О проводимости двумерной системы с двоякопериодическим расположением круговых включений

© Б.Я. Балагуров, В.А. Кашин

01:06:11

Институт биохимической физики им. Н.М. Эмануэля РАН, 117997 Москва, Россия

(Поступило в Редакцию 10 апреля 2000 г.)

Предложена последовательная схема вычисления проводимости и других эффективных характеристик модельного композита с регулярной анизотропной структурой — двумерной системы с включениями круговой формы, образующими прямоугольную решетку. Для электрического потенциала и эффективного тензора проводимости $\hat{\sigma}_e$ найдены точные выражения в виде бесконечных рядов. В случае малой концентрации включений из общих формул получено вириальное разложение для $\hat{\sigma}_e$ и выяснены условия его применимости. Для изотропной модели (квадратная решетка) первые члены этого разложения воспроизводят известный результат Рэлея.

1. Изучение электрофизических свойств неоднородных неупорядоченных сред (в частности, композиционных материалов) наталкивается на известные математические трудности. Более благоприятна, особенно для двумерных систем, ситуация для композитов с регулярной структурой. В этом случае задача существенно упрощается, так как здесь достаточно ограничиться нахождением потенциала в пределах одной элементарной ячейки. В то же время исследование проводимости и других характеристик подобных систем представляет значительный интерес как с общефизической (например, проблема фазовых переходов), так и с прикладной (микроэлектроника) точек зрения.

Проводимость ряда двумерных двухкомпонентных систем с периодическим расположением включений (диэлектрических или идеально проводящих) рассмотрена в [1] (см. также [2,3]). В наиболее интересном случае, когда обе компоненты имеют конечную (ненулевую) проводимость, замкнутое решение задачи получено только для модели со структурой шахматной доски [1]. Более реалистическая модель — двумерная система с регулярным расположением круговых включений рассматривалась еще в работе Рэлея [4]. Однако, несмотря на относительную простоту модели, в [4] найдено только несколько первых членов вириального разложения для эффективной проводимости этой системы, что обусловлено громоздкостью примененной в [4] схемы вычислений.

В настоящей работе предложен последовательный метод решения задачи о проводимости двумерной модели с двоякопериодическим расположением (в узлах прямоугольной решетки) включений круговой формы радиуса R. Комплексный потенциал вне включений выражен через дзета-функцию Вейерштрасса [5,6] и ее производные. Для неизвестных коэффициентов, входящих в общее выражение для потенциала, получена бесконечная система уравнений. При малых R эта система решается итерациями, что позволяет находить в аналитическом виде вириальные разложения для проводимости и других эффективных величин. При немалых *R* система уравнений может быть решена численными методами, что дает принципиальную возможность изучать различные эффективные характеристики этой модели во всем интервале изменения входящих в задачу параметров.

2. Исследуемая модель представляет собой двумерную изотропную матрицу проводимости σ_1 с включениями круговой формы радиуса R и проводимости σ_2 . Включения образуют регулярную структуру — их центры расположены в узлах прямоугольной решетки с периодами 2a вдоль оси x и 2b вдоль оси y. Рассмотрим ситуацию, когда разность потенциалов приложена в направлении оси x. В этом случае напряженность электрического поля $\mathbf{E} = \mathbf{E}(x, y)$ кроме очевидной периодичности $\mathbf{E}(x + 2a, y) = \mathbf{E}(x, y + 2b) = \mathbf{E}(x, y)$ обладает следующей симметрией:

$$E_x(-x, y) = E_x(x, -y) = E_x(x, y);$$

$$E_y(-x, y) = E_y(x, -y) = -E_y(x, y).$$
 (1)

В частности, вертикальные границы элементарной ячейки и прямая x = 0 являются эквипотенциалями, на которых $E_y = 0$, а горизонтальные (и прямая y = 0) — линиями тока, на которых также $E_y = 0$.

Внутри включения для комплексного потенциала $\Phi(z)$ с учетом симметрии электрического поля (1) имеем выражение (начало координат в центре круга)

$$|z| < R: \quad \Phi^{(i)}(z) = \sum_{n=0} A_{2n+1} z^{2n+1} (z = x + iy)$$
 (2)

с вещественными коэффициентами A_{2n+1} . Производная от функции $\Phi(z)$ связана с составляющими напряженности **E** следующим образом: $\Phi'(z) = -E_x + iE_y$. Электрический потенциал $\varphi(\mathbf{r})$ дается действительной частью $\Phi(z)$: $\varphi(\mathbf{r}) = \operatorname{Re} \Phi(z)$.

