03;04;07;12 Релаксация температуры электронов в плазме послесвечения инертных газов при повышенном давлении

© Н.А. Горбунов, Н.Б. Колоколов, Ф.Е. Латышев

Научно-исследовательский институт физики Санкт-Петербургского государственного университета, 198904 Санкт-Петербург, Россия E-mail: gorbunov@paloma.spbu.ru

(Поступило в Редакцию 29 марта 2000 г. В окончательной редакции 28 июня 2000 г.)

Проведено теоретическое и экспериментальное исследование релаксации электронной температуры T_e в послесвечении повышенного давления в гелии и неоне. Показано, что процессы с образованием быстрых электронов приводят к нагреву максвелловских электронов. Исследована высокоэнергетическая часть функции распределения электронов по энергиям в промежуточном случае между локальным и нелокальным режимами ее формирования. Выявлено, что в этом случае расчет эффективной энергии, вносимой быстрыми электронами в максвелловскую часть, существенно зависит от потенциала стенки газоразрядной трубки. Проведенное сопоставление расчетов с экспериментом позволило сделать вывод о надежности зондовой методики определения T_e в послесвечении при повышенных давлениях.

Введение

В последнее время большое внимание уделяется изучению плазмы, в которой эффективно протекают процессы, приводяющие к появлению быстрых электронов. Такими процессами, в частности, являются реакции хемоионизации

$$A^* + A^* \to \begin{cases} A^+ + A + \mathbf{e}, \\ A_2^+ + \mathbf{e} \end{cases}$$
(1)

и удары второго рода между возбужденными атомами и медленными электронами

$$A^* + e \to A + \mathbf{e}.\tag{2}$$

Здесь A^* и A — атомы в возбужденном и основном состояниях; A^+ и A_2^+ — атомарный и молекулярный ионы; **е** — быстрый электрон в выходных каналах реакций (1), (2), энергия которого много больше средней энергии основной группы электронов. Хотя в реакциях (1), (2) могут участвовать различные возбужденные состояния, основное внимание в плазме послесвечения электрического разряда уделяется элементам, имеющим метастабильные состояния (инертные газы, ртуть и т.п.). Этот выбор объясняется тем, что в силу относительно большой концентрации метастабильных частиц в плазме эффективное протекание реакций (1), (2) с их участием может существенно повлиять на оптические и электрокинетические характеристики плазмы.

Изучение реакций (1), (2) и их роли в формировании функции распределения электронов по энергиях (ФРЭЭ) было выполнено в плазме послесвечения инертных газов низкого давления, когда определяющую роль в балансе возбужденных и заряженных частиц диффузия на стенки газоразрядной трубки ($pR \leq 1$ Torr cm, где p — давление нейтрального газа, R — радиус с газоразрядной трубки). Результаты этих работ обобщены в [1]. Для экспериментального измерения ФРЭЭ использовался классический зондовый метод Ленгмюра, модифицированный для исследований с временным разрешением. Было выявлено, что энергетическое распределение электронов формируется в нелокальном режиме, т. е. ФРЭЭ в данной точке определяется параметрами плазмы во всем объеме [2,3]. Было показано, что в рассматриваемых условиях ФРЭЭ состоит из двух характерных частей и при теоретическом описании ее можно представить в виде суммы

$$f(\varepsilon) = f_{es}(\varepsilon) + f_{ef}(\varepsilon), \qquad (3)$$

где $f_{es}(\varepsilon)$ — ФРЭЭ основной группы электронов, которая имеет максвелловское распределение в тепловой области энергий из-за преобладающего межэлектронного взаимодействия; $f_{ef}(\varepsilon)$ — ФРЭЭ неравновесных быстрых электронов, рождающихся в результате реакций (1), (2).

Было показано, что высокоэнергетическая часть ФРЭЭ влияет на балансе электронной температуры (T_e) основной группы электронов, процессы ступенчатого возбуждения, диффузию заряженных частиц. Средняя энергия быстрых электронов $\bar{\varepsilon}_{ef}$ может быть порядка энергии их появления ($\bar{\varepsilon}_{ef} \sim 10 \text{ eV}$). Величина нагрева быстрыми электронами максвелловских существенно зависит от степени иоинизации плазмы и скорости процессов диффузии заряженных частиц на стенки, при этом значение T_e может превосходить в несколько раз температуру тяжелых частиц.

Менее изучено влияние реакций (1), (2) на послесвечение повышенного давления. Это связано главным образом с отсутствием до последнего времени надежного экспериментального метода определения ФРЭЭ при таких давлениях. С ростом параметра pR происходит смена режима формирования ФРЭЭ. Роль диффузии уменьшается по сравнению с процессами, происходящими в объеме плазмы. Для теоретического описания энергетического распределения электронов можно использовать локальное приближение, что значительно упрощает анализ. С другой стороны, с ростом давления нейтрального газа возрастает роль многочисленных плазмохимических процессов, происходящих в объеме плазмы (конверсия атомных ионов и возбужденных атомов в молекулярные ионы и возбужденные молекулы, диссоциативная рекомбинация и т.д.) Они в свою очередь оказывают влияние на баланс T_e и их необходимо учитывать при теоретическом анализе.

В плазме послесвечения инертных газов может реализоваться режим, когда высокоэнергетическая часть ФРЭЭ формируется в нелокальном режиме, а для низкоэнергетических электронов выполняется критерий формирования локальной ФРЭЭ. Однако практически отсутствуют работы, в которых бы исследовались особенности баланса электронной температуры в условиях перехода от нелокального к локальному режиму формирования ФРЭЭ.

