04;05;12 Ионообразование и проводимость активной пленочной МДМ структуры при сквозном проникании космических пылинок

© С.В. Ротов, Н.Д. Семкин, К.Е. Воронов

Самарский государственный аэрокосмический университет им. С.П. Королева, 443086 Самара, Россия

(Поступило в Редакцию 13 марта 2000 г.)

Рассмотрен процесс образования ионов многокомпонентной плазмы и сквозной проводимости закороченного частицей участка пленочной МДМ структуры при высокоскоростном ударе. На основе результатов решения задачи об инерциальном разлете ударной плазмы и модели объемной ионизации предложена модель расчета электропроводности ударносжатой МДМ-структуры. В рамках рассматриваемой модели решена задача о влиянии внешнего электрического поля на параметры плазмы, образованной взаимодействием частицы с тонкой МДМ-структурой. Разработанная модель может быть использована при проектировании аппаратуры регистрации и измерения физико-химических характеристик микрометеороидных и техногенных частиц, а также при обработке ионных спектров.

Интерес к вопросу о взаимодействии высокоскоростной частицы с активной тонкой металл-диэлектрикметалл МДМ структурой ($U_{\rm MDM} > 0$) связан с проблемой регистрации микрометеороидов и частиц космического мусора [1–4]. Использование активных МДМ структур в преобразователях параметров частиц вызвано необходимостью повышения чувствительности в нижнем диапазоне скоростей и масс частиц ($W < 10 \,\mathrm{km \cdot s^{-1}}$, $m < 10^{-8} \,\mathrm{kg}$), что особенно важно в случае регистрации элементного состава микрометеороидов. Реализация гидродинамических задач [2,5,6] бортовыми устройствами обработки информации испытывает технические трудности. В [6] исследовалась проводимость ударносжатой пленочной МДМ структуры.

В данной работе на качественном уровне решена задача об образовании ионов многокомпонентной плазмы и проводимости закороченного частицей участка активной пленочной МДМ структуры при высокоскоростном ударе. Модель расчета справедлива в диапазоне скоростей частиц выше $10...15 \,\mathrm{km} \cdot \mathrm{s}^{-1}$ [7]. В основу модели расчета электропроводности ударносжатой МДМ структуры положены результаты решения задачи об инерциальном разлете ударной плазмы и модель объемной ионизации, рассмотренные в [7,8]. В рамках рассматриваемой модели решена задача о влиянии характеристик внешнего электрического поля на параметры плазмы, образованной в результате высокоскоростного взаимодействия частицы с тонкой преградой в виде МДМ структуры.

Используя известные соотношения из теории ударных волн [8] для случая скоростей частицы (ударника) $W = (15...50) \,\mathrm{km} \cdot \mathrm{s}^{-1}$, можно получить следующие выражения.

1) Температура во фронте ударной волны

$$T_1 = G \frac{W}{1 + \sqrt{\rho_2/\rho_3}},$$
 (1)

где W — скорость ударника; ρ_2 , ρ_3 — плотности ударника и мишени соответственно, $G = 1/\beta^{1/2} x^{1/4}$ —

коэффициент пропорциональности, β — коэффициент электронной теплоемкости, *x* — безразмерный удельный объем.

В расчете в качестве плотности мишени принимается плотность диэлектрика МДМ структуры, поскольку толщина диэлектрического слоя составляет $10...20 \,\mu$ m, что значительно превышает толщину металлизированного покрытия $(0,1 \,\mu$ m).

 Начальная температура образовавшегося плазменного сгустка

$$T_0 = T_i \left(\frac{n_0}{n_1}\right)^{\gamma - 1},\tag{2}$$

где $n_0 \leq 10^{20} \,\mathrm{cm}^{-3}$ — концентрация тяжелых частиц в плазме, $n_1 \leq 10^{23} \,\mathrm{cm}^{-3}$ — концентрация атомов ударносжатого вещества, $\gamma = 4/3$ — эффективный показатель адиабаты,

$$T_0 = 0.1 \frac{W}{1 + \sqrt{\rho_2/\rho_3}}.$$
 (3)

3) Время образования плазмоида $t_0 = R_0/u$, где $u = \frac{W}{1+\sqrt{\rho_2/\rho_3}}$ — скорость расширения границы сгустка; $R_0 = 10R_2R_2$ — характерный размер ударника.

