04;10;12

О предельном рабочем давлении плазменного источника электронов на основе разряда с полым катодом

© Ю.А. Бурачевский, В.А. Бурдовицин, А.В. Мытников, Е.М. Окс

Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия E-mail: oks@fet.tusur.ru

(Поступило в Редакцию 23 марта 2000 г.)

Представлены результаты эеспериментального исследования взаимосвязи параметров ускоряющего промежутка плазменного электронного источника и предельных значений давления газа и напряжения на этом промежутке. Установлено, что в присутствии электронного пучка электрическая прочность ускоряющего промежутка повышается.

Актуальность проблемы генерации пучковой плазмы в форвакуумном диапазоне давлений для ряда технологических применений таких, например, как отжиг и плавление материалов, обработка поверхностей, инициирование плазменно-пучкового разряда для целей плазмохимии [1], обусловила потребность в надежных и эффективных источниках электронов, способных обеспечивать пучок при давлениях уровня 100 mTorr. Отмеченная проблема может быть решена при использовании плазменных источников электронов на основе разрядов с "холодным" (ненакапливаемым) катодом [2,3]. Именно способность генерировать интенсивные электронные пучки при повышенных давлениях выгодно отличает плазменные эмиттеры электронов от систем с термокатодом, время жизни которых при таких давлениях резко ограничено.

Ранее [4–7] нами был создан плазменный источник электронов на основе разряда с полым катодом, способный генерировать в форвакуумном диапазоне давлений стационарный электронный пучок с током до 1 А и энергией порядка 10 keV.

В настоящей работе приводятся результаты экспериментальных исследований по достижению предельных рабочих давлений, при которых еще возможна генерация электронного пучка. Обсуждаются также основные причины, обусловливающие ограничения по величине рабочего давления.

Используемый в эксприментах плазменный источник электронов схематично представлен на рис. 1. Плазма, эмиттирующая электроны, образуется в разрядной камере, состоящей из медного полого катода 1 и плоского полого анода 2 с центральным эмиссионным отверстием 3 диаметром 16 mm. Для стабилизации плазменной границы и экранирования ускоряющего поля в разрядную систему отверстие в аноде перекрывалось мелкоструктурной металлической сеткой. Размер ячейки сетки варьировался от 0.25×0.25 до 1.0×1.0 mm. Геометрическая прозрачность сеток достигала 70%. В ряде случаев сетка заменялась перфорированным электродом с размерами отверстий, близкими к размерам ячеек сеток. Формирование электронного пучка достигалось извлечением электронов через эмиссионное отверстие в аноде подачей напряжения на ускоряющий промежуток анод 2-экстрактор 4. Увеличение давления осуществлялось напуском газа (воздуха) в рабочую камеру вакуумной установки. Это обеспечивало равенство давлений в газоразрядной камере и в области ускорения и транспортировки пучка. Более подробно конструкция источника, его параметры и характеристики изложены в [4,7].

Предельные значения давления газа p_m и ускоряющего напряжения U_m фиксировались в момент, непосредственно предшествующий резкому возрастанию тока I_e (пробою) в цепи источника ускоряющего напряжения. Как и следовало ожидать, значения p_m и U_m находятся в обратной зависимости друг от друга. Эксперименты показали, что обе эти величины возрастают по мере уменьшения размера h ячейки сетки и расстояния dанод-экстрактор. Указанные зависимости приведены на рис. 2, 3. Представленная на рис. 3 зависимость пробив-

Рис. 1. Схема плазменного источника электронов.

ного напряжения от давления в сущности представляет собой кривую Пашена, снятую при неизменном межэлектронном расстоянии. Ожидалось, что присутствие в ускоряющем промежутке электронного пучка с его способностью к эффективной ионизации остаточного газа должно облегчать зажигание разряда (пробой) в ускоряющем промежутке. Однако в эксперименте величина пробивного напряжения при наличии электронного пучка в ускоряющем промежутке оказалась выше по сравнению со случаем "обычного" пашеновского пробоя (рис. 4).

