01;09 Компрессия микроволновых импульсов цепочкой резонаторов кольцевого типа

© Ю.Ю. Данилов,¹ М.Л. Тай²

 ¹ Институт прикладной физики РАН,
 603600 Нижний Новгород, Россия
 ² Нижегородский государственный университет им. Н.И. Лобачевского, E-mail: danilov@appl.sci-nnov.ru

(Поступило в Редакцию 22 мая 2000 г.)

Теоретически исследована компрессия фазомодулированного импульса с прямоугольной огибающей цепочкой консервативных резонаторов кольцевого типа. Показано, что цепочка из 3 резонаторов может осуществить 8-кратную компрессию микроволнового импульса с коэффициентом полезного действия около 80%.

Введение

В однорезонаторных компрессорах микроволновых импульсов коэффициент полезного действия (КПД) с ростом степени компрессии убывает [1–3]. Например, при 5-кратной компрессии КПД составляет около 80%. Для повышения степени компрессии в [4] предлагалось использовать комбинации резонаторов. В данной работе исследуются компрессоры в виде цепочки резонаторов кольцевого типа, один из вариантов которой показан на рис. 1.

Уравнение и характеристики компрессора

Преобразование микроволнового импульса

$$E = \operatorname{Re}\left\{E_n(t)\exp(i\omega_g t)\right\}$$

цепочкой из N консервативных резонаторов описывается системой уравнений [4]

$$\frac{dE_n}{dt} - i\Omega_n E_n = \frac{dE_{n-1}}{dt} - i\Omega_n^* E_{n-1} \ (1 \le n \le N), \quad (1)$$

где $\Omega_n = \omega'_n (1 + i/2Q_n) - \omega_g$ — расстройка между комплексной собственной частотой *n*-го резонатора

и опорной частотой входного импульса ω_g , Q_n — радиационная добротность *n*-го резонатора, E_n — комплексная амплитуда импульса на выходе *n*-го резонатора, E_0 и E_N — комплексные амплитуды импульса на входе и выходе компрессора.

В приведенных ниже расчетах входной импульс имел прямоугольную огибающую длительностью *T*, а фазовая модуляция задавалась трехпараметрической функцией

$$E_0(t) = \exp\left\{i\left[\frac{\mu t^2}{2} + \Delta\varphi H(t-t_p)\right]\right\},\,$$

где H — единичная функция Хевисайда, μ — скорость изменения частоты импульса во времени, t_p и $\Delta \varphi$ — момент и величина скачка фазы импульса.

С ориентацией на применение к линейным ускорителям частиц будем характеризовать работу компрессора степенью компрессии импульса

$$s = \frac{T}{\tau},\tag{2}$$

коэффициентом полезного действия

$$\eta = \frac{\int_{0}^{T} |E_{N}|^{2} dt}{\int_{0}^{T} |E_{0}|^{2} dt}$$
(3)

Рис. 1. Компрессор микроволновых импульсов в виде цепочки резонаторов кольцевого типа.

Рис. 2. Характеристики оптимизированных компрессоров. КПД η (сплошные кривые) и коэффициент усиления мощности P_g (штриховые кривые) как функции степени компрессии *s*.

и коэффициентом усиления мощности

$$P_g = s\eta$$
,

где $\tau = L/v_{\rm gr}$, L — длина ускоряющей структуры, $v_{\rm gr}$ — групповая скорость волны в структуре.

В рамках сформулированной выше задачи КПД представляет собой функцию $\eta(\alpha, \delta, \Delta \varphi, \beta_n, \gamma_n)$ безразмерных параметров

$$lpha = rac{\mu T^2}{2}, \qquad \delta = rac{t_p}{T},$$
 $eta_n = (\omega_n' - \omega_g)T, \quad \gamma_n = rac{\omega_n'T}{2Q_n} \quad (1 \le n \le N).$

Метод численного анализа

Уравнения (1) интегрировались методом Рунге–Кутта. Для поиска максимума КПД (3) при фиксированной степени компрессии (2) использовался модифицированный метод Хука–Дживса [5], который хорошо зарекомендовал себя при расчетах различных микроволновых устройств [6,7].

Для рассматривавшихся в данной работе компрессоров время оптимизации на Pentium/166 MHz не превышало 1.5 min и заканчивалось после перебора 15 000 вариантов. Основная трудность расчета была обусловлена обнаруженной в процессе численного моделирования многоэкстремальностью КПД (3), что может оказаться существенным и при практической реализации компрессора.

Результаты численного моделирования

На рис. 2 приведены КПД и коэффициент усиления мощности как функции степени компрессии для следующих оптимизированных систем: *1* — однорезонаторный компрессор с импульсом с переворотом фазы; *2* — трехрезонаторный компрессор с ЛЧМ (линейно-частотно-

Рис. 3. Зависимости мощности (сплошные кривые) и фазы (штриховые кривые) выходного импульса от безразмерного времени для варианта *A* на рис. 2.