Вне круга допустимы решения как с положительными, так и с отрицательными степенями *z*. Комплексный потенциал, явным образом учитывающий решеточную структуру модели и симметрию электрического поля (1), может быть записан в виде

$$|z| > R : \Phi^{(e)}(z) = \beta z + \sum_{n=0}^{\infty} B_{2n} \zeta^{(2n)}(z), \qquad (3)$$

$$\zeta(z) = \frac{1}{z} + \sum_{l,m}' \left[\frac{1}{z - z_{lm}} + \frac{1}{z_{lm}} + \frac{z}{(z_{lm})^2} \right];$$
$$z_{lm} = 2al + i2bm. \tag{4}$$

Здесь $\zeta(z)$ — дзета-функция Вейерштрасса [5,6], $\zeta^{(2n)}(z)$ — производная порядка 2n от $\zeta(z)$. Штрих в (4) означает, что суммирование производится по всем целым l и m, кроме l = m = 0. В (3) линейный по z член происходит от внешнего однородного поля, слагаемое с n = 0 отвечает полю от наведенных дипольных моментов, члены с $n \ge 1$ — от высших мультиполей. Коэффициенты β и B_{2n} в (3) вещественны. Используя известные свойства эллиптических функций Вейерштрасса [5,6], нетрудно убедиться, что потенциал (3) удовлетворяет вышеупомянутым условиям на границах элементарной ячейки и на ее осях симметрии.

3. Приведем некоторые сведения о функции $\zeta(z)$, которые понадобятся в дальнейшем. Согласно [5,6], дзета-функция квазипериодична

$$\zeta(z+2\omega) = \zeta(z) + 2\eta, \quad \eta = \zeta(\omega),$$

$$\zeta(z+2\omega') = \zeta(z) + 2\eta', \quad \eta' = \zeta(\omega'), \quad (5)$$

где $\omega = a$ и $\omega' = ib$.

Величины η и η' связаны между собой соотношением Лежандра [5,6], имеющим в данном случае вид

$$ib\eta - a\eta' = i\frac{\pi}{2}.$$
 (6)

Для $\zeta(z)$ справедливо следующее разложение по степеням z [6]:

$$\zeta(z) = \frac{1}{z} - \sum_{k=2}^{\infty} \frac{c_k}{2k-1} z^{2k-1},$$
(7)

где

$$c_{2} = \frac{g_{2}}{20}, \quad c_{3} = \frac{g_{3}}{28}, \quad c_{4} = \frac{1}{3}c_{2}^{2},$$

$$c_{5} = \frac{3}{11}c_{2}c_{3}, \quad c_{6} = \frac{1}{39}(2c_{2}^{3} + 3c_{3}^{2}), \dots$$
(8)

В (8) g₂ и g₃ — инварианты функции Вейерштрасса [5,6]

$$g_2 = 60 \sum_{l,m}' \frac{1}{(z_{lm})^4}, \quad g_3 = 140 \sum_{l,m}' \frac{1}{(z_{lm})^6}$$
(9)

с z_{lm} из (4). Величины c_k удовлетворяют рекуррентному соотношению [6]

$$c_k = \frac{3}{(2k+1)(k-3)} \sum_{m=2}^{k-2} c_m c_{k-m} \quad (k \ge 4),$$
(10)

Журнал технической физики, 2001, том 71, вып. 1

которое позволяет последовательно находить коэффициенты c_k по мере возрастания инденкса k.

Для η , η' , g_2 и g_3 , как следует из их определения, справедливы соотношения симметрии

$$\eta(b,a) = i\eta'(a,b); \quad g_2(b,a) = g_2(a,b);$$
$$g_3(b,a) = -g_3(a,b). \tag{11}$$

Соответственно для коэффициентов ск имеем

$$c_k(b,a) = (-1)^k c_k(a,b),$$
 (12)

так что для квадратной решетки (a = b) все c_k с нечетными индексами равны нулю [6]. В этом случае для η , η' , g_2 и g_3 можно найти явные выражения [5,6]

$$a = b: \quad \eta = \frac{\pi}{4a}, \quad \eta' = -i\frac{\pi}{4a};$$
$$g_2 = \frac{1}{a^4} \left[K\left(\frac{1}{\sqrt{2}}\right) \right]^4, \quad g_3 = 0, \tag{13}$$

где $K(1\sqrt{2}) = 1.85407...$ — полный эллиптический интеграл первого рода с модулем $k = 1/\sqrt{2}$.