В данной работе анализируется влияние реакций с образованием быстрых электронов на релаксацию электронной температуры в плазме послесвечения в области перехода от нелокального к локальному режиму формирования ФРЭЭ. Изучение данного вопроса проводилось в гелии и неоне, что связано с рядом причин. Во-первых, вопрос о релаксации температуры электронов имеет важное прикладное значение, поскольку данные инертные газы часто используются в качестве буферной среды мощных газовых лазеров [4]. Механизм создания инверсии в этих устройствах определяется в большой степени процессом рекомбинации заряженных частиц, который может характеризоваться сильной зависимостью от температуры основной группы электронов. Во-вторых, послесвечение часто используется для исследования различных элементарных процессов (рекомбинации, столкновений электронов с возбужденными атомами и т.д.), протекающих в плазме [5]. В большинстве работ проводятся лишь оценки нагрева максвелловской части распределения быстрыми электронами. В этой связи важной является задача построения упрощенной модели формирования ФРЭЭ, позволяющей определять Т_е из уравнения баланса энергии [6]. В данной работе проводится сопоставление экспериментального и теоретического определения Te, быстрой части ФРЭЭ в наиболее сложной для анализа переходной области от нелокального к локальному режиму формирования ФРЭЭ.

Измерения T_e при повышенных давлениях выполнялись до недавнего времени СВЧ методом и позволяли получить лишь усредненные по объему характеристики плазмы. Они представляют собой достаточно сложную техническую задачу [5]. В работе [7] при разработке зондового способа измерения ФРЭЭ в послесвечении повышенного давления гелия (20 и 40 Torr), когда зонд был неленгмюровский ($\alpha \gg \lambda$, где α — радиус зонда, $\lambda(\varepsilon)$ — длина свободного пробега электронов), использовалась методика, при которой $f(eV) \sim i'/V$, т.е.

ФРЭЭ оказывалась пропорциональна первой производной зондового тока *i'* по потенциалу зонда относительно плазмы V. Было показано, что в тепловой области энергий ФРЭЭ имеет максвелловский вид. Был обнаружен отрыв T_e от температуры атомов (T_a) на временах $t \leq 500 \,\mu$ s после окончания разрядного импульса. Однако вопрос о механизме нагрева максвелловских электронов не обсуждался, отсутствовали систематические измерения T_e . Поэтому одной из задач настоящей работы является оценка надежности измерения T_e по первой производной зондового тока в послесвечении повышенного давления путем сопоставления с результатами расчета.

Экспериментальная установка

Исследования проводились в цилиндрической стеклянной трубке с внутренним радиусом R = 0.6 cm и длиной L = 22 cm. Периодический электрический разряд в трубке создавался при помощи импульсного источника питания. Для измерения ФРЭЭ и напряженности электрического поля в трубке имелись подвижные электрические зонды радиусом a = 0.045 mm и длиной l = 2.5 mm. Электронная схема измерения зондовых вольт-амперных характеристик (ВАХ) подробно описана в [8]. В данной работе в рассматриваемых экспериментальных условиях радиус зонда был порядка или больше длины свободного пробега электрона $\lambda(\varepsilon)$. Поэтому для измерения ФРЭЭ в тепловой области энергий использовался предложенный в [9] и развитый в [7] для условий неленгмюровского зонда $a \gg \lambda(\varepsilon)$ метод, связывающий ФРЭЭ с первой производной зондового тока. Температура электронов получалась из результатов обработки экспериментальных зависимостей $\ln(i'/V)$ от V. Для условий $\alpha \sim \lambda(\varepsilon)$ систематическая ошибка указанного метода в определении Те, а также в измерении высокоэнергетической части по методу второй производной зондовой ВАХ учитывалась при помощи поправок, следующих из общей теории электронного тока на зонд [7].

Измерение концентрации возбужденных атомов на оси разрядной трубки проводилось методом поглощения. В качестве просвечивающего источника света использовался отросток кюветы, в котором зажигался слаботочный ВЧ разряд. Присутствие этого разряда не влияло на параметры плазмы в основной трубке. Регистрация оптических сигналов проводилась при помощи стробируемой схемы счета фотонов.

Концентрация электронов определялась по проводимости плазмы. Для этого в нужный момент послесвечения подавался дополнительный импульс напряжения, создающий слабое продольное электрическое поле [10].

Исследование реакций с учетом метастабильных атомов гелия и неона предъявляет жесткие требования к наличию примесных газов. Для того чтобы пренебречь неконтролируемым влиянием на свойства плазмы рождения электронов в реакции Пеннинга с участием метастабильных атомов и примесей, содержание последних должно быть меньше, чем концентрация самих возбужденных атомов ($\sim 10^{11}$ cm⁻³). С этой целью спектрально чистые инертные газы перед напуском в кювету подвергались дополнительной очистке и пропускались сквозь охлажденный до криогенных температур активированный уголь. Для поддержания высокой чистоты инертных газов во время горения резряда в разрядной трубке использовались геттерные электроды.

Анализ процессов, влияющих на релаксацию температуры электронов

Для конкретности все оценки, приведенные ниже, выполнены для типичных режимов, исследованных нами наиболее подробно: давление газа p = 20 Тогг, концентрация электронов n_e в послесвечении гелия изменялась от $2.3 \cdot 10^{12}$ до $2 \cdot 10^{11}$ сm⁻³, а в неоне — от $2 \cdot 10^{11}$ до 10^9 сm⁻³.

