01;03 Интенсивное испарение молекулярного газа с поверхности сферической частицы в вакуум

© И.А. Кузнецова, А.А. Юшканов, Ю.И. Яламов

Ярославский государственный педагогический университет им. К.Д. Ушинского, 150000 Ярославль, Россия Московский педагогический университет, 107005 Москва, Россия E-mail: kuz@univ.uniyar.ac.ru

(Поступило в Редакцию 22 марта 2000 г.)

Решена кинетическая задача об интенсивном испарении двухатомного газа с поверхности сферической частицы в вакуум. Получены аналитические выражения для расчета параметров пара на гидродинамической границе испарения и исследована их зависимость от числа Кнудсена Кn в диапазоне 0 < Kn ≤ 0.1.

Интерес к задаче об интенсивном испарении с поверхности сферической частицы в вакуум вызван не только ее теоретической значимостью, но и важными практическими приложениями [1-3]. Из результатов численного моделирования [2,3] следует, что при числах $\mathrm{KN} \ll 1(\mathrm{Kn} = \lambda/r_0, \lambda$ — средняя длина свободного пробега молекул вблизи поверхности испарения, r_0 радиус частицы) размер области формирования течения в окрестности частицы в расширяющемся потоке много больше λ , что соответствует гидродинамическому характеру течения, т.е. при Kn « 1 справедливо навьестоксовское описание с поправкой на кинетические граничные условия. Установление связи между параметрами конденсированной и газовой фазы, а по существу определение скачков параметров в кнудсеновском слое, возможно только в рамках кинетической теории.

В [4] было показано, что в случае истечения газа из точечного источника при числах Рейнольдса Re $\gg 1$ и числе Прандтля Pr = 3/4 можно выделить три области стационарного движения газа. Вдали от частицы располагается область невязкого радиального истечения описывается уравнениями Эйлера. По мере приближения к источнику эта область переходит в так называемую промежуточную область, в которой число Маха M ~ 1 , что соответствует переходу через звуковую точку. С уменьшением числа Маха, т.е. с приближением к источнику, выделяется еще одна, внутренняя, область течения, в которой движение газа рассматривается как плоское одномерное.

В [1] считается, что к поверхности испарения примыкает газодинамическая область, соответствующая плоскому одномерному течению газа [4]. В [1] получены гидродинамические граничные условия при испарении одно- и двухатомных газов в предельном случае при $Kn \rightarrow 0$.

В указанных выше работах, за исключением [1], рассматривались одноатомные газы. В то же время большинство газов являются многоатомными, поэтому излучение указанных процессов применительно к молекулярным газам представляет значительный интерес. Целью данной работы является описание процесса интенсивного испарения молекулярного (двухатомного) газа со сферической поверхности в вакуум при малых числах Кнудсена ($0 < \text{Kn} \leq 0, 1$).

Известно, что для большинства молекулярных газов в широком диапазоне температур вращательные степени свободы можно рассматривать квазиклассически [5,6]. Будем считать, что параметры, характеризующие частицу, известны: T_s — температура поверхности частицы, n_s — концентрация насыщенного пара материала поверхности при температуре T_s . Рассмотрим случай установившегося сферически-симметричного разлета испаренного вещества. Учитывая малость числа Кнудсена, функцию распределения в объеме газа представим функцией Чемпена–Энского, которая в линеаризованном варианте имеет вид [5,7],

$$f = f_0(1 + \Phi_\eta + \Phi_T),$$

$$\Phi_{\eta} = -\frac{4}{3}\eta \left(\frac{du}{dr} - \frac{u}{r}\right) \frac{1}{p} \frac{m}{2kT} \left[(v_r - u)^2 - \frac{v_{\theta}^2 + v_{\varphi}^2}{2} \right],$$

$$\Phi_T = \frac{\varkappa}{c_p p} \frac{1}{T} \frac{dT}{dr} c_r \left(\frac{7}{2} - \frac{mc^2}{2kT} - \frac{J\omega^2}{2kT}\right),$$

$$f_0(\mathbf{v}, \omega) = \left(\frac{m}{2\pi kT}\right)^{3/2} \left(\frac{J}{kT}\right) \exp\left\{-\frac{mc^2}{2kT} - \frac{J\omega^2}{2kT}\right\}, \quad (1)$$