Для решения поставленной задачи рассмотрим процесс разлета плазменного облака. По координатам x и y облако расширяется значительно медленнее, чем по координате z (рис. 1). Это связано с тем, что одна часть плазменного сгустка находится внутри конденсатора, а другая часть выбрасывается наружу. Часть плазмоида, вышедшая за пределы конденсатора, беспрепятственно под действием газодинамических сил расширяется. Расширение плазменного облака внутри конденсатора происходит в других условиях: на пути расширения облака находится преграда в виде стенок конденсатора. Расширение этой части сгустка возможно при испарении обкладок и диэлектрика конденсатора под действием высокой температуры.

Скорость расширения границы облака зависит от скорости взаимодействия частицы с преградой, работы

Рис. 1. Схема разлета плазменного облака: *I* — обкладка конденсатора.

внешнего электрического поля, действия высокой температуры (хаотическое движение частиц). Ионизационный состав плазмы определяется из уравнений Саха. Для пылевых частиц размером $R_2 = (10^{-5} \dots 10^{-3})$ ст и $W = (20 \dots 50) \,\mathrm{km \cdot s^{-1}}$ параметры плазменных сгустков лежат в пределах $10^{-4} \leq R_0 \leq 10^{-2}$ ст, $n_0 \leq 10^{20}$ ст⁻³, $1 \leq T \leq 3$ eV. Низкие температуры плазмы позволяют учитывать только однократную ионизацию, что дает возможность проведения расчета остаточных зарядов без применения численных методов.

В данном случае постановка задачи следующая. Пусть в момент времени $t = t_0$ имеется равновесная в общем случае многокомпонентная плазма заданной плотности $n_0 = \sum_{k=1}^{k_{\text{max}}} n_{0_k}$, радиуса R_0 , температуры T_0 законы расширения и охлаждения запишем в виде, принятом в [8]. Система уравнений, описывающая кинетику ионизации и рекомбинации в разлетающемся сгустке, имеет вид [8]

$$\frac{dx_k}{dt} = (1 - x_k) x_e \frac{ACt_0 n(t)}{T^3(t)} \exp\left(-\frac{J_k}{T_0}\right) - \frac{x_k x_e^2 n^2(t) At_0}{T^{9/2}(t)}, \quad (4)$$
$$n(t) = \frac{n_0}{t^3}, \quad T(t) = \frac{T_0}{t}, \quad x_e = \sum_{k=1}^{k_{\text{max}}} C_k x_k, \quad (5) - (7)$$

где t — безразмерное время, нормированное на t_0 ; x_e , x_k — степени ионизации электронов и ионов k-го элемента; C_k — содержание тяжелых частиц k-го сорта,

$$C_k = \frac{n_k}{n_0} = \frac{n_{k0}}{n_0} = \text{Const}; \quad \sum_{k=1}^{k_{\text{max}}} C_k = 1.$$

Начальные условия определяются из уравнения Саха. Если начальные степени ионизации $x_k \ll 1$, то решение уравнений Саха имеет вид [1]

$$x_{e0} = \left(\sum_{k=1}^{k_{\text{max}}} C_k \mu_k\right)^{1/2},$$
 (8)

8 Журнал технической физики, 2001, том 71, вып. 1

где

$$\mu = \frac{CT^{3/2}}{n_0} \exp\left(-\frac{J_k}{T_0}\right), \quad x_{k_0} = \frac{\mu_k}{x_{e0}}, \tag{9}$$

Вводя время $t_1 > t_0$ нарушения ионизационного равновесия, можно получить решение системы (8)... (9) с помощью следующего приема. При $t_0 \le t \le t_1$ значения степеней определяются приближенно по уравнениям Саха для n = n(t), T = T(t). При $t > t_1$ скоростью ионизации из-за сильной экспоненциальной зависимости можно пренебречь по сравнению со скоростью рекомбинации и уравнение (4) записывается в виде

$$\frac{dx}{dt} = \frac{x_k x_e^2 n^2(t) A t_0}{T^{9/2}(t)}.$$
(10)

Умножая правую и левую части выражения (10) на C_k и суммируя по индексу *k* с учетом (7), получим

$$\frac{dx_e}{dt} = -\frac{x_e^3 A t_0}{T^{9/2}}.$$
 (11)