Проведенный анализ показал, что среди процессов, приводящих к потере энергии максвелловских электронов, можно пренебречь диффузионным охлаждением и электро-ионными столкновениями, а определяющую роль играют упругие электрон-атомные столкновения. Для нахождения изменения T_e во времени использовалось уравнение баланса энергии, которое для рассматриваемых условий имеет следующий вид:

$$\frac{3}{2}\frac{dT_e}{dt} = -\delta \langle \nu_{ea}(T_e) \rangle (T_e - T_a) + \sum_k \left(N_k \sum_{n \neq k} \Delta E_{kn} \beta_{kn}(T_e) \right) + \frac{1}{N_e} \sum_i \varepsilon_{ef} I_i, \quad (4)$$

где $\delta = 2m/M$ — коэффициент передачи энергии при упругих электрон-атомных столкновениях, *m* и *M* масса электрона и атома соответственно, $\langle \nu_{ea}(T_e) \rangle$ усредненная по максвелловскому распределению частота упругих столкновений электронов с атомами, T_a температура нейтрального газа; второе слагаемое в (4) описывает изменение энергии электронов в результате перехода атома из *k*-го состояния (с заселенностью N_k и энергий E_k) на уровень *n* с энергией E_n , $\beta_{kn}(T_e)$ — константа перехода $k \rightarrow n$, $\Delta E_n = E_n - E_k$ — энергетический зазор между уровнями; последнее слагаемое в правой части (4) описывает нагрев максвелловских электронов быстрыми с интенсивностью рождения I_i и эффективной энергией ε_{ef} .

Рассмотрим конкретный вид каждого слагаемого. Для послесвечения гелия набор констант элементарных процессов соответствовал (если это специально не оговорено в тексте) работе [5]. Для вычисления $\langle \nu_{ea}(T_e) \rangle$ нами использовались данные по сечению упругих столкновений электронов с атомами, приведенные в [11]. Оценки нагрева нейтрального газа для данных условий при среднем токе $I_d \sim 1.5$ mA за период следования разряда дают отрыв температуры газа на оси от температуры

стенок на 4 К. На основе этого мы пренебрегали изменением температуры газа в послесвечении и полагали $T_a = 300$ К.

Среди неупругих столкновений максвелловских электронов анализировались процессы с участием возбужденных атомов, атомарных и молекулярных ионов. Согласно приближению узкого места [12], приращение энергии за счет ударно-радиационной рекомбинации, просуммированное по верхним уровням ($H_{\rm rec}$), имеет вид

$$H_{\rm rec} = E_R \alpha_{\rm rec}(T_e) n_e N^+, \tag{5}$$

где E_R — энергия уровня, разделяющего энергетический спектр атома на области со столкновительной и излучательной кинетикой; $\alpha_{\rm rec}(T_e)$ — коэффициент трехчастичной рекомбинации; N^+ — концентрация положительных атомных ионов.

Выше E_R доминируют ударные процессы, ниже E_R тушение возбужденных состояний с излучением. Величина E_R рассчитывалась по формулам модифицированного диффузионного приближения [12]. Указанный процесс оказывает влияние на ранней стадии ($t < 100 \, \mu$ s) в послесвечении гелия. Концентрация ионов He⁺ вычислялась из соответствующего уравнения баланса, в котором учитывались убыль в реакциях трехчастичной рекомбинации, амбиполярной диффузии, конверсия в молекулярные ионы, а также их рождение в реакциях хемоионизации.

В неоне спад концентрации заряженных частиц определяется диссоциативной рекомбинацией из основного колебательного состояния молекулярного иона Ne_2^+ . Оценки увеличения T_e за счет преимущественной гибели в этой реакции электронов с малыми энергиями показали, что этим процессом можно пренебречь по сравнению с нагревом быстрыми электронами.

В рассматриваемых условиях молекулярные ионы образуются в высоковозбужденных колебательных состояниях, отстоящих от энергии диссоциации D_i на величину $\sim T_a$, как в результате конверсии атомарных ионов (характерное время конверсии $\tau_c \sim 40 \,\mu s$), так и в реакции (1). Релаксация колебательно-возбужденных состояний происходит при столкновениях как с атомами, так и электронами. Вопрос о скорости колебательной релаксации молекулярных ионов гелия и неона при столкновениях с атомами собственного газа остается дискуссионным [13,14]. Так, в [13] приводится оценка константы колебательной релаксации для гелия $k_a^{1,0} < 10^{-14} \,\mathrm{cm}^3/\mathrm{s}$ (переход $v = 1 \rightarrow v = 0$), а для неона $\mu_{a}^{1,0} = 5 \cdot 10^{-15} \text{ cm}^2/\text{s}$. В [14] считается, что эти процессы идут значительно быстрее $(k_a^{1,0} \approx 10^{-13} \,\mathrm{cm}^3/\mathrm{s})$. Значение константы релаксации колебательно возбужденных ионов He₂⁺ электронным ударом при $T_e \sim 300 \,\mathrm{K}$ составляет $k_e^{1,0} \approx 10^{-7} \,\mathrm{cm}^3/\mathrm{s}$ [15], а для неона соответствующая константа $k_e^{1,0} \approx 1.3 \cdot 10^{-7} \,\mathrm{cm}^3/\mathrm{s}$ [13]. Проведенные расчеты показали, что в ранней фазе в послесвечении гелия (t < 50 µs) процессы релаксации колебательно-возбужденных молекулярных ионов определяются столкновениями с электронами и вносят вклад

в суммарный нагрев максвелловских электронов примерно 10%. Варьирование констант скорости релаксации атомным ударом в диапазоне $k_a^{1,0} = 10^{-14} - 10^{-13} \text{ cm}^3/\text{s}$ практически не оказывает влияния на релаксацию T_e на временах $t > 50 \,\mu\text{s}$. Для послесвечения неона преобладает релаксация молекулярных ионов атомным ударом. При реализуемой в рассматриваемом эксперименте степени ионизации плазмы неона в уравнении баланса энергия процессами с участием молекулярных ионов можно пренебречь.