При $a \neq b$ величины η , η' , g_2 , g_3 определяются численными методами; соответствующие таблицы имеются, например, в [6]. В явном виде они могут быть найдены в предельных случаях

$$\frac{b}{a} \ll 1: \quad \eta(a,b) \simeq -\frac{a}{b^2} \frac{\pi^2}{12};$$

$$g_2(a,b) \simeq \frac{1}{b^4} \frac{\pi^4}{12}, \quad g_3(a,b) \simeq -\frac{1}{b^6} \frac{\pi^6}{216}; \quad (14)$$

$$\frac{b}{a} \gg 1: \quad \eta(a,b) \simeq \frac{1}{a} \frac{\pi^2}{12};$$

$$g_2(a,b) \simeq \frac{1}{a^4} \frac{\pi^4}{12}, \quad g_3(a,b) \simeq \frac{1}{a^6} \frac{\pi^6}{216}. \quad (15)$$

Предельные значения для η' следуют из соотношений (6) и (11). Для коэффициентов c_k справедлины аналогичные выражения

$$\frac{b}{a} \ll 1: \quad c_k \simeq (-1)^k \cdot 2 \frac{2k-1}{(2b)^{2k}} \sum_{m=1}^{\infty} \frac{1}{m^{2k}};$$
$$\frac{b}{a} \gg 1: \quad c_k \simeq 2 \frac{2k-1}{(2a)^{2k}} \sum_{m=1}^{\infty} \frac{1}{m^{2k}}, \tag{16}$$

связанные соотношением (12).

4. Электрические потенциалы $\varphi^{(e)}(\mathbf{r}) = \operatorname{Re} \Phi^{(e)}(z)$ и $\varphi^{(i)}(\mathbf{r}) = \operatorname{Re} \Phi^{(i)}(z)$ на границе включения (r = R)должны удовлетворять стандартным условиям

$$r = R: \begin{cases} \varphi^{(e)} = \varphi^{(i)}, \\ \frac{\partial \varphi^{(e)}}{\partial r} = h \frac{\partial \varphi^{(i)}}{\partial r}, \quad h = \frac{\sigma_2}{\sigma_1}. \end{cases}$$
(17)

Дифференцирование разложения (7) 2n раз дает

$$\zeta^{(2n)}(z) = \frac{(2n)!}{z^{2n+1}} - \sum_{m=0}^{\infty} \frac{(2n+2m)!}{(2m+1)!} c_{n+m+1} z^{2m+1}.$$
 (18)

Подставив (18) в (3), положив $z = r \exp\{i\Theta\}$ и отделив действительную часть, получим

$$\varphi^{(e)}(\mathbf{r}) = \beta r \cos \Theta + \sum_{n=0}^{\infty} \left\{ B_{2n} \frac{(2n)!}{r^{2n+1}} - \sum_{m=0}^{\infty} B_{2m} \frac{(2n+2m)!}{(2n+1)!} c_{n+m+1} r^{2n+1} \right\} \cos(2n+1)\Theta.$$
(19)

Аналогичным образом из (2) находим

$$\varphi^{(i)}(\mathbf{r}) = \sum_{n=0}^{\infty} A_{2n+1} r^{2n+1} \cos(2n+1)\Theta.$$
 (20)

Подстановка (19) и (20) в (17) дает систему уравнений

$$\beta \delta_{n0} + B_{2n} \frac{(2n)!}{R^{4n+2}} - \sum_{m=0}^{\infty} B_{2m} \frac{(2n+2m)!}{(2n+1)!} c_{n+m+1} = A_{2n+1},$$

$$\beta \delta_{n0} - B_{2n} \frac{(2n)!}{R^{4n+2}}$$

$$- \sum_{m=0}^{\infty} B_{2m} \frac{(2n+2m)!}{(2n+1)!} c_{n+m+1} = hA_{2n+1}.$$
 (21)

Здесь δ_{n0} — символ Кронекера. Вычитая в (21) второе уравнение из первого, найдем

$$A_{2n+1} = \frac{2}{1-h} \frac{(2n)!}{R^{4n+2}} B_{2n}.$$
 (22)

