерами были обнаружены принципиально новые результаты, противоречащие ранним модельным представлениям о локализованных на СНЧ микропробоях.

Методика экспериментов

В экспериментах использовался модельный кристаллогидрат щавелевой кислоты $H_2C_2O_4 \cdot 2H_2O$. Выбор этого объекта обусловлен технической возможностью проведения с ним большого цикла экспериментов с эффектом Бриджмена для набора достоверных статистических данных по порогу возбуждения $P_c(\omega)$ на сверхнизких частотах главным образом из-за низкого у него P_c .

СНЧ электрический спектр $P_c(\omega)$ для $H_2C_2O_4 \cdot 2H_2O$ находился по той же методике, что и для модельных соединений [3-5]. Скорость нагружения при одноосном сжатии на наковальнях Бриджмена (со вставками из сверхтвердого сплава ВК-8) составляла $dP/dt \approx 0.1$ GPa/s при температуре $T \sim 293$ К. При нахождении спектров $P_c(\omega)$ для двух характерных размеров образцов проводили два цикла опытов сначала для наковален с диаметром рабочих плоскостей $d_2 = 10 \, \text{mm}$, во втором цикле с $d_1 = 5 \,\mathrm{mm}$. В цикле с $d_2 = 10 \,\mathrm{mm}$ на рабочую площадку наковален насыпали горку порошка так, что бы в предпороговых стадиях сжатия она уплотнялась до дискообразного тела с толщиной $h_2 \sim 0.40\,\mathrm{mm}$. В опытах с наковальнями $d_1~=~5\,\mathrm{mm}$ средние толщины предвзрывного диска того же кристаллогидрата составляли $h_1 \sim 0.25 \,\mathrm{mm}$. Каждая точка в спектре получена в опытых с 10 взрывами.

Экспериментальные результаты

В результате экспериментов с наковальнями $d_2 =$ = 10 mm в CHЧ спектре $P_c(\omega)$ для $H_2C_2O_4 \cdot 2H_2O$ обнаружены глубокие провалы, форма, глубина и локализация которых оказались весьма отличными от тех, которые найдены в экспериментах с $d_1 = 5 \,\mathrm{mm}$, как показано для сравнения на рис. 1. Эти особенности наблюдаются на фоне общего снижения в ~1.5 раза порога возбуждения эффекта Бриджмена во всем СНЧ спектре $P_c(\omega)$ для d_2 относительно уровня спектра для d₁. Подобный размерный эффект, однако, для твердых тел, находящихся во второй упругой стадии при сильном одноосном сжатии [13], установленный впервые в работе [14], легко объясняется в рамках термофлуктуационной теории прочности [15] и характером полей механических напряжений при данном отношении h/d. Заметим здесь, что форма СНЧ спектра $P_c(\omega)$ для этого кристаллогидрата с наковальнями d₁ в области $25 < \omega_1 < 35$ Hz оказалась практически такой же, что и в ранних экспериментах [3]. Подчеркнем, что и в ранних опытах [3], и для данной работы образцы готовились из одной и той же партии кристаллогидрата $H_2C_2O_4 \cdot 2H_2O_4$. Спектр $P_c(\omega)$ для d_2 имеет весьма широкую область глубокого СНЧ спада в диапазоне 5 $< \omega_1 < 100$ Hz. Причем в этой области спектр $P_c(\omega)$ имеет сильно неоднородную структуру с тремя провалами в кратных частотных интервалах 21-27, 41-48, 58-68 Нz и высоким пиком на частотах 30-40 Hz вблизи самого глубокого провала. Средние значения порога в широком СНЧ спаде колеблются вблизи $\sim 0.75 P_c(U=0)$, тогда как в самой глубокой яме соответствуют $\sim 0.5 P_c(\omega) (U=0)$ и в пике почти совпадают с $P_c(U=0)$.