Анализ показал, что среди процессов девозбуждения определенную роль в балансе T_e (примерно 5–10%) в начальной фазе (t < 50 µs) послесвечения гелия перемешивание метастабильных может играть $He(2^{1}S)$ $\text{He}(2^{3}S)$ состояний И $(\Delta E = 0.8 \,\mathrm{eV}).$ Для плазмы неона существенную роль играют процессы возбуждения из нижнего метастабильного состояния $Ne({}^{3}P_{2}) \rightarrow Ne({}^{3}P_{1}).$ Константа этого процесса $\beta_{21} = 1.25 \cdot 10^{-7} \exp(-\Delta E_{21}/T_e)$, где $\Delta E_{21} = 0.052 \,\mathrm{eV} \,[16, 17].$

Послесвечение плазмы инертных газов при средних и высоких давлениях характеризуется относительно большой концентрацией метастабильных атомов, а для гелия — атомов и молекул $\operatorname{He}_p(a^3\Sigma_u^+)$. Быстрые электроны появляются с интенсивностью $I_{11} = \beta_e N_i n_e$ при ударах второго рода и $I_{ch} = \sum_{ik} \beta_{ik} N_i N_k$ в реакциях хемоионизации, где N_i, N_k — концентрации метастабильных частиц; β_e, β_{ik} — константы ударов второго рода и хемоионизации соответственно. Ширина энергетического спектра быстрых электронов в реакции (2) составляет величину $\sim T_e$, а в реакции (1) — порядка 1 eV, что существенно меньше начальной энергии электронов. Поэтому для рассматриваемых условий при теоретическом анализе высокоэнергетической части ФРЭЭ источники быстрых электронов можно полагать монокинетическими. В этом случае эффективная энергия, вносимая быстрыми электронами с начальной энергией ε' в систему медленных, равна [18]

$$\varepsilon_{ef} = \int_{0}^{\varepsilon'} \frac{\nu_{ee}}{\nu_{ee} + \delta\nu_{ea}} \exp\left(-\int_{\varepsilon}^{\varepsilon'} \frac{d\varepsilon}{\varepsilon k(\varepsilon)}\right) d\varepsilon, \qquad (6)$$

где $\nu_{ee}(\varepsilon)$ и $\nu_{ea}(\varepsilon)$ — частоты межэлектронных и упругих электрон-атомных столкновений,

$$k(\varepsilon) = (\nu^* + \nu_{ee} + \delta \nu_{ea})\tau_{df},\tag{7}$$

где ν^* — частота неупругих столкновений, $\tau_{df}(\varepsilon) = \Lambda^2/D_e(\varepsilon)$ — время свободной диффузии электрона на стенку трубки, Λ — диффузионная длина, $D_e(\varepsilon) = 2\varepsilon/3\nu_{ea}(\varepsilon)$ — коэффициент диффузии электронов.

В расчетах мы полагали, что энергия рождения быстрых электронов в реакции (1) для гелия $\varepsilon' = 14.6 \,\mathrm{eV}$ и для неона $\varepsilon' = 11.7 \,\mathrm{eV}$, а в реакции (2) $\varepsilon' = 19.8$ и 16.6 eV соответственно.

Расчет показал, что в рассматриваемых условиях в послесвечении гелия $k(\varepsilon') \approx 3$, причем $\nu_{ee}(\varepsilon') < \delta\nu_{ea}(\varepsilon')$. Значения $k(\varepsilon)$ увеличиваются при $\varepsilon < \varepsilon'$. Отсюда можно сделать вывод, что $f_{ef}(\varepsilon)$ в данном режиме формируется локально $(k \gg 1)$ и для расчета ε_{ef} можно в подынтегральном выражении (6) полагать экспоненту равной единице. В локальном приближении эффективная энергия определяется энергией рождения быстрых электронов, степенью ионизации среды и не зависит от скорости свободной диффузии электронов на стенки трубки. Для послесвечения гелия (4 < ε_{ef} < 12) eV в зависимости от фазы послесвечения.

Основным источником рождения быстрых электронов в послесвечении неона являются реакции хемоионизации. Оценки показывают, что $k(\varepsilon') \approx 0.3$, а $k(1 \text{ eV}) \approx 0.3 - 5$. Таким образом, для данных условий реализуется промежуточный случай между локальным и нелокальным режимами формирования $f_{ef}(\varepsilon)$. Расчет эффективных энергий с использованием выражения (6) дает значения в пределах $(0.015 < \varepsilon_{ef} < 0.25) \, \mathrm{eV}$ в зависимости от фазы послесвечения неона и показывает, что большая часть потока быстрых электронов уходит на стенки разрядной трубки. Расчет ε_{ef} , согласно локальному приближению, дает значения, в 20-80 раз бо́льшие. Столь существенное различие связано с тем, что в локальном приближении учитывается только релаксация энергии быстрых электронов в объеме, которая приводит к нагреву электронного или нейтрального газа.