Как отмечалось в ряде работ [8,9], основная особенность "форвакуумного" режима работы плазменных электронных источников состоит в наличии интенсивной ионизации газа в ускоряющем промежутке и последующем влиянии обратного ионного потока на параметры эмиттирующей плазмы, приводящем к росту ее концентрации. Это в свою очередь вызывает увеличение эмиссионного тока, сопровождаемое дальнейшим возрастанием интенсивности ионизации газа. При наличии определенных условий указанные процессы развиваются

Рис. 2. Зависимость максимального рабочего давления от размера ячейки сетки на аноде. Извлекающее напряжение U_e , kV: I - 4, 2 - 7, 3 - 12 kV; ток разряда $I_d = 500$ mA.

Рис. 3. Зависимость максимального извлекающего напряжения от давления. Расстояние d анод-экстрактор, mm: 1 - 5, 2 - 15, 3 - 25, 4 - 50, 5 - 75. Ток разряда 1 A, h = 0.45 mm.

Рис. 4. То же, что на рис. 3, при различных значениях разрядного тока I_d , A: I = 1, 2 = 0.5, 3 = 0.

лавинообразно и заканчиваются переключением разряда с анода на экстрактор. Напряжение на ускоряющем промежутке падает при этом до нескольких десятков вольт, пучок исчезает.

Рост концентрации плазмы в области эмиссионного отверстия приводит также к перемещению плазменной границы в сторону экстрактора. Это уменьшает протяженность слоя пространственного заряда в ускоряющем промежутке, а следовательно, снижается и эффективная длина ускоряющего промежутка (расстояние между эмиссионной границей плазмы и ускоряющим электродом). Фактором, препятствующим лавинообразному нарастанию тока и перемещению плазменной границы, является сетка, которая выполняет свою стабилизирующую роль до тех пор, пока увеличение эмиссионного тока компенсируется ростом потенциала плазмы и соответственно уменьшением площади эмиссионной поверхности плазмы за счет увеличения протяженности слоя пространственного заряда, отделяющего плазму от сеточного электрода [10]. Значения р_т определяются таким образом совокупным действием обоих механизмов.

Учитывая в качестве основного механизма релаксации в плазме ионов из ускоряющего промежутка их перезарядку на газовых молекулах, а в качестве механизма ухода образовавшихся ионов — диффузию [9], принимая во внимание условие квазинейтральности плазмы и ограничиваясь одномерным случаем, получаем соотношение между концентрацией n(0) плазмы в области эмиссионного отверстия и плотностью j_i тока ионов из ускоряющего промежутка

$$n(0) = n_0 + \frac{3j_i Q_i}{eQ_n} \sqrt{\frac{\pi M_i}{8kT_i}},$$
 (1)

где n_0 — концентрация плазмы в отсутствие ионного потока, Q_i — полное сечение взаимодействия медленного иона в плазме, Q_n — сечение перезарядки быстрого иона, M_i , T_i — масса иона и температура ионного компонента плазмы.

С учетом известных соотношений для плотности хаотического тока электронов из плазмы и выхода ионизации быстрыми электронами имеем

$$j_e = \frac{en(0)\nu}{4} = \frac{en(0)}{4}\sqrt{\frac{8kT_e}{\pi m}},$$
 (2)

$$Z = n_n Q_e d, \tag{3}$$

где j_e — плотность электронного тока с границы плазмы, ν — средняя тепловая скорость плазменных электронов, T_e , m — температура электронной компоненты и масса электрона, Z — число ионов, образованных одним электроном в ускоряющем промежутке, n_n — концентрация нейтральных молекул в ускоряющем промежутке, Q_e сечение ионизации газовых молекул быстрыми электронами, d — протяженность ускоряющего промежутка.

Тогда для плотности ионного тока можем записать

$$j_i = n_n Q_e d \frac{en(0)}{4} \sqrt{\frac{8kT_e}{\pi m}}.$$
(4)

Подставляя (4) в (1) и разрешая полученное выражение относительно n(0), получаем

$$n(0) = n_0 \left(1 - n_n Q_e d \frac{3}{4} \frac{Q_i}{Q_n} \sqrt{\frac{MT_e}{mT_i}} \right)^{-1}.$$
 (5)

Определим толщину слоя, отделяющую плазму от сетки в пределах одной ячейки, исходя из представления о том, что в рабочем режиме электронного источника ток анода равен нулю. В этих условиях толщина l_l слоя равна

$$l_l = 2\sqrt{\varepsilon_0 U_l^{3/2} \left(n(0)\sqrt{ekT_e}\right)^{-1}},\tag{6}$$

где U_l — падение потенциала на слое, определяемое соотношением средних тепловых скоростей ионов и электронов плазмы.