Исключая из (21) коэффициент A_{2n+1} , получим

$$B_{2n} + \frac{1-h}{1+h} \sum_{m=0}^{\infty} B_{2m} \frac{(2n+2m)!}{(2n)!(2n+1)!} R^{4n+2} c_{n+m+1}$$
$$= \frac{1-h}{1+h} \beta R^2 \delta_{n0}.$$
 (23)

Вводя вместо B_{2n} "переменные" x_n согласно

$$B_{2n} = \frac{R^{2n+2}\delta}{\sqrt{(2n)!(2n+1)!}} x_n, \quad \delta = \frac{1-h}{1+h}, \qquad (24)$$

приведем (23) к виду

$$x_n + \sum_{m=0}^{\infty} S_{nm} x_m = \beta \delta_{n0}, \qquad (25)$$

где

$$S_{nm} = \frac{(2n+2m)!R^{2(n+m+1)}c_{n+m+1}}{\sqrt{(2n)!(2n+1)!(2m)!(2m+1)!}}\delta.$$
 (26)

Здесь коэффициенты c_{n+m+1} определены в (7)–(10), а величина δ — в (24). Матрица \hat{S} симметрична; величина $S_{00} = 0$, так как коэффициент $c_1 \equiv 0$.

Уравнения (23), (25)–(26) и соотношения (22), (24) дают принципиальную возможность выразить все коэффициенты B_{2n} и A_{2n+1} через величину β . В свою очередь β связана с разностью потенциалов U_x (см. формулу (28)), которую считаем заданной. Таким образом, выражения (22)–(26) дают формальное точное решение основной задачи — отыскания потенциала $\varphi(\mathbf{r})$.

5. Падение напряжения на элементарной ячейке U_x и полный ток через нее I_x в направлении оси *x* выражаются через комплексный потенциал $\Phi(z)$ следующим образом:

$$U_x = -\operatorname{Re} \left[\Phi(a+iy) - \Phi(-a+iy) \right],$$

$$I_x = -\sigma_1 \operatorname{Im} \left[\Phi(x+ib) - \Phi(x-ib) \right].$$
 (27)

Подстановка в (27) $\Phi(z)$ из (3) с учетом (5) дает

$$U_{x} = -2a\left(\beta + \frac{1}{a}B_{0}\eta\right),$$

$$I_{x} = -2b\sigma_{1}\left[\beta - \frac{B_{0}}{ab}\left(\frac{\pi}{2} - b\eta\right)\right].$$
(28)

В I_x величина Im η' выражена через η с помощью соотношения (6). Для проводимости вдоль оси x (соответствующее главное значение эффективного тензора проводимости $\hat{\sigma}_e$) $\sigma_{xe} = (aI_x)/(bU_x)$ из (28) получаем $(B_0 = x_0 R^2 \delta)$

$$\sigma_{xe} = \sigma_1 \left[\alpha - \frac{R^2}{ab} \left(\frac{\pi}{2} - b\eta \right) \delta \right] \cdot \left(\alpha + \frac{R^2}{a} \eta \delta \right)^{-1};$$
$$\alpha = \frac{\beta}{x_0}.$$
 (29)

Таким образом, для вычисления σ_{xe} достаточно найти величину x_0 (т. е. коэффициент B_0).

При малых *R* систему уравнений (25) можно решать итерациями — разложением по степеням матрицы \hat{S} . Найдем соответствующее разложение для величины α из (29). При n = 0, согласно (25), имеем (с учетом $S_{00} = 0$)

$$\beta = x_0 + \sum_{m \neq 0} S_{0m} x_m, \tag{30}$$

а при $n \neq 0$ из (25) следует равенство

$$n \neq 0$$
: $x_n = -x_0 S_{n0} - \sum_{m \neq 0} S_{nm} x_m.$ (31)

Решая уравнение (31) итерациями, найдем

$$n \neq 0: \quad x_n = x_0 \Big\{ -S_{n0} + \sum_{m}' S_{nm} S_{m0} \\ - \sum_{l}' \sum_{m}' S_{nl} S_{lm} S_{m0} + \dots \Big\}.$$
(32)

Журнал технической физики, 2001, том 71, вып. 1

$$\alpha = 1 - \sum_{m}' S_{0m} S_{m0} + \sum_{l}' \sum_{m}' S_{0e} S_{lm} S_{m0} - \sum_{k}' \sum_{l}' \sum_{m}' S_{0k} S_{kl} S_{lm} S_{m0} + \dots$$
(33)