Важным для описания нелокальных свойств ФРЭЭ является вопрос о характере диффузии электронов. Быстрые электроны движутся на стенку трубки в режиме свободной диффузии только тогда, когда их кинетическая энергия превышает потенциал стенки $e\varphi_w$. Если их кинетическая энергия меньше $e\varphi_w$, то они не могут уйти на стенку и время их свободной диффузии становится бесконечным. В этом случае для расчета ε_{ef} можно использовать (6) с разбиением на два интервала интегрирования: для $0 < \varepsilon \leq e\varphi_w$ использовать локальное приближение ($k(\varepsilon) \to \infty$), а для $e\varphi_w \leq \varepsilon \leq \varepsilon'$ выражение (6), в котором $k(\varepsilon)$ определяется по формуле (7). Как видно, для нахождения эффективной энергии необходимо знать величину потенциала стенки, которая заранее неизвестна.

Вопрос о потенциале стенки в условиях послесвечения с учетом источников быстрых электронов рассматривался в [19–21]. Величина φ_w складывается из амбиполярной φ_{es} и пристеночной φ_{eh} разности потенциалов и устанавливается из условия равенства потока электронов Γ_e и ионов Γ_i на стенку. Γ_e состоит из потока максвелловских (Γ_{es}) и быстрых электронов (Γ_{ef}). Для нелокального случая ($k(\varepsilon') \ll 1$) можно предположить, что все быстрые электроны уходят на стенки и их влияние можно оценить при помощи параметра $P = \Gamma_{ef}/\Gamma_i \approx \bar{I} \cdot \tau_{da}/\bar{n}_e$, где \bar{I} и \bar{n}_e — усредненный по радиусу источник рождения быстрых электронов и средняя концентрация электронов, $\tau_{da} = \Lambda^2/D_a$ — время

амбиполярной диффузии, $D_a = D_i(1 + T_e/T_i)$ — коэффициент амбиполярной диффузии, D_i — коэффициент диффузии ионов. В случае $P \ll 1$ быстрые электроны играют незначительную роль в общем потоке электронов на стенку, значение φ_w определяется максвелловскими электронами и составляет величину $\sim (6-10)T_e$. В случае P > 1 для взаимной компенсации электронного и ионного потока на стенку величина φ_{eh} возрастает до значений, при которых часть быстрых электронов запирается в объеме и на ФРЭЭ образуется сплошной спектр. Ранее режим со скачком пристеночного потенциала наблюдался в плазме послесвечения низкого давления ($k(\varepsilon') \ll 1$) [20] в ксеноне на временах задержки $t > 200 \, \mu$ s после окончания импульса тока.

Из приведенной оценки параметра P можно заключить, что в плазме повышенного давления при $k(\varepsilon') \leq 1$ с замедлением скорости амбиполярной диффузии вероятность возникновения режима со скачком потенциала повышается. Действительно, расчеты показывают, что в послесвечении неона $P \approx 10$ уже на 50 μ s после окончания импульса тока и, значит, реализуется режим со скачком пристеночного потенциала. Для экспериментальной проверки режима формирования $f_{ef}(\varepsilon)$ нами были выполнены измерения высокоэнергетической части ФРЭЭ на оси и проведено сранение с расчетом, который выполнялся по формуле [20]

$$f_{ef}(\varepsilon) = \frac{\bar{I}_{ch}(\varepsilon_2')}{\varepsilon^{3/2}(\bar{\nu}_{ee} + \delta\nu_{ea})} \exp\left(-\int_{\varepsilon}^{\varepsilon_2'} \frac{d\varepsilon}{\varepsilon k(\varepsilon)}\right), \quad (8)$$

где $\bar{\nu}_{ee}$ и $\bar{I}_{ch}(\varepsilon'_2)$ — усредненные по сечению трубки частота межэлектронных столкновений и источник рождения быстрых электронов в реакциях хемоионизации с начальной энергий $\varepsilon'_2 = 11.7 \text{ eV}.$

Для нахождения φ_w использовалось равенство Γ_i и Γ_{ef} . Амбиполярный поток ионов определяется радиальным профилем концентрации медленных электронов $n_e(r)$ и равен на единицу длины трубки

$$\Gamma_i = 2\pi R D_a \frac{\partial n_i(r)}{\partial r} \bigg|_{r=R}.$$
(9)

При проведении вычислений учитывалась деформация $n_i(r)$ по сравнению с распределением Бесселя $J_0(\mu r/R)$ [22] ($\mu = 2.4$ — первый корень функции Бесселя нулевого порядка), обусловленная протеканием интенсивной диссоциативной рекомбинации электронов и молекулярных ионов Ne₂⁺. В начальной фазе послесвечения ($t \leq 100 \,\mu$ s) частота рекомбинации на оси трубки превосходила в 10–20 раз скорость распада основной диффузионной моды. Рекомбинация формирует профиль более пологий в центре трубки и спадающий быстрее основной диффузионной моды на периферии, что увеличивает поток на стенку по сравнению с чисто диффузионным распределением в нашем случае до полутора раз [22].

Рис. 1. ФРЭЭ в неоне. 1 — результат эксперимента; 2, 3 — результаты численного расчета при потенциалах стенки $\varphi_w = 0.3, 9.5 \text{ eV}$ соответственно.