Дополнительно для прояснения природы провалов в спектре $P_c(\omega)$ в довольно широком диапазоне СНЧ в условиях одноосного сжатия кристаллогидрата

Рис. 1. Сверхнизкочастотные электрические спектры порога возбуждения эффекта Бриджмена $P_c(\omega)$ для кристаллогидратов $H_2C_2O_4 \cdot 2H_2O$ с импульсами амплитудой U = 65 V для наковален с диаметром рабочих площадок $d_1 = 5 \text{ mm}$ (\circ) и $d_2 = 10 \text{ mm}$ (\bullet).

Рис. 2. Сверхнизкочастотный спектр диэлектрической проницаемости $\varepsilon(\omega)$ в момент максимального всплеска при сильном одноосном сжатии кристаллогидратов H₂C₂O₄· 2H₂O (для импульсов с амплитудой U = 65 V) для наковален с диаметрами рабочих площадок $d_1 = 5$ mm (\circ) и $d_2 = 10$ mm (\bullet).

H₂C₂O₄· 2H₂O исследовались его СНЧ дисперсия диэлектрической проницаемости $\varepsilon(\omega)$ (методика измерений описана в [3]). Обнаруженная здесь при $d_2 = 10 \text{ mm}$ немонотонная зависимость $\varepsilon(\omega)$ для H₂C₂O₄· 2H₂O показана в сравнении с подобной зависимостью для $d_1 = 5 \,\mathrm{mm}$ на рис. 2. Видно, что в обоих случаях имеет место гигантский всплеск диэлектрической восприимчивости. Однако в области СНЧ для $d_2 = 10 \,\mathrm{mm}$ обнаружена нетривиальная форма дисперсии $\varepsilon(\omega)$ с пиками и ямами с отношениями значений ε в максимумах и минимумах спектра, доходящих до 10 раз с общим средним подъемом зависимости $\varepsilon(\omega)$ на СНЧ в 20 раз выше значений $\varepsilon_{\infty} \sim 6$, как это показано на рис. 2. Отметим здесь, что гигантские значения в СНЧ дисперсии $\varepsilon(\omega)$ в условиях одноосного сжатия поддерживаются в виде краткого всплеска в течение $\Delta t < 1$ s [3–5]. На частотах вблизи $\omega_1 \sim 10^4$ Hz в обоих случаях также имеются провалы, ранее индентифицированные с диэлектрическими потерями [1], однако при d₂ провал в этой области относительно менее глубок и широк. Тогда как на СНЧ, наоборот, более простой по форме, но менее глубокий и широкий провал наблюдается для d₁.

Кроме этого, на двух характерных частотах $\omega_1 \sim 42$ Hz (в глубоком провале) и $\omega_1 \sim 200$ Hz (на стабильном участке) в спектре $P_c(\omega)$ для $d_2 = 10$ mm получена зависимость порога возбуждения P_c от амплитуды импульсов напряжения $P_c(U)$ (рис. 3). Соответствующие зависимости для d_1 (рис. 3) найдены при частотах $\omega_1 \sim 32$ Hz (в глубоком провале) и также $\omega_1 \sim 200$ Hz. Видно, что в случае с d_2 зависимость $P_c(U)$ имеет четко выраженный пороговый характер с резким падением

Рис. 3. Зависимость порога возбуждения эффекта Бриджмена для кристаллогидратов $H_2C_2O_4 \cdot 2H_2O$ от амплитуды импульсов напряжения на наковальнях с диаметром рабочей площадки d_1 на частоте $\omega \sim 33$ Hz и d_2 при $\omega \sim 42$ Hz. Значения d_1 и d_2 те же, что и на рис. 1.

критического давления P_c для $\omega_1 \sim 42$ Hz при амплитудах $U \sim 11-15$ V. Далее при увеличении U вплоть до 65 V дальнейшего падения P_c не происходит. Однако подобная зависимость для d_1 на СНЧ имеет более монотонный характер, практически подчиняющийся правилу $\Delta P(U) \propto U^2$ вплоть до амплитуд $U \sim 35$ V с выходом на плато с минимальным значением порога для U > 40. Для $\omega_1 \sim 200$ Hz вообще отсутствует какое-либо влияние амплитуды импульсов напряжений на порог P_c вплоть до 65 V для обоих характерных размеров.