В (32) и (33) штрих у знака суммы означает, что суммирование производится от 1 до ∞ . Заметим, что с помощью матрицы \hat{T} , определенной согласно

$$T_{nm} = \begin{cases} 0, & m = 0, \\ S_{nm}, & m \neq 0, \end{cases}$$
(34)

выражениям (32) и (33) можно придать компактный вид

$$n \neq 0$$
: $x_n = -x_0 ((1+\hat{T})^{-1}\hat{S})_{n0},$ (35)

$$\alpha = 1 - \left(\hat{S}(1+\hat{T})^{-1}\hat{S}\right)_{00}.$$
(36)

Используя явное выражение для матрицы \hat{S} (см. (26)), из (33) можно найти разложение величины α по степеням *R*. Так, с точностью до членов $\sim R^{24}$ включительно получаем

$$\alpha = 1 - \frac{1}{3}R^8c_2^2\delta^2 - \frac{1}{5}R^{12}c_3^2\delta^2 + \frac{2}{3}R^{14}c_2^2c_3\delta^3 - \frac{1}{7}R^{16}c_4^2\delta^2 + 2R^{18}c_2c_3c_4\delta^3 - \frac{1}{3}R^{20}\left(\frac{1}{3}c_5^2 + 4c_2^2c_3^2\delta^2\right)\delta^2 + 2R^{22}\left(\frac{4}{3}c_2c_4c_5 + \frac{7}{5}c_3^2c_5\right)\delta^3 - R^{24}\left(\frac{1}{11}c_6^2 + 4c_2c_3^2c_4\delta^2 + 5c_2^2c_4^2\delta^2\right)\delta^2 + \dots$$
 (37)

Здесь c_2, c_3, c_4, \ldots определены в (8), а δ — в (24). Для квадратной решетки (a = b), когда все коэффициенты c_k с нечетными индексами равны нулю, выражение для α несколько упрощается. В этом случае с точностью до членов $\sim R^{40}$ включительно имеем

$$\alpha = 1 - \frac{1}{3}R^8c_2^2\delta^2 - \frac{1}{7}R^{16}c_4^2\delta^2 - R^{24}\left(\frac{1}{11}c_6^2 + 5c_2^2c_4^2\delta^2\right)\delta^2$$
$$- R^{32}\left[\frac{1}{15}c_8^2 + 5(12c_2c_4^2c_6 + 5c_2^2c_6^2)\delta^2\right]\delta^2$$
$$- R^{40}\left[\frac{1}{19}c_{10}^2 + 13\left(124c_2c_4c_6c_8 + \frac{49}{9}c_2^2c_8^2\right)\delta^2\right]$$
$$+ 180c_4^2c_6^2\delta^2 + 75c_2^2c_4^4\delta^4\right]\delta^2 - \dots$$
(38)

Для квадратной решетки эффективная проводимость системы σ_e изотропна и имеет вид

$$\frac{\sigma_e}{\sigma_1} = \frac{\alpha - c\delta}{\alpha + c\delta} = 1 - \frac{2c\delta}{\alpha + c\delta}$$
(39)

Журнал технической физики, 2001, том 71, вып. 1

с α из (38) и $c = \pi R^2 / (2a)^2$. Найденное в работе Рэлея [4] выражение для σ_e следует из (39) при удержании в разложении (38) трех первых членов (до $\sim R^{16}$ включительно).

109

Выражения (37), (38) представляют собой вириальные разложения, формальным малым параметром которых является концентрация включений $c = \pi R^2 / (4ab)$. При $a \sim b$ условие $c \sim (R/a)^2 \ll 1$ (или $R \ll a$) обеспечивает быструю сходимость ряда (37). При a = b область применимости вириального разложения еще шире, так как в этом случае параметром разложения является четвертая степень концентрации (см. (38)). Действительно, поправка $\sim R^8$ в (38) не превосходит 1% в интервале $0 \leqslant R \leqslant 0.7a$ при $|\delta| = 1$ (т.е. при h = 0или $h = \infty$). В то же время при сильной анизотропии $(a \gg b$ или $a \ll b)$ условия $c \ll 1$ недостаточно. Так, при $b/a \ll 1$, используя выражение для g_2 из (14), находим, что поправка $\sim R^8$ в (37) мала́ при $c \ll b/a$ или $R \ll b$. Соответственно при $b/a \gg 1$ эта поправка мала́ при $c \ll a/b$ или $R \ll a$ (в обеих оценках положено $|\delta| \sim 1$). Таким образом, условием достаточно быстрой сходимости разложения (37) является $R \ll \min\{a, b\}$.

