06;07;12 О зависимости концентрации свободных носителей в фоторефрактивных кристаллах от интенсивности света

© Н.А. Гусак, Н.С. Петров

Межотраслевой институт повышения квалификации кадров по новым направлениям развития техники и технологии при Государственной политехнической академии,

220107 Минск, Белоруссия

(Поступило в Редакцию 3 сентября 1999 г. В окончательной редакции 17 июля 2000 г.)

Проанализирована зависимость концентрации свободных носителей заряда от интенсивности света для двух возможных типов кристаллов, в одном из которых фоторефрактивные центры являются ловушками, а во втором — донорами. Выяснены условия, при которых эта зависимость становится сублинейной при сравнительно невысоких уровнях интенсивности света.

Хотя исследования фоторефрактивных (ФР) кристаллов ведутся уже давно, начиная примерно с 70-х годов, тем не менее некоторые важные особенности протекающих в них кинетических явлений до сих пор не до конца выяснены. В частности, это касается в первую очередь вопроса о зависимости концентрации свободных носителей в ФР кристалле от интенсивности света.

В работе [1] на основе численных расчетов было установлено, что величина, обратная характеристическому времени застройки решеток объемного заряда, сублинейно зависит от интенсиновсти света, когда последняя превышает некоторое критическое значение. При этом для кристалла силикосилленита $Bi_{12}SiO_{20}$ (BSO) сублинейная зависимость проявляется уже при сравнительно невысоких уровнях интенсивности света. По мнению авторов [1], результаты их численного анализа позволяют критически оценить достоверность существующей теории ΦP эффекта.

Данное обстоятельство заставляет еще раз обратиться к вопросу о зависимости концентрации свободных носителей от интенсивности света, поскольку именно в этом причина сублинейности. Цель настоящей работы дать сравнительный анализ указанной зависимости для двух возможных типов ФР кристаллов, что позволило бы непосредственно (без использования численных расчетов) выяснить условия проявления сублинейности уже в области рабочих значений интенсивности света.

Воспользуемся базовой моделью ΦP среды, описанной в [2], так называемой одноцентровой моделью, в которой имеют дело только с одним уровнем энергии в центре запрещенной зоны твердого тела. При этом электроны возбуждаются в зону проводимости термически или под действием света с некоторой частотой из заполненных ловушек C^- . Свободные электроны в свою очередь могут рекомбинировать из зоны проводимости с пустыми ловушками C^0 .

Процесс изменения во времени *t* концентрации заполненных ловушек описывается кинетическим уравнением

$$\frac{\partial N^{-}}{\partial t} = -(\beta + SI)N^{-} + \gamma N^{0}N_{e}, \qquad (1)$$

впервые использованным для анализа ФР эффекта в работе [3]. Здесь приняты следующие обозначения: N^- и N^0 — концентрации C^- - и C^0 -центров, β — вероятность тепловой генерации свободных электронов, S — сечение оптического поглощения, I — интенсивность света в кристалле, γ — коэффициент рекомбинации, N_e — концентрация электрона в зоне проводимости. Общая концентрация N ФР центров в кинетике процесса остается постоянной

$$N = N^{-} + N^{0}.$$
 (2)

Из уравнения (1) следует, что в стационарном состоянии ($\partial N^-/\partial t = 0$) концентрация свободных носителей определяется выражением

$$N_e = \frac{N^-}{N^0} n \qquad \left(n = \frac{\beta + SI}{\gamma}\right). \tag{3}$$

Поскольку величина N^- означает концентрацию связанного отрицательного заряда, то электронейтральность среды требует, чтобы в образце присутствовал и положительный заряд. Следовательно, одна из возможных физических моделей ФР кристалла базируется на предложении о наличии в нем одновременно ФР центров с концентрацией N и других центров с некоторой концентрацией N_c , заряженных положительно. Эти центры являются неактивными и не принимают участия в кинетических явлениях, порождаемых светом.

При $\beta = I = 0$ свободный заряд отсутствует. В этом случае $N^- = N_c$ и $N^0 = N - N_c$. Так как величина N_c остается неизменной, то появление N_e при наличии освещенности $(I \neq 0)$ означает одновременное уменьшение N^- и увеличение N^0 точно на такую же величину N_e . Подстановка $N^- = N_c - N_e$ и $N^0 = N - N_c + N_e$ в (3) дает для N_e квадратное уравнение

$$N_e^2 + (N - N_c + n)N_e - nN_c = 0.$$
 (4)

Из него следует выражение

$$N_e = \frac{N_c}{N - N_c} \, n,\tag{5}$$

справедливое при малых *n*, удовлетворяющих неравенству

$$n \ll \frac{(N - N_c)^2}{2(N + N_c)}.$$
 (6)

Для больших n, подчиняющихся условию

$$n \gg 2(N+N_c),\tag{7}$$

уравнение (4) дает

$$N_e^{\max} = N_c. \tag{8}$$

Если представлять зависимость N_e от I графически, то получается кривая, начинающаяся с какого-то значения N_e^0 при I = 0 и линейно растущая в некотором интервале изменения I. Затем этот рост замедляется, и, наконец, кривая асимптотически стремится к значению N_e^{max} .