Интегрируя (11), получим решение системы уравнений (4)... (8) в виде

$$x_e(t) = r \left[1 + \left(\frac{r}{x_{e1}}\right)^2 - \sqrt{\frac{t_1}{t}} \right]^{-\frac{1}{2}},$$
 (12)

$$x(t) = r \frac{x_{k1}}{x_{e1}} \left[1 + \left(\frac{r}{x_{e1}}\right)^2 - \sqrt{\frac{t_1}{t}} \right]^{-\frac{1}{2}}, \qquad (13)$$

где

$$r = \left(\frac{T_0^{9/2} t_1^{1/2}}{2A t_0^{3/2} n_0^2}\right)^{1/2};$$

 x_{e1} , x_{k1} — значения степеней ионизации при $t = t_1$ определяются из уравнений Саха для $n_1 = n(t_1)$, $T_1 = T(t_1)$.

Для оценки времени *t*₁ воспользуемся выражением, справедливым для однокомпонентной плазмы,

$$\frac{An_1^2 x_e^2 t_0}{T_1^{9/2}} = \frac{3}{2} (\gamma - 1) \frac{J}{T_1}.$$
(14)

Для однокомпонентной плазмы по уравнению Caxa имеем

$$x_{e1}^2 = \frac{CT_0^{9/2}}{n_0} \exp\left(-\frac{J}{T_0}\right).$$
 (15)

Сохраняя вид уравнения (14) для многокомпонентной плазмы, потенциал *J* будет определяться из условия равенства электронных степеней ионизации для одно- и многокомпонентной плазмы

$$x_{e1}^2(J_k) = x_{e1}^2(J).$$
(16)

Подставляя в (16) выражения (8) и (14), получим уравнение для эффективного потенциала *J*

$$\sum_{k=1}^{k_{\max}} C_k \exp\left(-\frac{J_k}{T_1}\right) = \exp\left(-\frac{J}{T_1}\right).$$
(17)

Совместное решение (14), (15) и (17) позволяет определить зависимости $t_1 = t_1(n_0, T_0, t_0, C_k, J_k)$ и $J = J(n_0, T_0, t_0, C_k, J_k)$. Асимптотические значения степеней ионизации можно определить из (12) и (13) при $t \to \infty$

$$x_{e\infty} = \frac{r}{\left[1 + (r/x_{el})^2\right]^{1/2}},$$
 (18)

$$x_{k\infty} = \frac{x_{k1}}{x_{e1}} x_{e\infty},\tag{19}$$

так как $(r/x_{e1})^2 \ll 1$, то $x_{e\infty} \approx r$. Используя выражения (18) и (19), можно записать формулы для остаточных зарядов

$$Q_e = \frac{4}{3}\pi R_0^3 n_0 x_{e\infty},$$
 (20)

$$Q_k = \frac{4}{3}\pi R_0^3 n_0 C_k x_{k\infty}; \quad Q_e = \sum_{k=1}^{k_{\text{max}}} Q_k.$$
(21)

Полученные выше выражения описывают приближенную модель инерциального разлета плазменного сгустка за счет газодинамических сил.

В рамках изложенной модели следует также решить задачу о токовом разогреве плазмы. Рост температуры плазмы за счет токового (джоулева) разогрева следует учитывать при решении задачи газокинетического разлета плазменного облака.

Известно, что плазма обладает проводимостью, которая складывается из электронной и ионной составляющих [9]

$$\sigma - \sigma_e + \sigma_i = e(n_e \mu_e + n_i \mu_i) \tag{22}$$

где σ_e , σ_i — электронная и ионная составляющие проводимости; μ_e , μ_i — подвижности электронов и ионов соответственно.

С электронной составляющей проводимости связано явление токового разогрева плазмы. Под действием электрического поля заряженные частицы (электроны и ионы) повышают свою кинетическую энергию, при этом ионы, обладающие массой $m_i > m_e$ можно считать практически неподвижными. Плазма может расматриваться как смесь электронной и ионной жидкостей. Сила трения электронной жидкости об ионную вызывает разогрев плазмы. Скорость нагрева электронов за счет работы силы трения определяется из уравнения [9]

$$\frac{3}{2}n_e\frac{dT}{dt} = \sigma_e E.$$
(23)

За счет разности величин коэффициентов теплопроводности электронной и ионной жидкостей ионная жидкость повышает свою температуру в $\sqrt{m_i/m_e}$ раз медленнее.

