01;09;11 Термостабилизация частоты и групповой скорости магнитостатической волны в пленке кубического феррита

© В.В. Шагаев

Институт материалов электронной техники, 248650 Калуга, Россия E-mail: root@niimet.kaluga.su

(Поступило в Редакцию 16 ноября 1998 г. В окончательной редакции 26 июля 1999 г.)

Теоретически исследованы условия термостабильности частоты и групповой скорости магнитостатической волны в ферромагнитном слое. Из условий одновременной термостабильности обеих характеристик выведены соотношения, определяющие температурные изменения параметров поля подмагничивания. Подробно рассмотрены ферритовые пленки с кубической анизотропией.

Введение

При разработке устойств на основе магнитостатических волн (МСВ), распространяющихся в ферритовых пленках (ФП), возникает проблема термостабилизации характеристик устройств [1]. Температурный дрейф характеристик в основном определяется зависимостью от температуры магнитных параметров пленок [2,3]. Детально разработан метод термостабилизации рабочих частот МСВ приборов, основанный на эффекте размагничивания ФП [4-6]. Кроме того, в работах [7,8] для уменьшения температурного ухода частот применялись компенсирующие изменения поля подмагничивания.

В настоящей работе рассмотрен метод термостабилизации сразу двух характеристик МСВ частоты и групповой скорости (ГС). Метод основан на компенсирующих изменениях поля подмагничивания как по напряженности, так и по углу наклона к пленке. Для теоретического анализа была использована модель ФП с кубической и одноосной магнитной анизотропией. Кроме того, анализ проводился в "магнитостатической" области значений волнового вектора [9], наиболее важной для приложений.

Геометрия задачи и исходные соотношения для анизотропной пленки

Рассмотрим ФП кубического кристалла, у которой одна из плоскостей симметрии, а также ось одноосной магнитной анизотропии перпендикулярны к пленке. Будем полагать, что внешнее магнитное поле **Н** намагничивает пленку до насыщения параллельно этой плоскости симметрии. Данные ограничения упрощают задачу, так как используемые в расчетах векторы будут параллельны одной и той же плоскости. В то же время в рамках задачи может быть рассмотрен непрерывный ряд кристаллографических направлений, расположенных в плоскостях симметрии кубического кристалла.

В полном виде геометрия задачи приведена на рис. 1. Вектор равновесной намагниченности M, поле H, направление [001] и нормаль к пленке **n** расположены в одной и той же кристаллографической плоскости, которая совпадает либо с плоскостью (010), либо с (110). Введена правая ортогональная система координат *хуг.* Ось *z* направлена вдоль вектора **M**, а ось *y* расположена параллельно пленке. При этом угол γ между осью *y* и направлением [010] в силу введенных ограничений принимает значения либо 0, либо $\pi/4$. Θ , Θ_H , δ углы наклона к пленке соответственно векторов **M**, **H** и оси кристалла [001].

Рассмотрим модель, в которой энергия магнитной анизотропии ФП описывается выражением $[K_c(\beta_1^2\beta_2^2 + +\beta_1^2\beta_3^2 + \beta_2^2\beta_3^2) + K_u \sin^2 \psi]$, где K_c и K_u — первые константы кубической и одноосной анизотропии соответственно; β_1 , β_2 , β_3 — косинусы углов, образуемых вектором **M** с осями кубического кристалла [100], [010], [001]; ψ — угол между **M** и осью одноосной нормальной анизотропии ($\psi = \pi/2 - \Theta$). Анизотропные свойства ФП будем учитывать с помощью тензора эффективных размагничивающих факторов анизотропии [9]. Стандартные расчеты приводят к следующим выражениям для

Рис. 1. Модель анизотропной ферромагнитной пленки.

отличных от нуля компонент тензора:

$$MN_{xx} = -\frac{3}{8}H_c(4-r)[1-\cos 4(\Theta-\delta)] - H_u \cos^2 \Theta, \quad (1a)$$

$$MN_{yy} = -\frac{3}{2}H_c r[1 - \cos 2(\Theta - \delta)],$$
 (1b)

$$MN_{zz} = -\frac{1}{8}H_c\{(4-r)[3 + \cos 4(\Theta - \delta)] + 4r\cos 2(\Theta - \delta)\} - H_u \sin^2 \Theta,$$
(1c)

$$MN_{xz} = \frac{1}{8}H_c[2r\sin 2(\Theta - \delta) + (4 - r)\sin 4(\Theta - \delta)]$$
$$-\frac{1}{2}H_u\sin 2\Theta, \qquad (1d)$$

где $H_c = K_c/M$ и $H_u = 2K_u/M$ — напряженности полей кубической и одноосной анизотропии соответственно, $r = (1/2)(1 - \cos 4\gamma).$