Подставляя (5) в (6), получаем выражение удобное для качественного анализа

$$l_l = 2\sqrt{\varepsilon_0 U_l^{3/2} \left(n_0 \sqrt{ekT_e}\right)^{-1} \left(1 - \frac{3}{4} n_n Q_e d \frac{Q_i}{Q_n} \sqrt{\frac{MT_e}{mT_i}}\right)}.$$
(7)

Если взять за критерий устойчивости плазменной границы примерное равенство $l_l \approx h$ и учесть соотношение $p = n_n kT$, а также слабую зависимость U_i от давления, то становится ясной связь между p_m , h и d, т. е. увеличение давления p газа или расстояния d вызывает, согласно (7), уменьшение толщины l_l слоя и, следовательно, устойчивость плазменной границы может быть обеспечена при меньших размерах h ячейки сетки.

Для анализа влияния напряжения U_e на ускоряющем промежутке обратимся к выражению (1), в котором с увеличением U_e растет j_i за счет улучшения фокусировки электронного, а следовательно, и ионного пучков. Таким образом, с увеличением U_e возрастает концентрация плазмы вблизи ее границы со всеми вытекающими последствиями. Непосредственное уменьшение l_l с ростом U_e также приводит к выводу о необходимости уменьшения h для обеспечения устойчивости плазменной границы.

Наблюдаемое в эксперименте повышение электрической прочности ускоряющего промежутка в условиях распространения электронного пучка (рис. 4) может быть связано с локальным нагревом газа в области транспортировки пучка, обусловливающим при постоянном давлении снижение плотности газа, а следовательно, и уменьшение обратного ионного потока ионов [11]. Другим возможным фактором является перекомпенсация электронного пучка, приводящая к формированию положительного пространственного заряда в ускоряющем промежутке [12]. В этом случае реализуется существенно неоднородное распределение потенциала ускоряющего поля, что эквивалентно уменьшению эффективной длины ускоряющего промежутка. Поскольку в условиях эксперимента рабочая точка параметров ускоряющего промежутка находится на левой ветви кривой Пашена, то соответствующее уменьшение концентрации газа и протяженности ускоряющего промежутка при прохождении электронного тока способствует повышению его электрической прочности.

Таким образом, проведенные нами исследования свидетельствуют о возможности реализации в системе с плазменным катодом электронного пучка в форвакуумном диапазоне вплоть до 100 mTorr.

Список литературы

- Иванов А.А., Никифоров В.А. // Химия плазмы. М.: Атомиздат, 1978. Вып. 5. С. 148–175.
- [2] *Крейндель Ю.Е.*, Плазменные источники электронов. М.: Энергоатомиздат, 1977. 143 с.
- [3] Oks E.M., Schanin P.M. // Physics of Plasmas. 1999. Vol. 7. N 5. P. 1649–1654.
- [4] Мытников А.В., Окс Е.М., Чагин А.А.// ПТЭ. 1998. № 1. С. 1–4.
- [5] Burdovitsin V.A., Oks E.M., Serov A.A. // Proc. 12th Intern. conf. on High-power Particle Bearns. Haifa (Israel), 1998. P. 412–415.
- [6] Burdovitsin V.A., Mytnikov A.V., Oks E.M., Serov A.A. // Proc. 14th Intern. Symposium on Plasma Chemistry. Prague, 1999. P. 595–600.
- Burdovitsin V.A., Oks E.M. // Rev. Sci Instrum. 1999. Vol. 70.
 N 7. P. 2975–2778.
- [8] Крейндель Ю.Е., Никитинский В.А. // ЖТФ. 1971. Т. 41. Вып. 11. С. 2378–2382.
- [9] Груздев В.А., Крейндель Ю.Е. // Разработка и применение источников интенсивных электронных пучков. Новосибирск: Наука, 1976. С. 130–135.
- [10] Галанский В.Л., Крейндель Ю.Е. и др. // ЖТФ. 1987. Т. 57. Вып. 5. С. 877–882.
- [11] Hershcovitch A. // J. Appl. Phys. 1995. Vol. 78. N 9. P. 5283– 5288.
- [12] Мартенс В.Я. // Письма в ЖТФ. 1986. Т. 12. Вып. 13. С. 769–772.