Кроме рассмотренной выше существует еще одна возможная физическая модель ФР кристалла. Здесь вместо ловушек имеются ФР центры донорного типа с некоторой концентрацией N. В таком кристалле присутствует постоянный отрицательный заряд с концентрацией N_c , обусловленный передачей акцепторам частью доноров своих электронов. Равный ему положительный заряд N^+ находится на ионизированных донорах. Если кристалл освещен и в нем происходит термическое возбуждение свободных носителей, то он характеризуется также и концентрацией N_e свободных носителей. Кинетическое уравнение для этой модели можно записать в виде

$$\frac{\partial N^+}{\partial t} = (\beta + SI)(N - N^+) - \gamma N^+ N_e.$$
(9)

Из него следует выражение для концентрации свободных носителей в стационарном состоянии

$$N_e = \frac{N - N^+}{N^+} \, n. \tag{10}$$

Подставляя в (10) значение $N^+ = N_c + N_e$, получаем квадратное уравнение для N_e , коэффициенты которого выражаются через параметры среды и интенсивность света

$$N_e^2 + (N_c + n)N_e - n(N - N_c) = 0.$$
 (11)

Отсюда видно, что при малых значениях *n*, удовлетворяющих неравенству

$$n \ll \frac{N_c^2}{2(2N - N_c)},\tag{12}$$

величина N_e пропорциональна параметру n

$$N_e = \frac{N - N_c}{N_c} \, n. \tag{13}$$

В случае больших значений *n*, т.е. при

$$n \gg (2N - N_c), \tag{14}$$

концентрация N_e стремится к своей максимально возможной величине

$$N_e^{\max} = (N - N_c). \tag{15}$$

Уравнения (4) и (11) переходят друг в друга только при $N_c = 1/2N$. В этом частном случае поведение N_e как функции *I* совершенно не зависит от того, являются ли ФР центры ловушками или донорами. В качестве примера кристалла, в котором реализуется данное условие, можно указать на кристалл ниобата лития с примесью железа ~ 10^{-2} %, характеризующийся следующими значениями параметров [4]: $N = 6.6 \cdot 10^{24} \text{ m}^{-3}$, $N_c = 3.3 \cdot 10^{24} \text{ m}^{-3}$, $\beta = 1 \text{ s}^{-1}$, $S = 6.2 \cdot 10^{-5} \text{ m}^2/\text{J}$, $\gamma = 10^{-15} \text{ m}^3$ /s. Для этого кристалла неравенства (6) и (12) дают

$$I \ll 10^{13} \,\mathrm{W/m^2}.$$
 (16)

Отсюда видно, что интервал изменения I, в котором имеет место линейное изменение N_c , гораздо шире области рабочих значений интенсивности света $I \sim 10^4 \text{ W/m}^2$.

При $N_c \neq 1/2N$ уравнения (4) и (11) уже не совпадают и решения их могут существенно различаться. Из (12) следует, что для $N_c \ll N$ граница неравенства (16) сильно снижается, в то время как (6) дает ее повышение, хотя и незначительное. По мере уменьшения N_c по сравнению с N (концентрация ФР центров N обычно находится в интервале $10^{24}-10^{25}$ m⁻³) эта граница может приблизиться к области рабочих значений I для кристаллов второго типа. При этом кристаллы первого типа будут оставаться линейными.

Проиллюстрируем сказанное на примере кристалла второго типа BSO. Для него характерны следующие значения параметров [5]: $N = 10^{25} \text{ m}^{-3}$, $N_c = 0.95 \cdot 10^{22} \text{ m}^{-3}$, $\beta = 1 \text{ s}^{-1}$, $S = 1.06 \cdot 10^{-5} \text{ m}^2/\text{J}$, $\gamma = 1.65 \cdot 10^{-17} \text{ m}^3/\text{s}$. Найдем область изменения *I*, в которой выполняется линейная зависимость N_e от *I*. Согласно (12), должно быть $n \ll 2 \cdot 10^{18} \text{ m}^{-3}$, что означает ($\beta + SI$) $\ll 33 \text{ s}^{-1}$. Значение $I = 10^5 \text{ W/m}^2$ не удовлетворяет этому неравенству. Строго говоря, ему не удовлетворяет даже первое слагаемое приведенного неравенства. Уточнив в связи с этим неравенство (12), находим, что линейная зависимость N_e от *I* будет наблюдаться для $I < 10^4 \text{ W/m}^2$. Это в точности согласуется с результатами численных расчетов, полученными в [1].

Важно найти количественную меру отклонения концентрации N_e от ее линейного приближения. Для этого удобно ввести в рассмотрение величину

$$\eta = \frac{N'_e - N_e}{N'_e - N^0_e},\tag{17}$$

где N'_e — линейное приближение N_e .