Температурные изменения равновесной ориентации вектора M задаются производной $d\Theta/dT$, где T температура. Угол Θ определяется из уравнения для проекции внешнего поля на ось х

$$H\sin(\Theta_H - \Theta) = MN_{xz} + \frac{1}{2}4\pi M\sin 2\Theta. \qquad (2)$$

Дифференцируя это уравнение по Т, получим

$$\frac{d\Theta}{dT} = \left(\frac{\sin 2(\Theta - \delta)}{4} [r + (4 - r)\cos 2(\Theta - \delta)]\right)$$

$$\times \left(H_c \alpha_H - \frac{dH_c}{dT}\right) + \frac{\sin 2\Theta}{2} \left(4\pi M_{\text{eff}} \alpha_H - \frac{d(4\pi M_{\text{eff}})}{dT}\right)$$

$$+ H_z \frac{d\Theta_H}{dT}\right) \left(H_z + \frac{1}{2} H_c [r\cos 2(\Theta - \delta) + (4 - r)\cos 4(\Theta - \delta)] + 4\pi M_{\text{eff}} \cos 2\Theta\right)^{-1}, \quad (3)$$
FIGE

ГД

$$H_z = H\cos(\Theta_H - \Theta), \qquad (4)$$

 $\alpha_{H}(1/H)(dH/dT)$ — ТК поля подмагничивания, $4\pi M_{\text{eff}} = (4\pi M - H_{\mu})$ — эффективная намагниченность; производная dH_c/dT учитывает температурную зависимость поля кубической анизотропии, а производная $d(4\pi M_{\rm eff})/dT$ — температурную зависимость как намагниченности насыщения, так и поля одноосной анизотропии.

В рассматриваемых ниже дифференциальных уравнениях (ДУ) величина и направление внешнего поля будут задаваться параметрами H_z и Θ . Их связь с параметрами *H* и Θ_H осуществляется с помощью формул (2) и (4).

Для расчетов потребуется производная dH_z/dT . Дифференцируя уравнение (4) и учитывая соотношения (2) и (1d), получим

$$\frac{dH_z}{dT} = \left(\frac{1}{8}H_c[2r\sin 2(\Theta - \delta) + (4 - r)\sin 4(\Theta - \delta)] + 4\pi M_{\text{eff}}\frac{\sin 2\Theta}{2}\right) \left(\frac{d\Theta}{dT} - \frac{d\Theta_H}{dT}\right) + H_z\alpha_H.$$
 (5)

Температурные коэффициенты частоты и групповой скорости

Рассмотрим MCB с волновым вектором k, направленным вдоль оси у. ДУ в безобменном приближении выводятся из уравнений магнитостатики с учетом электродинамических граничных условий на поверхности пленки [10]. В результате стандартных расчетов получаются ДУ двух видов.

При любом угле Θ в пленке могут распространяться объемные МСВ (ОМСВ). ДУ для них имеют вид

$$kd = \left| \frac{f^2 - f_l^2}{f^2 - f_t^2} \right|^{1/2} \left(L \arctan\left[\frac{2|(f^2 - f_l^2)(f^2 - f_t^2)|^{1/2}}{f_l^2 + f_t^2 + f_m^2 - 2f^2} \right] + Lp + \frac{\pi}{2}(1 - L) + n\pi \right) \equiv U_{\nu}(f, f_l, f_t, f_m), \quad (6)$$

где

$$f_l^2 = g^2 \left[H_z + M \left(N_{xx} - N_{zz} - 4\pi \sin^2 \Theta \right) + 4\pi M \cos^2 \Theta \right]$$
$$\times \left[H_z + M \left(N_{yy} - N_{zz} - 4\pi \sin^2 \Theta \right) \right], \tag{7}$$

$$f_t^2 = g^2 \left[H_z + M \left(N_{xx} - N_{zz} - 4\pi \sin^2 \Theta \right) \right] \\ \times \left[H_z + M \left(N_{yy} - N_{zz} - 4\pi \sin^2 \Theta \right) + 4\pi M \right], \quad (8)$$
$$f_m = 4\pi M g \cos \Theta, \qquad (9)$$

d — толщина ФП; *f* — частота волновой моды с номером n = 0, 1, ...; g = 2.8 MHz/Oe — гиромагнитное отношение; L = 1, если $f_t > f_l$ (прямые ОМСВ), и L = -1, если $f_t < f_l$ (обратные ОМСВ); p = 0, если $2f^2 \leq f_l^2 + f_t^2 + f_m^2$ и $p = \pi$ при обратном неравенстве; у функции arctg используется непрерывная ветвь с диапазоном значений от $(-\pi/2)$ до $\pi/2$; частоты ОМСВ лежат в интервале между f_l и f_t .