Согласно (12), при перестановке $a \rightleftharpoons b$ коэффициенты c_k с нечетными индексами меняют знак. При этом в разложении (33) для величины α часть слагаемых также меняет знак. Как видно, например, из (37), эти слагаемые содержат нечетные степени δ , так что двойная замена $a \rightleftharpoons b$ и $\delta \to -\delta$ оставляет величину $\alpha = \alpha(a, b; \delta)$ неизменной

$$\alpha(b, a; -\delta) = \alpha(a, b; \delta).$$
(40)

Этот же вывод следует и из общего выражения (33) для α . Аналогичным образом для величин $\xi_n = x_n/\beta$ получаем

$$\xi_n(b,a;-\delta) = (-1)^n \xi_n(a,b;\delta), \tag{41}$$

так что равенство (40) для $\alpha = 1/\xi_0$ ялвяется частным случаем этого соотношения.

6. Случай, когда разность потенциалов приложена вдоль оси *y*, рассматривается тем же методом, что и выше. Так, комплексные потенциалы внутри и вне включения имеют вид

$$\Phi^{(i)}(z) = -i \sum_{n=0}^{\infty} C_{2n+1} z^{2n+1}, \qquad (42)$$

$$\Phi^{(e)}(z) = -i \Big\{ \gamma z - \sum_{n=0}^{\infty} D_{2n} \xi^{(2n)}(z) \Big\}$$
(43)

с вещественными коэффициентами γ , C_{2n+1} и D_{2n} . Дальнейшие выкладки почти буквально повторяют вышеприведенные. В результате находим

$$D_{2n} = \frac{R^{2n+2}\delta}{\sqrt{(2n)!(2n+1)!}} y_n,$$

$$C_{2n+1} = \frac{2}{1+h} \frac{1}{R^{2n}} \frac{1}{\sqrt{2n+1}} y_n,$$
(44)

где величины y_n удовлетворяют системе уравнений

$$y_n - \sum_{m=0}^{\infty} S_{nm} y_m = \gamma \delta_{n0} \tag{45}$$

с матрицей Ŝ из (26).

Падение напряжения U_y и полный ток I_y выражаются через комплексный потенциал $\Phi(z)$ следующим образом:

$$U_{y} = -\operatorname{Re}\left[\Phi(x+ib) - \Phi(x-ib)\right], \quad (46)$$

$$I_{y} = \sigma_{1} \operatorname{Im} \big[\Phi(a + iy) - \Phi(-a + iy) \big].$$
(46)

Подстановка (43) в (46) с учетом (5) и (6) дает

$$U_{y} = -2b\left[\gamma + \frac{D_{0}}{ab}\left(\frac{\pi}{2} - b\eta\right)\right],$$
$$I_{y} = -2a\sigma_{1}\left(\gamma - \frac{1}{a}D_{0}\eta\right).$$
(47)

Для проводимости в направлении оси у, т.е. для величины $\sigma_{ye} = (bI_y)/(aU_y)$, находим $(D_0 = y_0 R^2 \delta)$

$$\sigma_{ye} = \sigma_1 \left(\bar{\alpha} - \frac{R^2}{a} \eta \delta \right) \left[\bar{\alpha} + \frac{R^2}{ab} \left(\frac{\pi}{2} - b\eta \right) \delta \right]^{-1};$$
$$\bar{\alpha} = \frac{\gamma}{y_0}.$$
(48)

Выражение для $\bar{\alpha}$ следует из α (см. (33), (36)–(38)) при замене $\delta \to -\delta$ или, согласно (40), при $a \rightleftharpoons b$. Очевидно, что в последнем случае величина σ_{xe} должна переходить в σ_{ye} : $\sigma_{xe}(b, a) = \sigma_{ye}(a, b)$. Действительно, нетрудно убедиться (с учетом соотношений (11) и (6)), что при перестановке $a \rightleftharpoons b$ из (29) следует выражение (48).