Обсуждение

Несмотря на статистический характер полученных здесь спектров $P_{c}(\omega)$ и $\varepsilon(\omega)$, в диапазоне $5 < \omega_1 < 100 \, \text{Hz}$ существует их качественная корреляция. Это обстоятельство явно свидетельствует о связи процессов, приводящих к падению порога возбуждения эффекта Бриджмена на этих частотах с гигантскими всплесками СНЧ диэлектрической восприимчивости при сильном одноосном сжатии кристаллогидратов. Совершенно очевидно, что такими явлениями, как было отмечено ранее [3,4], не могут быть возможные в иных случаях переполяризации в водород-содержащих сегнетоэлектриках, каковыми являются соединения, подобные H₂C₂O₄· 2H₂O [16], поскольку резонансные возбуждения доменных структур обычно имеются в диапазонах высоких и сверхвысоких частот $\omega \sim 10-10^3$ MHz [17]. Кроме того, при средних давлениях порядка *P* > 0.3 GPa практически у любых сегнетоэлектриков происходит демпфирование колебательных движений доменов [17].

Журнал технической физики, 2001, том 71, вып. 6

Существенные противоречия с результатами данной работы возникают и у ранее предложенных моделей [3], в которых провалы в спектрах $P_c(\omega)$ объясняются СНЧ локализацией максимума плотности энергии, вводимой в электрический пробой в микротрещине или в перколяционно прорастающий пробой.

Действительно, из ранних модельных отношений [3–5] формально следует возможность сдвига провала по частоте при изменении некоторых параметров, например температуры, но вовсе не очевидно существование нескольких провалов в СНЧ диапазоне (рис. 1). Более того, при увеличении толщины образца и одинаковой величине гигантского всплеска диэлектрической проницаемости на СНЧ, из ранних моделей следует существенное уменьшение относительной глубины провалов, как это было бы свойственно для электрического пробоя в соответствии с правилом $\Delta P/P_c(U=0) \propto U^2 h^{-2}$ [3,4]. Однако полученные здесь данные свидетельствуют о существовании размерного эффекта, имеющего противоположную ожидаемой для пробойных явлений тенденцию. При увеличении характерных размеров требуется меньшая амплитуда возбуждения, необходимая для появления одной и той же относительной глубины СНЧ провалов (рис. 3). Происходит также значительное расширение и возбуждение дополнительных пиков при увеличении размеров. Существует некоторый порог амплитуды СНЧ импульсов U_h , после превышения которого происходит резкое падение P_c , причем глубина падения ΔP не подчиняется правилу $\Delta P(U) \propto U^2$, как это наблюдалось ранее [3].

Становится очевидным, что обнаруженные здесь эффекты имеют существенно нелинейную природу. Локализация же возбуждений на СНЧ дает основание считать, что нелинейность связана с процессами, происходящими в дисперсных системах с двойными электрическими слоями, каковыми, очевидно, и являются кристаллогидраты в условиях, индуцируемых в них при сильно неоднородном сжатии фазовых переходов типа частичной дегидратации [18,19].

Полученные здесь результаты могут быть объяснены, если рассмотреть характер колебательных процессов, по крайней мере, в цепочках, связанных кулоновскими взаимодействиями, неточечных осцилляторов с сильно переменными дипольными моментами (с плечом с размерами дисперсной частицы), как это показано в работе [18,19]. Условие с неточечностью диктуется плотной зернистой структурой описываемых дисперсных систем [20], а переменность моментов связана с сильной зависимостью уровня поляризации зарядов в двойных электрических слоях вокруг зерен от частоты и напряженности как локальных, так и внешних электромагнитных полей.