Поверхностные МСВ (ПМСВ) существуют при выполнении условия $f_m^2 > |f_t^2 - f_l^2|$. ДУ ПМСВ имеет вид

$$kd = \frac{1}{2} \left| \frac{f^2 - f_l^2}{f^2 - f_t^2} \right|^{1/2} \\ \times \ln \left(1 + \frac{4[(f^2 - f_l^2)(f^2 - f_t^2)]^{1/2}}{f_m^2 - [(f^2 - f_l^2)^{1/2} + (f^2 - f_t^2)^{1/2}]^2} \right) \\ \equiv U_3(f, f_l, f_t, f_m).$$
(10)

ПМСВ лежат в Частоты интервале $\max\{f_l, f_t\} < f < (1/2f_m)[(f_l^2 + f_t^2 + f_m^2)^2 - 4f_l^2 f_t^2]^{1/2}.$ Если $f_t > f_l$, то дисперсионная кривая ПМСВ начинается со значения волнового вектора $kd = 2(f_t^2 - f_l^2)/(f_m^2 - f_t^2 + f_l^2)$ на частоте f = ft. Для частоты f, соответствующей заданному значению волнового вектора, ТК определяется как $\alpha_f = (1/f)(df/dT).$

$$\alpha_f = -\frac{1}{f^2(\partial U_j/\partial f^2)} \times \left(\frac{\partial U_j}{\partial f_l^2}\frac{df_l^2}{dT} + \frac{\partial U_j}{\partial f_t^2}\frac{df_t^2}{dT} + \frac{\partial U_j}{\partial f_m^2}\frac{df_m^2}{dT}\right).$$
(11)

Здесь j = v, *s* для ОМСВ и ПМСВ соответственно. Аргументы у функций U_j для краткости записи не указаны. Частные производные от U_j рассчитываются из явных зависимостей (6) и (10), а температурные производные — из соотношений (7)–(9). При этом производные $d(MN_{qq})/dT$ (q = x, y, z) рассчитываются из формул (1a)–(1c) (с учетом dH_c/dT , dH_u/dT , $d\Theta/dT$), а для $d\Theta/dT$ и dH_z/dT используются соотношения (3) и (5). Подстановка полученных выражений в формулу (11) приведет к аналитическим выражениям для α_f , в которые параметры α_H и $d\Theta_H/dT$ войдут в виде линейных функций.

ГС определяется из дисперсионной зависимости f(k) по формуле $V_g = 2\pi(\partial f/\partial k)$ [11]. Учитывая, что ДУ даны в форме зависимостей kd(f), представим ГС в виде

$$V_g = 2\pi d \left(\frac{\partial(kd)}{\partial f}\right)^{-1}.$$
 (12)

Температурный коэффициент ГС задается формулой $\alpha_g = (1/V_g)(dV_g/dT)$. Элементарными преобразованиями эта формула приводится к виду

$$\alpha_g = \alpha_f + f \frac{\partial \alpha_f}{\partial f}.$$
 (13)

Таким образом, аналитические выражения для α_g могут быть получены из выражений для α_f . Отметим также, что зависимость α_f и α_g от kd задается в параметрическом виде через параметр f и ДУ, связывающие kd и f. Численные исследования условий термостабильности были проведены на основе формул, полученных описанным выше способом.

Анализ условий термостабильности

Условия одновременной термостабильности частоты и ГС можно записать в виде системы из двух уравнений с двумя неизвестными переменными α_H и $d\Theta_H/dT$

$$\alpha_f = 0, \qquad \alpha_g = 0. \tag{14}$$

Поскольку α_H и $d\Theta_H/dT$ входят в выражения для α_f и α_g в виде линейных комбинаций, то решение системы может быть получено в аналитическом виде как решение системы из двух линейных уравнений. Получающиеся выражения, однако, слишком громоздки, и предпочтительным оказывается их численное исследование.

В качестве примера рассмотрим задачу, в которой условия термостабильности накладываются на заданные

значения частоты и ГС МСВ при произвольном значении волнового вектора. Параметр kd, таким образом, будем считать переменным, а параметры поля будем искать в виде зависимостей от kd. Кроме того, чтобы не усложнять анализ задачи и вместе с тем получить представление о влиянии кубической анизотропии, ограничимся рассмотрением двух кристаллографических ориентаций вектора намагниченности. В одном случае условиям (14) будет соответствовать направление вектора М вдоль оси симметрии четвертого порядка, а в другом — вдоль оси третьего порядка (в кубическом кристалле это оси трудного и легкого намагничивания). Тогда, согласно рис. 1, для М || (100) возможные значения параметров r и $(\Theta - \delta)$ в формулах (1a)–(1d) будут либо r = 0 и $(\Theta - \delta) = 0, \pi/2, \pi$ (3/2) π , либо r = 1 и $(\Theta - \delta) = 0$, π . Для **M** || (111) r = 1 и ($\Theta - \delta$) = $\arccos(\pm 1/3^{1/2})$, $\arccos(\pm 1/3^{1/2}) + \pi$.