где Φ_{η} и Φ_T — вязкостный и теплопроводный члены; m, J — масса, момент инерции молекулы; \mathbf{v} , ω — скорость поступательного и вращательного движения молекулы; \mathbf{u} и $\mathbf{c} = \mathbf{v} - \mathbf{u}$ — средняя и тепловая скорости молекул; k — постоянная Больцмана; p, n и T — давление, концентрация и температура газа; η и \varkappa — коэффициенты вязкости и теплопроводности; c_p — удельная теплоемкость при p = const.

Граничное условие на поверхности $r = r_0$ запишем в предположении, что молекулы, испущенные поверхностью, имеют максвелловское распределение с температурой, равной температуре поверхности T_s . Коэффициенты испарения и аккомодации энергии для простоты полагаем равными единице,

$$f_s(\mathbf{v},\omega) = n_s \left(\frac{m}{2\pi kT_s}\right)^{3/2} \left(\frac{J}{kT_s}\right) \exp\left\{-\frac{mv^2}{2kT_s} - \frac{J\omega^2}{2kT_s}\right\},$$
$$v_r > 0. \tag{2}$$

Движение испаренного вещества в расширяющемся потоке с учетом коэффициентов вязкости η и теплопроводности \varkappa описывается системой уравнений Навье-Стокса.

Вдали от частицы в области невязкого течения ($\eta = 0$, $\varkappa = 0$) система уравнений Наьве-Стокса переходит в систему уравнений Эйлера, решение которой известно и приводится в [4]. В промежуточной области вблизи звуковой точки $r = r_1$ решение уравнений Навье-Стокса выражается через модифицированные функции Ханкеля [4].

Во внутренней области, примыкающей к поверхности испарения [1], уравнения гидродинамики в случае Pr = 3/4, $Kn \ll 1$ преобразуются к следующему виду [4]:

$$\frac{dw}{d\xi} = 2 - (k_1 a)^{2/3} - w - \frac{1}{w},$$
(3)

$$\theta + \frac{\gamma - 1}{2}w^2 - \frac{\gamma + 1}{2} = 0, \tag{4}$$

где

$$\xi = \frac{x - x_1'}{a}, \qquad x_1' = \frac{r_1}{r}, \qquad a = \frac{8\gamma}{3(\gamma + 1)} \eta \frac{r_1}{m},$$
$$\beta = \frac{\gamma - 1}{\gamma + 1}, \qquad x_1' = 1 + [1(1 - \beta)]^{-1/3} a^{2/3} \xi_1,$$
$$k_1 = \left(\frac{4}{\gamma + 1}\right) \xi_1^{3/2}.$$

Здесь $w = u/c_1$; $\theta = T/T_1$; γ —показатеь адиабаты; \dot{m} поток массы от частиц ($\dot{m} = \text{const}$); $c_1 = \sqrt{\gamma R_{\mu} T_1}$ и T_1 — значение средней скорости u и температуры T в звуковой точке $r = r_1$ соответственно (т.е. при $r = r_1$: $w = 1, \theta = 1$); a — малая величина; $a^{-1} \sim \text{Re}$. Решение уравнения (3) имеет вид

$$\frac{1}{R} = x_1' + k_1^{-1/3} a^{2/3} \left[\frac{1}{\arctan\left\{ (k_a a)^{-1/3} (1-w) \right\}} - \frac{\pi}{2} \right] - \frac{a}{k_1} \log(1-w).$$
(5)