При замене $\sigma_1 \rightleftharpoons \sigma_2$ (т.е. $h \to 1/h$, $\delta \to -\delta$) исходная система переходит в так называемую взаимную (соответствующие величины будем отмечать значком "тильда"). Переходя в (48) к взаимной системе (при этом $\bar{\alpha} \to \tilde{\alpha} = \alpha$) и сравнивая с (29), приходим к выводу, что соотношение взаимности для структурно анизотропных двумерных систем [7] (см. также [8])

$$\sigma_{xe} = \tilde{\sigma}_{ye} = \sigma_1 \sigma_2 \tag{49}$$

в данном случае выполняется автоматически.

7. Знание потенциалов в случаях, когда средняя напряженность электрического поля $\langle \mathbf{E} \rangle$ направлена вдоль осей *x* и *y*, позволяет найти (в линейном по магнитному полю **H** приближении) холловскую составляющую σ_{ae} эффективного тензора проводимости $\hat{\sigma}_e$. Согласно [9], имеем

$$\sigma_{ae} = \sigma_{a2} + (\sigma_{a1} - \sigma_{a2})\varphi(p, h), \tag{50}$$

где σ_{ai} — холловская составляющая тензора проводимости *i*-й компоненты (i = 1, 2). Функция φ может быть выражена через напряженность электрического поля $\mathbf{E}^{(\nu)}(\mathbf{r})$ при $\mathbf{H} = 0$ [9]

$$\varphi = 1 - \frac{\langle E_x^{(x)} E_y^{(y)} - E_y^{(x)} E_x^{(y)} \rangle^{(2)}}{\langle E_x^{(x)} \rangle \langle E_y^{(y)} \rangle}.$$
 (51)

Здесь $\langle \dots \rangle^{(2)}$ — интеграл по площади включения, деленный на площадь элементарной ячейки; индекс ν у $\mathbf{E}^{(\nu)}$ означает, что $\langle \mathbf{E}^{(\nu)} \rangle$ направлено вдоль оси ν . Определяя из (2) и (42) соответственно $\mathbf{E}^{(x)}$ и $\mathbf{E}^{(y)}$ и вычисляя входящий в (51) интеграл, получим

$$\langle E_x^{(x)} E_y^{(y)} - E_y^{(x)} E_x^{(y)} \rangle^{(2)} = \frac{1}{(1+h)^2} \frac{\pi R^2}{ab} \sum_{n=0}^{\infty} x_n y_y.$$
(52)

Далее, умножим равенство (25) на y_n , (45) — на x_n , сложим и просуммируем по всем *n*. В результате с учетом симметрии матрицы \hat{S} и определения величин α и $\bar{\alpha}$ найдем

$$\frac{1}{x_0 y_0} \sum_{n=0}^{\infty} x_n y_n = \frac{1}{2} (\alpha + \bar{\alpha}).$$
 (53)

Наконец, подставляя в (51) выражения (52), (53) и $\langle E_x^{(x)} \rangle = U_x/(2a), \langle E_y^{(y)} \rangle = U_y/(2b)$ с U_x и U_y соответственно из (28) и (46), после некоторых преобразований получим

$$\varphi = \frac{\sigma_{xe}\sigma_{ye} - \sigma_2^2}{\sigma_1^2 - \sigma_2^2} \tag{54}$$

с σ_{xe} из (29) и σ_{ye} из (48). Отметим, что выражение для φ вида (54) справедливо для произвольных двумерных систем со структурной анизотропией и в общем случае может быть выведено методом работы [9].

8. С эффективной проводимостью композита непосредственно связаны парциальные квадратичные характеристики напряженности электрического поля. Для систем со структурной анизотропией аналогично изотропному случаю [9] имеем

$$\psi_{i}^{(\alpha)}(p,h) \equiv \langle (\mathbf{e}^{(\alpha)})^{2} \rangle^{(i)} = \frac{\partial \sigma_{\alpha e}}{\partial \sigma_{i}};$$
$$\mathbf{e}^{(\alpha)}(\mathbf{r}) = \mathbf{E}^{(\alpha)}(\mathbf{r}) (|\langle \mathbf{E}^{(\alpha)} \rangle|)^{-1}.$$
(55)

Здесь $\sigma_{\alpha e}$ — главные значения эффективного тензора проводимости ($\alpha = x, y, z$); $\langle \dots \rangle^{(i)}$ — интеграл по объему (площади в двумерном случае) *i*-й компоненты, деленный на объем образца V; $\mathbf{E}^{\alpha}(\mathbf{r})$ — то же, что и в предыдущем разделе.