Для расчетов использовались значения магнитных параметров пленок железо-иттриевого граната $Y_3Fe_5O_{12}$, широко применяемых в MCB устройствах [2]: $4\pi M_{eff} = 1750$ G, $H_c = -42$ Oe, $d(4\pi M_{eff})/dT = -4.15$ G/K, $dH_c/dT = 0.46$ Oe/K (здесь и на рис. 1 К — градус Кельвина).

Рассматривалась основная мода ПОМСВ и значения $f = 10^4$ MHz, $V_g/(2\pi d) = 6 \times 10^8 \, {\rm s}^{-1}$. Вначале

Рис. 2. Зависимость параметров внешнего магнитного поля от kd для заданных значений частоты и групповой скорости основной моды прямой объемной МСВ. Сплошные кривые рассчитаны при условии **М** || (111), штриховые — при **М** || (100).

рассчитывались зависимости $\Theta(kd)$ и $H_z(kd)$. Для этого решалась система из двух уравнений $U_v = kd$ и $(\partial U_v/\partial f)^{-1} = V_g/(2\pi d)$ с переменным параметром kd и двумя неизвестными переменными Θ и H_z . Функция U_v определена выражением (6) для основной моды ПОМСВ и в уравнениях сделаны подставки f_l , f_t , f_m согласно формулам (7)–(9). Найденные зависимости $\Theta(kd)$ и $H_z(kd)$ далее использовались в уравнениях системы (14) при расчете параметров H и Θ_H/dT и в уравнениях (2) и (4) при расчете параметров H и Θ_H .

Результаты расчетов представлены на рис. 2. Зависимости $\Theta_H(kd)$ представлены в интервале $0 \leq \Theta_H \leq \pi$ ветвями, симметричными относительно значения $\Theta_H = \pi/2$ (кривая 4 для **M** || (100) и кривая 3 для **M** || (111)). Причем каждой паре симметричных ветвей $\Theta_H(kd)$ соответствует по одной зависимости H(kd) (кривая 1 для **M** || (100) и кривая 2 для **M** || (111)). Кроме того, для **M** || (1000) зависимости $\alpha_H(kd)$ (кривая 7), соответствующие симметричным $\Theta_H(kd)$, также будут одинаковыми, а зависимости $d\Theta_H(kd) < \pi/2$ (кривые 5 и 10 соответственно), так и при $\pi/2 < \Theta_H(kd) < \pi$ (кривые 6 и 8, причем кривая 8 соответствует зависимости $(-1)d\Theta_H(kd)/dT)$.

Таким образом, результаты расчетов, основанные на значениях магнитных параметров реальных пленок, демонстрируют принципиальную возможность одновременной термостабилизации частоты и ГС МСВ рассмотренным методом. Приведенные в работе формулы позволяют анализировать различные варианты термостабилизации характеристик МСВ с целью выбора наиболее эффективных и доступных. Отметим также, что при выводе расчетных соотношений не предполагалось малости значений полей анизотропии. Это позволяет использовать рассмотренную модель для пленок кубических кристаллов без ограничений на значения их магнитных параметров.

Список литературы

- [1] Исхак В.С. // ТИИЭР. 1988. Т. 76. № 2. С. 86-104.
- [2] Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975. 360 с.
- [3] Шагаев В.В. // ФТТ. 1998. Т. 40. Вып. 11. С. 2089–2092.
- [4] Берегов А.С., Кудинов Е.В., Ерещенко И.Н. // Электронная техника. Сер. 1. Электроника СВЧ. 1987. Вып. 1(395). С. 19–21.
- [5] Фетисов Ю.К. // ЖТФ. 1987. Т. 57. Вып. 12. С. 2393-2397.
- [6] Славин А.Н., Фетисов Ю.К. // ЖТФ. 1988. Т. 58. Вып. 11. С. 2210–2218.
- [7] Adam J.D. // IEEE MTT-S. Int. Microwave Symp. Digest. 1979.
 P. 160–161.
- [8] Adam J.D., Daniel M.R. // IEEE Trans. 1981. Vol. Mag-17. N 6. P. 2951–2956.
- [9] Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 591 с.
- [10] Берегов А.С. // Изв. вузов. Радиоэлектроника. 1984. Т. 27. № 10. С. 9–16.
- [11] Берегов А.С. // РиЭ. 1983. Т. 28. № 1. С. 127–131.