Поскольку основным механизмом гибели быстрых электронов является диффузия на стенку трубки, то при вычислении Γ_{ef} мы предполагали их распределение близким к $J_0(\mu r/R)$. Обратим внимание, что, хотя функция распределения при $\varepsilon > e\varphi_w$ нелокальна, в качестве ее аргумента используется кинетическая энергия, которая в рассматриваемом нами случае плазмы послесвечения практически совпадает с полной из-за малой величины радиального амбиполярного поля. Его значение определяется температурой медленных электронов и равно по порядку величины kT_e/e , что существенно меньше ε'_2/e . Поток Γ_{ef} в приближении формулы (8) определяется усредненной по $f_{ef}(\varepsilon)$ частотой ухода быстрых электронов из объема плазмы [20]

$$\Gamma_{ef} = 2\pi R \cdot J_1(\mu) \int_{e\varphi_w}^{\varepsilon_2'} D_e(\varepsilon) f_{ef}(\varepsilon) \sqrt{\varepsilon} \, d\varepsilon, \qquad (10)$$

где $J_1(2.4) = 0.52$.

Приведенное выражение является верхней оценкой и может превышать реальное значение на 30–40%. Это связано, во-первых, с тем,что пренебрегается отличием полной энергии от кинетической (торможением электронов амбиполярным полем), во-вторых, источник быстрых электронов сосредоточен в приосевой области и радиальное распределение быстрых электронов может быть более узким по сравнению с $J_0(\mu r/R)$, что увеличивает время диффузии. Однако проводившиеся ранее измерения обсуждаемой радиальной зависимости [20,21] подтверждают, что используемое нами $\mu = 2.4$ является хорошим приближением.

Результат измерения $f_{ef}(\varepsilon)$ в неоне на оси трубки при времени задержки в послесвечении $\tau = 100 \,\mu s$ приведен на рис. 1. Измерения проводились по второй производной зондового тока, поскольку решение модельных задач показало [7], что данный метод обладает для этих условий меньшей погрешностью, чем однократное

дифференцирование. Однако его применение дает заниженные (до 2-3 раз в области малых энергий) значения по сравнению с истинной ФРЭЭ. Здесь же приведены результаты двух численных расчетов ФРЭЭ, выполненных при различных φ_w . В первом случае (кривая 2) $\varphi_w = \varphi_{es} = 5T_e \approx 0.3 \,\mathrm{eV}$. В этом случае наблюдается обеднение ФРЭЭ в диапазоне $(0.5 \leq \varepsilon \leq 11) \, \text{eV}$, вызванное диффузионным уходом электронов на стенку при релаксации. Во втором случае (кривая 3) величина φ_w определялась из совместного решения системы уравнений баланса T_e и $\Gamma_{ef} = \Gamma_i$. Решение системы дало $\varphi_w = 9.5 \,\mathrm{eV}$. В этом случае большая часть быстрых электронов заперта в объеме пристеночным скачком потенциала. Количество быстрых электронов существенно возросло. Как видно из сравнения, расчет со скачком пристеночного потенциала согласуется с измеренной высокоэнергетической частью ФРЭЭ. Расчет в предположении, что потенциал стенки определяется потоком Γ_{es} (кривая 2), имеет качественно иной вид. Это подтверждает, что в данных условиях реализуется режим со скачком пристеночного потенциала.

Результаты исследования релаксации температуры электронов в послесвечении гелия и неона

Для послесвечения гелия уравнение (4) в совокупности с уравнениями баланса для концентраций метастабильных молекул $\operatorname{He}_{p}(a^{3}\Sigma_{\mu}^{+})$, атомарных ионов, молекулярных ионов в основном He2⁺ и колебательновозбужденных состояниях Не2+*, дополненные условием квазинейтральности $n_e = [He^+] + [He^+_2] + [He^{+*}_2]$ и измеренными значениями концентрации метастабильных атомов, образуют замкнутую систему для расчета Т. Численный расчет проводился на оси разрядной трубки. Начальная концентрация электронов определялась по проводимости плазмы в конце разрядного импульса. Поскольку основным механизмом гибели заряженных частиц в активной фазе разряда является амбиполярная диффузия, то распределение электронов по радиусу близко к $J_0(\mu r/R)$ и при токе в импульсе $I_d = 90 \,\mathrm{mA}$ $n_e(0) = 2.3 \cdot 10^{12} \,\mathrm{cm}^{-3}$. Оценки показывают, что в конце активной фазы разряда содержание молекулярных ионов составляет примерно 20% от n_e. Начальное значение [He₂^{+*}] определяется процессом разрушения в активной фазе разряда. Для конкретных условий [He₂^{+*}] уменьшается примерно в два раза во время протекания разрядного тока. Отметим, что варьирование начальных условий для $[\text{He}_2^{+*}]$, $[\text{He}_2^+]$, $[\text{He}_2(a^2\Sigma_u^+)]$ на 50% практически не сказывается на релаксации Т_е на временах задержки $t \ge 30 \,\mu s$.

На рис. 2, *а* приведены результаты расчета $n_e(t)$, $[\text{He}_2(a^3\Sigma_u^+)](t)$, а также сопоставление с экспериментальными значениями на оси $n_e(0, t)$. Поскольку по проводимости плазмы определяется усредненная по сечению концентрация $\bar{n}_e(t)$, то для значений на оси указан

Рис. 2. Параметры плазмы в послесвечении гелия: a — концентрации возбужденных и заряженных частиц (• — измерения [He($2^{3}S$)], штриховая кривая — расчет [He₂($a^{3}\Sigma_{u}^{+}$)], сплошная — расчет n_{e} на оси с указанием значений, полученных из эксперимента); b — температура электронов (• — эксперимент, слошная кривая — расчет).