Будем исходить из строгого решения уравнения (11)

$$N_e = -\frac{N_c + n}{2} + \frac{N_c}{2} \sqrt{1 + \frac{2(2N - N_c)n}{N_c^2} \left[1 + \frac{n}{2(2N - N_c)}\right]}.$$
 (18)

Журнал технической физики, 2001, том 71, вып. 5

При малых значениях *n* влияние слагаемого с *n* в квадратных скобках пренебрежимо мало́ и это решение можно представить в следующем виде:

$$N_e = -\frac{N_c + n}{2} + \frac{N_c}{2} \sqrt{\frac{p+1}{p}} \sqrt{1 + \frac{1}{p+1} \frac{n_1}{n_0}}, \quad (19)$$

где

$$p = \frac{N_c^2}{2(2N - N_c)n_0},$$
 (20)

причем n_0 и n_1 соответственно постоянное и линейное по I слагаемое параметра n.

Нас интересует область небольших значений *I*, где начинает сказываться сублинейность. Используя разложение (19) по малому параметру, пропорциональному *I*, с точностью до членов 2-го порядка, получаем

$$\eta = \frac{1}{4(p+1)(1-m)} \frac{n_1}{n_0} \left(m = 2\sqrt{p(p+1)} \frac{n_0}{N_c} \right).$$
(21)

Отсюда видно, что отклонение реальной зависимости $N_e(I)$ от линейной само пропорционально интенсивности света.

Соотношение (21) удобно представить в виде зависимости $I(\eta)$. Учитывая, что m — малая величина (для кристалла BSO $m = 5 \cdot 10^{-4}$), имеем

$$I = \frac{4(p+1)\beta}{S} \,\eta. \tag{22}$$

Полученное выражение позволяет непосредственно определять значение интенсивности света, соответствующее определенному наперед заданному значению η для произвольного кристалла второго типа.

Интенсивность света как функция N_c , согласно (22), растет по параболическому закону. Минимально возможное значение $I_{\min} = 4\beta S^{-1}\eta$ отвечает p = 0. Рост N_c в области малых значений p слабо влияет на рост I. Так, при $N_c = 2\sqrt{Nn_0}$ достигается только двукратное превышение I_{\min} . Дальнейшее увеличение N_c приводит к очень сильному росту I.

Обратимся опять к кристаллу BSO. Для него, согласно (20), p = 37 и значению $\eta = 0.01$ соответствует $I = 1.4 \cdot 10^5$ W/m² (при таком значении I происходит уменьшение N_e от значения, даваемого линейным приближением, на 1%). Заметим, что для оценок выражением (22) можно пользоваться и при бо́лыших значениях η (при этом начинает проявляться погрешность в определении I). Так, для $\eta = 0.1$ $I = 1.4 \cdot 10^6$ W/m² (истинное же значение $I = 1.75 \cdot 10^6$ W/m², рассчитанное согласно точному выражению (19), оказывается на 25% выше данного значения).

Выражение (22) позволяет делать количественные оценки и при наличии возможного разброса значений N и N_c для произвольного кристалла при переходе от образца к образцу. В соответствии с (20) уменьшение N_c на порядок (N остается прежним) приводит к p = 0.37 в случае кристалла BSO. Для такого образца значение

 $\eta = 0.01$ достигалось бы при $I = 5 \cdot 10^3 \,\text{W/m}^2$, что только на 37% выше I_{\min} . Увеличение же N_c на порядок сопровождается ростом I на два порядка. Если, например, $N_c \sim N$ (как в случае ниобата лития), то I возрастает на шесть порядков.

Если бы у кристалла BSO ФР центры были не донорами, а ловушками, то, согласно (6), линейное поведение N_e наблюдалось бы в чрезвычайно широком диапазоне изменения *I*, удовлетворяющем неравенству (16).

Интересно отметить, что при $N_c = N - \alpha$, где $\alpha \ll N$, может реализоваться ситуация, когда уже кристаллы первого типа, а не второго, будут проявлять сублинейную зависимоть N_e от I при сравнительно невысоких значениях интенсивности света.

В заключение авторы выражают благодарность В.Н. Белову за полезные обсуждения результатов.

Список литературы

- Nagentra Singh, Nadar S.P., Partha P. Banerjee // Opt. Commun. 1997. Vol. 136. P. 487–495.
- [2] Buse K. // Appl. Physics B. 1997. Vol. 74. P. 273-291.
- [3] Кухтарев Н.В. // Письма в ЖТФ. 1976. Т. 2. Вып. 24. С. 1114–1118.
- [4] Valley G.C. // IEEE. J. Quant. Elect. 1983. QE-19. № 11. P. 1637–1645.
- [5] Johansen P.M. // IEEE J. Quant. Elect. 1989. Vol. 25. P. 530– 539.