Полная температура плазмы может быть представлена как сумма двух компонент

$$T_{\Sigma} = T + \tilde{T}, \tag{24}$$

где T — температура расширяющегося сгустка (6); \tilde{T} — температура джоулева разогрева плазмы, определяемая из уравнения (23).

Поскольку плазма обладает в начальный момент времени достаточно высокой электропроводностью, то внешнее электрическое поле проникает внутрь объема плазмы на малую глубину. Для оценки глубины проникновения поля в плазму воспользуемся формулой, предложенной в [10],

$$E(y) = E_0 \exp\left(-\frac{y}{r_D}\right), \qquad (25)$$

где E_0 — напряженность внешнего электрического поля; E(y) — напряженность поля внутри объема плазмы на глубине *y*;

$$r_D = \sqrt{\frac{T_i + T_e}{8\pi n e^2}}$$

— дебаевский радиус; *T_e*, *T_i* — температуры электронной и ионной жидкостей; *n* — равновесная концентрация частиц.

Для упрощения модели примем, что в начальный момент времени внешнее электрическое поле не влияет на процесы ионизации и рекомбинации. Лишь по истечении

Рис. 2. Аппроксимация закона изменения сопротивления проводящего канала MDM структуры.

Рис. 3. Зависимость проводимости от времени для различных скоростей взаимодействия: $1 - 10, 2 - 15, 3 - 20, 4 - 30 \text{ km/s}; U_0 = 200 \text{ V}.$

Журнал технической физики, 2001, том 71, вып. 1

Рис. 4. Спектр зарядов различных элеменов для диапазона скоростей 10... 30 km/s: *1*—10, *2*—15, *3*—20, *4*—25, *5*—30 km/s; $U_0 = 200$ V.

некоторого времени, когда проводимость плазмы уменьшается, внешнее поле начинает проникать в плазму, ускорять заряженные частицы, разогревать плазму.

Для получения выражения, описывающего процесс изменения заряда во времени, необходимо определить ток, проеткающий через пробитый конденсатор. Согласно [6], уравнение, описывающее изменение тока в МДМ структуре, имеет вид

$$I(t) = \frac{U(t)}{d^2} \int_{V} \sigma dV,$$
(26)

где U(t) — напряжение внешнего поля, d — толщина диэлектрического слоя, σ — проводимость МДМ структуры, V — объем проводящего канала пробитого конденсатора.

Определим закон изменения напряжения в МДМ структуре, которая разряжается через возникший канал высокой проводимости (плазму). Для этого рассмотрим дифференциальное уравнение, описывающее разрядку конденсатора,

$$U_C + \frac{dU_C}{dt}R_pC = 0, \qquad (27)$$

где U_C — напряжение на конденсаторе, R_p — сопротивление плазмы; C — емкость конденсатора, примем $C \approx 1$.

Сопротивление плазмы можно определить по следующей формуле:

$$R_p = \frac{1}{\sigma} \frac{d}{S},\tag{28}$$

где $\sigma = en(t)\mu(t)$ — проводимость плазмы, концентрация n(t) и подвижность $\mu(t)$ заряженных частиц, которые изменяюся в соответствии с законами газокинетического разлета плазмы, приведенными ранее; d — толщина диэлектрического слоя конденсатора; S — площадь сечения проводящего канала, $S \approx 4\pi R_0^2$, где R_0 — радиус канала, образовавшегося в результате удара частицы. Для упрощения модели при расчетах закон изменения проводимости плазмы заменяется аппроксимацией в виде прямоугольного импульса (рис. 2). Благодаря такой замене существенно упрощается решение дифференциального уравнения (27). В результате падение напряжения на закороченном плазмой конденсаторе определяется как

$$\ln\left[\frac{U_C(t)}{U_0}\right] = \int_{t_1}^{t_2} \frac{-1}{R_1 C} dt + \int_{t_2}^{t_3} \frac{-1}{R_2 C} dt + \int_{t_3}^{t_4} \frac{-1}{R_1 C} dt, \quad (29)$$

где U_0 — простоянное напряжение, приложенное к конденсатору, $U_0 = 50...100$ V; С — емкость МДМ структуры; R_i — значения сопротивления плазмы согласно принятой аппроксимации; t_1 — время нарушения теплового равновесия; t_4 — время "закалки" плазмы; t_2-t_3 среднее значение длительности импульса (рис. 2).