диапазон возможных значений $n_e(0, t)$ — от $\bar{n}_e(t)/0.43$ до $\bar{n}_e(t)/0.8$. Как видно из рисунка, теоретический расчет $n_e(t)$ в начальной фазе послесвечения соответствует полученным экспериментальным значениям в предположении рекомбинационного профиля электронов, что согласуется с проведенными оценками. В позднем послесвечении $n_e(t)$ совпадает со значениями в предположении бесселевского распределения заряженных частиц, переход к которому осуществляется за время $\tau_{da} \sim 10^3 \, \mu$ s. Таким образом, хорошее согласие теории и эксперимента в описании релаксации заряженных частиц позволяет сделать вывод о правильности используемой модели.

На рис. 2, *b* приведены результаты расчета и экспериментального определения T_e . Измерения T_e проводились по методу первой производной зондового тока. Из рисунка видно, что в исследуемом временном интервале $t \leq 10^3 \mu$ s наблюдается существенный отрыв T_e от T_a . Поскольку время релаксации T_e на упругих столкновениях $\delta \langle \nu_{ea}(T_e) \rangle < 0.5 \,\mu$ s, то наблюдаемый отрыв связан

Рис. 3. Температура электронов в несамостоятельном разряде в гелии: • — эксперимент, кривая —расчет.

с нагревом быстрыми электронами. Анализ показал, что в конкретном режиме основным источником нагрева максвелловских электронов служат удары 2-го рода с атомарными и молекулярными метастабильными состояниями. Результаты теории и эксперимента согласуются между собой.

Точность экспериментального определения T_e проверялась специальными измерениями в несамостоятельном разряде. Для этого в послесвечении при $t = 400 \,\mu$ s создавалось слабое электрическое поле при помощи дополнительного импульса. При этом T_e определяется главным образом величиной электрического поля E. На рис. 3 приведено сопоставление измеренной T_e и вычисленной зависимости $T_e(E/p)$. Расчет, в котором принят во внимание нагрев электрическим полем, отличается от эксперимента на 8%. Если учесть дополнительный нагрев за счет быстрых электронов, то получим отличие расчета и эксперимента в пределах случайной погрешности около 4%. Это свидетельствует о надежности примененного зондового метода в определении T_e при повышенных давлениях.

Для послесвечения неона измеренные концентрации электронов и концентрации наиболее заселенных возбужденных состояний атомов N^* приведены на рис. 4, *a*. Поскольку все необходимые значения n_e и N^* известны из эксперимента, а частота релаксации $\delta \langle \nu_{ea}(T_e) \rangle \sim 3 \mu s$, то расчет T_e и потоков заряженных частиц на стенку проводился в квазистационарном приближении $(dT_e/dt = 0)$.

Измерение T_e проводилось по методу первой производной. Поскольку сечение упругих столкновений в тепловой области энергий в неоне в пять раз меньше, чем в гелии, то, согласно решению модельных задач [7], данная методика в данных условиях ($a \sim \lambda(\varepsilon)$) дает систематическое занижение величины T_e на 10%. Для представленных измерений была проведена коррекция на указанную систематическую ошибку. Как видно из измерений (рис. 4, *b*), отрыв T_e от T_a в ранней фазе послесвечения $t \leq 100 \, \mu$ s может достигать 200 К.

Для тепловой области энергий, где распределение электронов имеет максвелловский вид, частота энергетической релаксации определяется $\delta \nu_{ea}$ и частотой перемешивания возбужденных состояний ν^* . Оценки дают значение $k(0.1) \sim (0.3-1)$. В области неравновесного формирования ФРЭЭ $T_e \ll \varepsilon \leqslant \varepsilon'$ эффективность передачи энергии в процессах перемешивания падает как $\Delta E_{21}/\varepsilon$ и значение $k(\varepsilon)$ определяется $\delta \nu_{ea}$ и ν_{ee} . Таким образом, в неоне реализуется переходный режим между локальным и нелокальным случаями формирования ФРЭЭ. Высокоэнергетическая часть ФРЭЭ формируется главным образом в нелокальном режиме. В области сосредоточения максвелловских электронов в начальной фазе послесвечения формирование ФРЭЭ в основном локально.

Рис. 4. Параметры плазмы в послесвечении неона. *а* — измеренные концентрации возбужденных и заряженных частиц: ■ — n_e , • — [Ne(${}^{3}P_2$)], ▲ — [Ne(${}^{3}P_1$)], ▼ — [Ne(${}^{3}P_0$)], ◆ — [Ne(${}^{1}P_1$)]; *b* — температура электронов: ■ — эксперимент, значки — результаты расчета T_e на оси трубки (▲ — локальное приближение); •, ◆, ▼ — нелокальное приближение. φ_w , eV: • — 0.3, ◆ — 9.5 eV (в расчете используется значение n_e на оси), ▼ — 9.5 (в расчете используется значение n_e , усредненное по радиусу).

При вычислении Те мы сопоставили предельные случаи локального и нелокального приближений. Обнаружилось значительное различие при расчете эффективных энергий между локальным ε_l и нелокальным ε_{nl} случаями. Так, при $t = 50 \,\mu s \, \varepsilon_l = 4.2 \, \text{eV}$, а $\varepsilon_{nl} = 0.26 \, \text{eV}$ и различие составляет более порядка величины. С увеличением времени задержки эта разница еще более возрастает и при $t = 500 \,\mu s \, \varepsilon_l = 1.3 \, eV$, а $\varepsilon_{nl} = 0.015 \, eV$ достигает практически двух порядков величины. Это различие существенным образом сказывается на рассчитанном значении Те. Локальный расчет, согласно которому надо использовать ε_l и значения n_e и N^* на оси (\blacktriangle , рис. 4, b), дает отрыв ($T_e - T_a$), который в начальной фазе послесвечения в несколько раз превышает экспериментальные значения. Напротив, нелокальный расчет без учета скачка потенциала стенки, согласно которому надо использовать ε_{nl} и усредненные по радиусу значения n_e и N^* (•, рис. 4, b), не может объяснить наблюдаемый в эксперименте отрыв T_e от T_a .