Результаты численных расчетов для ограниченных на концах одномерных цепей неточечных осцилляторов с переменными дипольными моментами с диссипацией и возбуждением с параметрами (средней величины зерен, дистанции между ними, уровнем максимально возможной поляризации зарядов и т.д.), характерными для генерируемых при сильном одноосном сжатии дисперсных систем, показывают возможность существования обнаруженного здесь размерного эффекта [19]. Главной особенностью его является то, что при увеличении размера модельной цепочки уровень локальных всплесков поляризации в ней при фиксированной амплитуде СНЧ возбуждающего поля сильно растет в зависимости от вариации тех или иных параметров. Причем в первые несколько периодов после начала воздействия СНЧ электрическим полем имеет место резонансный основной и сателлитные возбуждения в районе $\omega < 200$ Hz, переходящие еще через несколько периодов к обычной дисперсионной зависимости дебаевского типа.

Таким образом, обнаруженный здесь размерный эффект свидетельствует не в пользу возбуждений в кристаллогидратах СНЧ локализованных электрических пробоев между наковальнями, а, скорее, о возникновении на СНЧ локальных в пространстве и времени междипольных сжатий [19] или микропробоев, инициирующих падение порога возбуждения эффекта Бриджмена с кристаллогидратами на СНЧ.

Список литературы

- [1] *Фатеев Е.Г.* // Письма в ЖТФ. 1993. Т. 19. Вып. 10. С. 48– 52.
- [2] *Фатеев Е.Г.* // Письма в ЖТФ. 1994. Т. 20. Вып. 20. С. 83– 88.
- [3] Фатеев Е.Г. // ЖТФ. 1996. Т. 66. Вып. 6. С. 93–105.
- [4] Фатеев Е.Г. // Докл. РАН. 1997. Т. 354. Вып. 2. С. 252–254.
- [5] Фатеев Е.Г. // Письма в ЖЭТФ. 1997. Т. 65. Вып. 12. С. 876–880.
- [6] Bridgman P.W. // Phys. Rev. 1935. Vol. 48. N 15. P. 825-847.
- [7] Bridgman P.W. // Proc. Am. Acad. Art. Sci. 1937. Vol. 71. N 9. P. 387–454.
- [8] Bridgman P.W. Studies in Large Plasatic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure. New York: McGraw-Hill, 1952. 444 p.
- [9] Гораздовский Т.Я. // Письма в ЖЭТФ. 1967. Т. 5. Вып. 3. С. 78–82.
- [10] *Ярославский М.А.* Реологический взрыв. М.: Наука, 1982. 192 с.
- [11] Воробьев А.А., Воробьев Г.А. Электрический пробой и разрушение твердых диэлектриков. М.: Высшая школа, 1966. 244 с.
- [12] Ярославский М.А., Капустян Н.К. // ДАН СССР. 1990. Т. 315. № 2. С. 352–354.
- [13] Левитас В.И. Большие упругопластические деформации материалов при высоких давлениях. Киев: Наукова думка, 1987. 232 с.
- [14] Ениколопян Н.С., Мхитарян А.А., Карагезян А.С., Хзарджян А.А. // ДАН СССР. 1987. Т. 292. № 4. С. 887–890.
- [15] Фатеев Е.Г., Хан В.П. // Письма в ЖТФ. 1991. Т. 17. Вып. 20. С. 51–55.
- [16] Fukai M., Matsuo T. // J. Phys. Chem. Solids. 1989. Vol. 50. N 4. P. 743–751.
- [17] Физика сегнетоэлектрических явлений / Под ред. Г.А. Смоленского. Л.: Наука, 1985. 396 с.

- [18] Фатеев Е.Г. // Письма в ЖТФ. 2000. Т. 26. Вып. 14. С.103– 110.
- [19] Фатеев Е.Г. // ЖТФ. 2001. Т. 71. Вып. 1. С. 92–105.
- [20] Челидзе Т.Л., Деревянко А.И., Куриленко О.Д. Электрическая спектроскопия гетерогенных систем. Киев. Наукова думка, 1977. 232 с.