Таким образом, при расчете температуры джоулева разогрева плазмы, тока и заряда следует учитывать процесс разрядки конденсатора (МДМ структуры). Напряжение разряда конденсатора в процессе разлета плазмы с учетом (29) определится как

$$\Delta U = U_0 - U(t). \tag{30}$$

Из выражения (29) очевидно, что процесс разрядки конденсатора определяется характеристиками плазмы, образованной при высокоскоростном взаимодействии. Для диапазона напряжений 10...50 V поле конденсатора слабо влияет на характеристики ударной плазмы. Возможны также ситуации, когда в области проводящего канала может произойти электрический пробой МДМ структуры.

При уменьшении величины емкости время разрядки конденсатора становится соизмеримым со временем разлета плазмы между обкладками конденсатора, в связи

Рис. 5. Зависимость интегральных зарядов от скорости для различных элементов при $0 < U_0 < 1$ V.

с чем влияние на характеристики плазмы значительно увеличивается.

Заряд в конденсаторе можно определить по известной формуле [9]

$$Q = \int_{t_0}^{t_3} I(t) dt,$$
 (31)

где I(t) определяется из (26).

По аналогичной методике определяется заряд каждого из компонентов плазмы. Суммарный заряд компонентов плазмы отличается от рассчитанного по (31) значения на 50...70% для скоростей частиц 10...15 km \cdot s⁻¹ и 20...30% для скоростей частиц 20...30 km \cdot s⁻¹ в связи с заменой потенциалов ионизации элементов J_k эффективным потенциалом J.

Результаты расчетов на качественном уровне соответствуют имеющимся экспериментальным данным [6,11,12]. Для практических целей получена простая модель, описывающая протекающие в МДМ структуре процессы, инициируемые высокоскоростным ударом. Полученные на основе данной модели результаты расчета представлены в виде графиков на рис. 3–5. На рис. 3 представлена зависимость проводимости МДМ структуры от времени, на рис. 4, 5 — зависимость интегральных зарядов компонентов плазмы за все время от начала процесса взаимодействия до "закалки" различных скоростей взаимодействия частицы с активной МДМ структурой.

Результаты исследования показали, что регистрация интегрального заряда в МДМ структуре за время от начала процесса взаимодействия до наступления "закалки" плазмы позволяет более чем на порядок повысить чувствительность ионизационного метода и таким образом определить физические параметры и элементный состав микрометеороидов в диапазоне низких скоростей. Полученная модель может быть использована при проектировании аппаратуры регистрации и измерения физико-химических параметров микрометеороидных и техногенных частиц, а также при обработке ионных спектров.

Список литературы

- Пыль в атмосфере и околоземном космическом пространстве. Материалы научных съездов и конференций. М.: Наука, 1973. 212 с.
- [2] Леонас В.Б., Малама Ю.Г. Препринт ИКИ АН СССР. № Пр-885. М., 1984. 18 с.
- [3] Сагдеев Р.З., Киссель И. и др. // Письма в АЖ. 1986. Т. 12. № 8.
- [4] Семкин Н.Д., Воронов К.Е., Ротов С.В. // Измерительная техника. 1999. № 8. С. 3–10.
- [5] Канель Г.И. и др. Ударно-волновые явления в конденсированных средах. М.: Янус-К, 1996. 408 с.
- [6] Семкин Н.Д., Воронков К.Е. // ЖТФ. 1998. Т. 68. Вып. 8. С. 63–66.
- [7] Гришин В.К., Семкин Н.Д., Юсупов Г.Я. // Методы обработки и отображения информации в радиотехнических устройствах. Куйбышев: Изд-во КуАИ, 1985.
- [8] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и восокотемпературных гидродинамических явлений. М.: Физматгиз, 1966.
- [9] Телеснин Р.В., Яковлев В.Ф. Курс физики. М.: Просвещение, 1970.
- [10] Ораевский В.Н. Плазма на Земле и в Космосе. Киев: Наукова думка, 1974.
- [11] Семкин Н.Д., Воронов К.Е., Кондрашов В.Н. Препринт ТРИНИТИ. № 0040-А. М.: ЦНИИАтомИнформ, 1998.
- [12] Новиков Л.С., Семкин Н.Д., Куликаускас В.А. // ФХОМ. 1989. № 6. С. 49–56.