Здесь $R = 1/x = r/r_1$ — безразмерный радиус-вектор; величина $\xi_1 = 2.3381$ определяется из условия асимптотической сшивки решения (3) с решением в промежуточной области, где $w \sim 1$. Используем выражения (3)–(5) для нахождения градиентов термодинамических величин dT/dr, du/dr, входящих в функцию распределения (1). После соответствующих преобразований с учетом соотношения $\eta = \lambda p_0 (2m/\pi kT_0)^{1/2}$ функция распределения (1) имеет вид

$$f = f^{0} \Big[b_{0} + b_{1} h_{0}^{1/2} v_{r} + b_{2} h_{0} v_{r}^{2} + b_{3} h_{0}^{3/2} v_{r}^{3} + b_{3} h_{0}^{3/2} v_{r} (v_{\phi}^{2} + v_{\theta}^{2}) + b_{4} h_{0} (v_{\phi}^{2} + v_{\theta}^{2}) \Big],$$

$$b_{0} = 1 + z_{0}^{2}d - (5 - z_{0}^{2})z_{0}^{2}\tau, \quad b_{1} = -2z_{0}^{2}d + (5 - 3z_{0}^{2})z_{0}\tau,$$

$$b_{2} = z_{0}^{2}d + 3z_{0}^{2}\tau, \quad b_{3} = -z_{0}^{2}\tau, \quad b_{4} = -z_{0}^{2}d + z_{0}^{2}\tau,$$

$$d = \frac{\gamma + 1}{\gamma} \left\{ \frac{1}{w_{0}} \left(\frac{dw}{d\xi} \right)_{0} + R_{0}a \right\}, \tau = \frac{\gamma^{2} - 1}{2\gamma} \frac{w_{0}}{\theta_{0}} \left(\frac{dw}{d\xi} \right)_{0},$$

$$R_{0} = \frac{r_{0}}{r_{1}}, \quad z_{0} = \sqrt{\frac{\gamma}{2}M_{0}}, w_{0} = M_{0}\sqrt{\frac{\gamma + 1}{2 + (\gamma - 1)M_{0}^{2}}},$$

$$a_{0} = \frac{8\gamma}{3\sqrt{\pi}(\gamma + 1)} \frac{\mathrm{Kn}}{z_{0}} \frac{1}{R_{0}}, \quad h_{0} = \frac{m}{2kT_{0}}.$$
(6)

Здесь индекс 0 соответствует значениям величин на гидродинамической границе испарения. Будем считать кнудсеновский слой бесконечно тонким и рассматривать его как поверхность газодинамического разрыва, при переходе через которую выполняются законы сохранения потоков массы, импульса и энергии, т.е. остаются постоянными величины C_0, C_1, C_2

$$\int Q_{i}fd^{3}v\omega d\omega = C_{i}; \quad i = 1, 2, 3;$$

$$Q_{1} = m, \quad Q_{2} = mv_{r}, \quad Q_{3} = mv^{2}/2 + J\omega^{2}/2.$$
(7)

Эти условия позволяют, не решая уравнения Больцмана, получить связь параметров поверхности T_s , n_s с параметрами пара T_0 , n_0 на внешней границе слоя Кнудсена. Интегрирование (7) с учетом (6) приводит к системе трех уравнений с четырьмя неизвестными: M_0 , Кn, T_0/T_s и n_0/n_s . В качестве свободного параметра удобнее выбрать M_0 , тогда безразмерные температура T_0/T_s и концентрация n_0/n_s определяются выражениями

$$\frac{T_0}{T_s} = \frac{3X_1}{X_3}, \qquad \frac{n_0}{n_s} = \frac{T_s}{2X_2T_0},$$
 (8)

а число Кнудсена Кn находится из решения уравнения

$$\frac{\sqrt{\pi}}{2\sqrt{3}} \frac{\sqrt{X_1}\sqrt{X_3}}{X_2} - 1 = 0.$$
(9)

Выше использованы обозначения

$$\begin{split} X_1 &= b_0 F_0 + b_1 F_1 + b_2 F_2 + b_2 F_2 + b_3 F_3 + b_4 F_0 + b_3 F_1, \\ X_2 &= b_0 F_1 + b_1 F_2 + b_2 F_3 + b_3 F_4 + b_4 F_1 + b_3 F_2, \\ X_3 &= b_0 (2F_0 + F_2) + 2z_0^2 \tau F_0 \\ &+ b_1 (2F_1 + F_3) - 2z_0 \tau F_1 + b_2 (2F_2 + F_4) \\ &+ b_3 (2F_3 + F_5) + b_4 \left(\frac{5}{2} F_0 + F_2\right) + b_3 \left(\frac{5}{2} F_1 + F_3\right), \end{split}$$