Для рассматриваемой модели имеем $\langle E_x^{(x)} \rangle = U_x/(2a)$ с U_x из (28), $\mathbf{E}^2 = |\Phi'(z)|^2$, так что для величины $\psi_2^{(x)}$, например используя выражение (2), находим

$$\psi_2^{(x)} = \frac{1}{(1+h)^2} \frac{\pi R^2}{ab} \left(\alpha + \frac{R^2}{a} \eta \delta \right)^{-2} \cdot J,$$
 (56)

$$J = 1 + \sum_{n=1}^{\infty} \left(\frac{x_n}{x_0}\right)^2.$$
 (57)

Журнал технической физики, 2001, том 71, вып. 1

В то же время дифференцирование σ_{xe} из (29) по σ_2 дает

$$\frac{\partial \sigma_{xe}}{\partial \sigma_2} = \frac{1}{(1+h)^2} \frac{\pi R^2}{ab} \left(\alpha + \frac{R^2}{a} \eta \delta \right)^{-2} \left(\alpha - \frac{\partial \alpha}{\partial \delta} \delta \right).$$
(58)

Вычисляя (57) (с помощью разложения (32) для x_n) и последний множитель в (58) (с α из (37)) с точностью до членов $\sim R^{24}$ включительно, нетрудно убедиться, что соотношение $\psi_2^{(x)} = \partial \sigma_{xe} / \partial \sigma_2$ в этом приближении выполняется. Однако выполнимость этого соотношения для рассмотренной модели может быть доказана прямым вычислением и при произвольных R.

Так как матрицы \hat{S} и \hat{T} линейно зависят от δ , то, используя общее выражение (36) для α , найдем

$$\alpha - \frac{\partial \alpha}{\partial \delta} \delta = 1 + \left(\hat{S} (1 + \hat{T})^{-1} (1 + \hat{T})^{-1} \hat{S} \right)_{00}.$$
 (59)

С другой стороны, подстановка (35) в (57) дает

$$J = 1 + \sum_{n=1}^{\infty} \left(\hat{S}(1+\hat{T})^{-1} \right)_{0n} \left((1+\hat{T})^{-1} \hat{S} \right)_{n0}, \qquad (60)$$

где учтено легко проверяемое равенство

$$n \neq 0$$
: $((1+\hat{T})^{-1}\hat{S})_{n0} = (\hat{S}(1+\hat{T})^{-1})_{0n}$.

Из определения (34) матрицы \hat{T} следует, что

$$\left(\hat{S}(1+\hat{T})^{-1}\right)_{00} = 0.$$

Поэтому суммирование в (60) может быть распространено на все $n \ge 0$, так что для *J* получаем окончательно

$$J = 1 + \left(\hat{S}(1+\hat{T})^{-1}(1+\hat{T})^{-1}\hat{S}\right)_{00}.$$
 (61)

Сравнение (58), (59) с (56), (61) приводит к соотношению (55) с $\alpha = x$ и i = 2. Аналогичным образом доказываются и остальные равенства (55).

Список литературы

- Емец Ю.П. Электрические характеристики композиционных материалов с регулярной структурой. Киев. Наукова думка, 1986. 192 с.
- [2] Балагуров Б.Я. // ЖЭТФ. 1980. Т. 79. Вып. 4(10). С. 1561– 1572.
- [3] Балагуров Б.Я. // ЖТФ. 1981. Т. 51. Вып. 6. С. 1146–1151.
- [4] Lord Rayleigh // Phil. Mag. 1892. Vol. 34. N 211. P. 481-502.
- [5] Бейтмен Г., Эрдейи А. Высшие трансцендентные функции.
 Т. З. М.: Наука, 1967. 300 с.
- [6] Справочник по специальным функциям / Под ред. М. Абрамовица, И. Стиган. М.: Наука, 1979. 832 с.
- [7] Keller J.B. // J. Math. Phys. 1964. Vol. 5. N 4. P. 548–549.
- [8] Балагуров Б.Я. // ЖЭТФ. 1981. Т. 81. Вып. 2(8). С. 665-671.
- [9] Балагуров Б.Я. // ЖЭТФ. 1987. Т. 93. Вып. 5(11). С. 1888– 1903.