Как уже отмечалось, в данных условиях реализуется режим со скачком пристеночного потенциала $\varphi_w \sim 9 - 10 \, \mathrm{eV}$. Это обстоятельство существенно увеличивает значение эффективной энергии в нелокальном приближении. Результаты расчета Те из совместного решения системы уравнений баланса T_e и уравнения для нахождения φ_w представлены на рис. 4, b (\blacklozenge и \checkmark). В одном из расчетов использовалось значение n_e на оси (), что соответствует локальному приближению в формировании максвелловских электронов. Для другого расчета (▼) использовалось среднее по радиусу значение n_e , что соответствует нелокальному режиму формирования максвелловских электронов в поздней фазе послествечения. Диапазон между этими кривыми соответствует неопределенности в расчете, которую можно получить в данном переходном случае формирования ФРЭЭ. Как видно, экспериментальные значения соответствуют указанному коридору при расчете Т. Для более точного расчета необходимо знание радиальных зависимостей амбиполярного потенциала, концентраций возбужденных атомов и электронов.

Заключение

В работе показано, что при повышенных давлениях процессы с образованием быстрых электронов существенно влияют на скорость релаксации электронной температуры. При этом время релаксации оказывается много больше времени потери энергии электронами при упругих электрон-атомных столкновениях. Установлено сильное влияние потенциала стенки на баланс электронной температуры в переходом режиме формирования ФРЭЭ от локального к нелокальному случаю. Увеличение вероятности появления скачка пристеночного потенциала при повышенных давлениях связано с уменьшением амбиполярного потока ионов на стенку по сравнению с плазмой низкого давления.

3* Журнал технической физики, 2001, том 71, вып. 4

Работа выполнена при поддержке гранта РФФИ (№ 00-02-17662).

Список литературы

- Kolokolov N.B., Kudrjavtsev A.A., Blagoev A.B. // Physica Scripta. 1994. Vol. 50. N 4. P. 371–402.
- [2] Цендин Л.Д., Голубовский Ю.Б. // ЖТФ. 1977. Т. 47. Вып. 9. С. 1839–1851.
- [3] Колоколов Н.Б., Кудрявцев А.А., Романенко В.А. // ЖТФ. 1986. Т. 56. Вып. 9. С. 1737–1743.
- [4] Гудзенко Л.И., Яковленко С.И. Плазменные лазеры. М.: Атомиздат, 1978, 254 с.
- [5] Deloche R., Monchicourt R. Cheret M. et al. // Phys. Rev. A. 1976. Vol. 13. N 3. P. 1140–1162.
- [6] Arslanbekov R.R., Kudryavtsev A.A. // Phys. Rev. E. 1998. Vol. 58. N 5. P. 6539–6552.
- [7] Горбунов Н.А., Колоколов Н.Б., Кудрявцев А.А. // Физика плазмы. 1989. Т. 15. № 12. С. 1513–1520.
- [8] Горбунов Н.А., Колоколов Н.Б., Кудрявцев А.А. // ЖТФ. 1988. Т. 58. Вып. 9. С. 1817–1819.
- [9] Голубовский Ю.Б., Захарова В.М., Пасункин В.Н., Цендин Л.Д. // Физика плазмы. 1981. Т. 7. № 3. С. 620–628.
- [10] Герасимов Г.Н., Лягущенко Р.И., Старцев Г.П. // Опт. и спектр. 1971. Т. 30. Вып. 4. С. 606-611.
- [11] Хаксли Л., Кромптон Р. Диффузия и дрейф электронов в газах. М.: Мир, 1977. 672 с.
- [12] Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. 374 с.
- [13] Иванов В.А. Распадающаяся плазма с молекулярными ионами // Химия плазмы. Вып. 13. М.: Энергоатомиздат, 1987. С. 74–114.
- [14] Карачевцев Г.В., Тальрозе В.Л. // Химия плазмы. Вып. 14. М.: Энергоатомиздат. 1987. С. 255–258.
- [15] Большаков А.А., Скобло Ю.Э. // Опт. и спектр. 1990. Т. 68. Вып. 6. С. 1248–1254.
- [16] Pilosof N., Blagoev A. // J. Phys. B. 1988. Vol. 21. N 4. P. 639–642.
- [17] Иванов В.А. // Опт. и спектр. 1998. Т. 84. № 5. С. 709-716.
- [18] Благоев А.Б., Каган Ю.М., Колоколов Н.Б., Лягущенко Р.И. // ЖТФ. 1972. Т. 44. Вып. 2. С. 339–347.
- [19] Демидов В.И., Колоколов Н.Б. // ЖТФ. 1980. Т. 50. Вып. 3. С. 564–571.
- [20] Демидов В.И., Колоколов Н.Б., Торонов О.Г. // Физика плазмы. 1986. Т. 12. № 6. С. 702–707.
- [21] Колоколов Н.Б., Кудрявцев А.А., Романенко В.А. // ЖТФ. 1988. Т. 58. Вып. 11. С. 2098–2105.
- [22] Gray E.P., Kerr D.E. // Ann. Phys. 1962. Vol. 17. N 2. P. 276– 300.