$$F_{0} = z_{0}y_{1} + y_{2}, \quad F_{1} = (1/2 + z_{0}^{2})y_{1} + z_{0}y_{2},$$

$$F_{2} = (3z_{0}/2 + z_{0}^{3})y_{1} + (1 + z_{0}^{2})y_{2},$$

$$F_{3} = (3/4 + 3z_{0}^{2} + z_{0}^{4})y_{1} + (5z_{0}/2 + z_{0}^{3})y_{2},$$

$$F_{4} = (15z_{0}/4 + 5z_{0}^{3} + z_{0}^{5})y_{1} + (2 + 9z_{0}^{2}/2 + z_{0}^{4})y_{2},$$

$$F_{5} = \frac{1}{8}(15 + 90z_{0}^{2} + 60z_{0}^{4} + 8z_{0}^{6})y_{1} + \frac{1}{8}(66z_{0} + 56z_{0}^{3} + 8z_{0}^{5})y_{2}$$

$$\exp(-z^{2})$$

$$y_1 = 1 + \operatorname{erf}(z_0),$$
 $y_2 = \frac{\cos(z_0)}{\sqrt{\pi}}$
 $\operatorname{erf}(z_0) = \frac{2}{\sqrt{\pi}} \int_{0}^{z_0} \exp(-x^2) dx.$

Результаты расчетов граничных значений макропараметров двухатомного газа приведены в таблице. При Кп $\rightarrow 0$ число Маха M_0 , температура T_0/T_s и концентрация n_0/n_s стремятся к предельным значениям, которые вполне удовлетворительно согласуются с результатами [1] при Кп $\rightarrow 0$: $M_0 = 0.415$, $T_0/T_s = 0.913$, $n_0/n_s = 0.661$. Из таблицы видно, что с увеличением числа Кнудсена *Kn* растет число Маха M_0 и уменьшаются граничные значения безразмерных температуры T_0/T_s и концентрации газа n_0/n_s , т.е. скачки температуры и концентрации в слое Кнудсена возрастают.

Kn	M_0	W0	T_0/T_s	n_0/n_s
$Kn \to 0$	0.404	0.436	0.942	0.663
0.0025	0.430	0.463	0.936	0.647
0.005	0.447	0.481	0.932	0.637
0.01	0.477	0.511	0.924	0.620
0.02	0.528	0.563	0.911	0.593
0.03	0.577	0.612	0.897	0.568
0.04	0.622	0.657	0.884	0.547
0.05	0.665	0.698	0.871	0.529
0.06	0.703	0.735	0.858	0.513
0.07	0.735	0.765	0.848	0.501
0.08	0.762	0.790	0.838	0.491
0.09	0.782	0.809	0.830	0.484
0.10	0.798	0.823	0.824	0.479

Сравнение полученных результатов с данными численных расчетов [2] для случая одноатомного газа позволяет сделать вывод, что при малых значениях числа Кнудсена учет вращательных степеней свободы двухатомного газа приводит к уменьшению скачков температуры и концентрации в кнудсеновском слое по сравнению со случаем одноатомного газа.

Список литературы

- Edwards R.H., Collins R.L. // Int. Symp. on Rarefied Gas Dynamics. New York: Academic Press, 1969. Vol. 2. P. 1489– 1496.
- [2] Sone Y., Sugimoto H. // Phys. Fluids A. 1993. Vol. 5. N 6. P. 1491–1511.

- [3] Булгакова Н.М., Плотников М.Ю., Ребров А.К. // Изв. РАН. МЖГ. 1997. № 6. С. 137–143.
- [4] Sakurai A. // Quart. J. Mech. and Appl. Math. 1958. Vol. XI. Pt 3. P. 274–289.
- [5] Жданов В.М., Алиевский М.Я. Процессы переноса и релаксации в молекулярных газах. М.: Наука, 1989. 335 с.
- [6] Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч. 1. Т. 5. М.: Наука, 1976. 584 с.
- [7] Поддоскин А.Б., Юшканов А.А. // Изв. РАН. МЖГ. 1998. № 5. С. 182–189.