Рис. 4. То же, что на рис. 3, для варианта В на рис. 2.

Вариант	α	δ	$\Delta \varphi$	eta_1	γ_1	β_2	γ_2	β_3	γ_3
Α	24.2	_	_	8.65	1.86	16.	2.67	27.	4.15
В	20.3	0.909	1.46	5.51	1.54	13.1	2.27	24.3	5.11
С	9.15	0.858	1.89	0.63	1.24	8.71	2.86	—	_
D	17.1	0.921	1.02	1.35	1.82	8.69	2.98	16.8	5.67
E	18.2	—	—	1.26	1.93	8.37	2.88	16.6	4.24

Таблица 1. Параметры оптимизированных компрессоров для вариантов А, В, С, D и Е на рис. 2.

Таблица 2. Области робастности параметров оптимизированных компрессоров для вариантов А, В, С, D и Е на рис. 2.

Вариант	lpha,%	$\delta,\%$	$\Delta arphi, \%$	$eta_1,\%$	$\gamma_1, \%$	$\beta_2,\%$	$\gamma_2, \%$	$eta_3,\%$	$\gamma_3, \%$
Α	$^{+2}_{-2}$	-	-	$+7 \\ -7$	$+38\\-29$	$^{+4}_{-4}$	$+24 \\ -21$	$+3 \\ -3$	$+19 \\ -17$
В	$^{+2}_{-2}$	$+3 \\ -3$	$^{+25}_{-24}$	$^{+11}_{-11}$	$+38 \\ -31$	$^{+4}_{-4}$	$^{+24}_{-21}$	$^{+4}_{-4}$	$^{+19}_{-16}$
С	$^{+4}_{-4}$	+2 - (< 1)	$^{+15}_{-15}$	$+85\\-84$	$+36 \\ -30$	$^{+7}_{-7}$	$^{+19}_{-17}$	—	_
D	$+3 \\ -3$	$^{+4}$	$+39 \\ -40$	$^{+50}_{-55}$	$+42 \\ -31$	$^{+7}_{-7}$	$+22 \\ -19$	$^{+6}_{-6}$	+17 -15
Ε	$^{+3}_{-3}$	—	—	$\begin{array}{c} +58 \\ -60 \end{array}$	$+45 \\ -33$	$^{+8}_{-8}$	$+23 \\ -20$	$^{+5}_{-5}$	$^{+17}_{-15}$

модулированным) импульсом; 3 — двухрезонаторный компрессор с ЛЧМ импульсом со скачком фазы; 4 — трехрезонаторный компрессор с ЛЧМ импульсом со скачком фазы.

На рис. 3 и 4 показаны зависимости мощности P_{out} и фазы φ_{out} выходного импульса от безразмерного времени $t_0 = t/T$ для вариантов A и B на рис. 2.

В таблице 1 приведены параметры входного импульса и резонаторов для пяти вариантов *A*, *B*, *C*, *D* и *E* на рис. 2. В таблице 2 для тех же пяти вариантов приведены интервалы изменения параметров, внутри которых КПД снижается не более чем на 1%. Наиболее критичными являются скорость модуляции частоты и момент скачка фазы входного импульса.

Заключение

Поскольку с увеличением числа резонаторов в компрессоре робастность их оптимальных параметров уменьшается, при практической реализации компрессоров, по-видимому, следует ограничиться двумя или тремя резонаторами. Некоторого увеличения КПД вероятно можно достичь усложнением закона модуляции входного импульса.

Выражаем признательность М.И. Петелину за постоянный интерес к работе и стимулирующие обсуждения. Авторы благодарны А.М. Стерлину за предоставленную программу оптимизации, а также И.С. Гельфер и Д.А. Донских за помощь и консультации при программировании. Работа выполнена при поддержке Международного научного фонда (№ NOT 000 и NOT 300) и Российского фонда фундаментальных исследований (грант № 99-02-17781).

Список литературы

- Wilson P.B. // Application of High-Power Microwaves / Ed. A.V. Gaponov-Grekhov & V. Granatstein. Boston; London: Artech House, 1994. P. 229–317.
- [2] Farcas Z.D., Hogg H.A., Loew G.A., Wilson P.B. // Proc. 9th Conf. on Hogh Energy Accelerator. SLAC. Stanford, CA (USA), 1974. P. 576–582.
- [3] Balakin V.E., Syrachev I.V. // Proc. III Europian Particle Accelerator Conf. Berlin, 1992. P. 1173–1175.
- [4] Petelin M.I., Tai M.L. // AIP Conf. Proc. 1995. N 337. P. 303– 310.
- [5] Банди Б. Методы оптимизации. Вводный курс. Пер. с англ. М.: Радио и связь, 1988. 128 с.
- [6] Гупта К., Гардж Р., Чадха Р. Машинное проектирование СВЧ устройств. Пер. с англ. М.: Радио и связь, 1987. 432 с.
- [7] Мануилов М.Б. // РиЭ. 2000. Т. 45. № 1. С. 55-61.