# 05;07;12 Радиационно-индуцированная проводимость щелочно-галоидных кристаллов в сильных электрических полях при рентгенои фотовозбуждении

#### © В.Д. Куликов, Ю.В. Лисюк

Томский политехнический институт, 634004 Томск, Россия

(Поступило в Редакцию 8 января 1998 г. В окончательной редакции 1 декабря 1998 г.)

Проведены исследования радиационно-индуцированной проводимости в щелочно-галоидных кристаллах при рентгеновском возбуждении и последовательном воздействии рентгеновского импульса излучения и лазерного импульса в полосе поглощения F- и  $F^-$ -центров окраски. Сделаны оценки основных параметров проводимости: концентрации и времени жизни носителей при рентгено- и фотовозбуждении. Обсуждены возможные процессы, определяющие нелинейность вольт-амперных характеристик. Показано, что увеличение проводимости в сильном электрическом поле возможно за счет уменьшения степени пространственной локализации электронов в зоне проводимости диэлектрика.

## Введение

Исследования ридационно-индуцированной проводимости (РИП) позволяют получить важную информацию о механизмах генерации, переноса и рекомбинации носителей, что существенно расширяет представления о поведении диэлектрических материалов в полях ионизирующего излучения. Большой интерес, в частности, представляет изучение РИП в сильных электрических полях, где, как показано экспериментально, могут наблюдаться значительные отклонения от закона Ома [1,2]. Причины нелинейного хода вольт-амперных характеристик (ВАХ) в настоящее время однозначно не установлены. Так, в [1] сделано предположение о влиянии неомичности контактов. В работах [2,3] происхождение сверхлинейного участка ВАХ при облучении рентгеновскими импульсами образцов кварца, стекла, щелочно-галоидных кристаллов (ЩГК) связывалось с реализацией эффекта Онзагера. Наряду с перечисленными эффектами за нелинейность ВАХ могут отвечать и такие явления, как инжекция заряда с металлического электрода, электростатическая и ударная ионизация центров окраски ионных кристаллов, а также изменение степени подвижности носителей в электрическом поле.

Целью данной работы являлось исследование природы нелинейности ВАХ в щелочно-галоидных кристаллах в полях  $10^4 - 10^5$  V/cm. Выбор щелочно-галоидных кристаллов в качестве объекта изучения обусловлен наличием установившихся представлений о механизмах генерации носителей и дефектообразования в этих материалах под действием радиации. Наряду с рентгеновской проводимостью исследовалась фотопроводимость, возникающая при возбуждении лазерным излучением *F*и *F*-центров окраски (ЦО) (*F*-, *F*-центры — положительно заряженная анионная вакансия, захватившая один и два электрона соответственно). Использование двух методов возбуждения представляется целесообразным по следующим соображениям. Во-первых, при рентгеновском возбуждении создаются пары противоположно заряженных носителей, связанных между собой кулоновским взаимодействием. Действие эффекта Онзагера проявляется в уменьшении вероятности парной рекомбинации носителей за счет пространственного разделения носителей под действием внешнего электрического поля. При фотовозбуждении можно создать ситуацию, аналогичную рассмотренной выше, когда при ионизации F-центра создаются фотоэлектрон и положительно заряженная анионная вакансия. Другая ситуация возникает при возбуждении  $F^-$ -центра с созданием фотоэлектрона и нейтрально заряженного F-центра, что исключает действие эффекта Онзагера. Таким образом, использование двух методов возбуждения позволяет провести прямую оценку влияния механизма Онзагера на формирование хода ВАХ. Во-вторых, следует ожидать разного физического механизма рекомбинации электронов и дырок при рентгеновском возбуждении и рекомбинации фотоэлектронов на дефектах решетки при возбуждении центров окраски светом. Различия в характере рекомбинации носителей могут служить критерием для разделения электронов на созданные за счет зона-зонной генерации и высвобождаемые из ловушек. Идентификация происхождения электронов представляет интерес при определении вклада в проводимость носителей, созданных посредством ударной ионизации центров окраски.

В работе дана оценка таких параметров, как время жизни и концентрация носителей при рентгено- и фотовозбуждении. Возможные подходы к оценке времени жизни носителей представляют достаточный интерес, так как в большинстве случаев измерения времени жизни по спаду проводимости ограничены временны́м разрешением аппаратуры [4].

#### Методика измерений

Схема эксперимента приведена на вставке рис. 1. Исследовались чистые монокристаллы KBr, KCl, NaCl, KI, CsI, выращенные из расплава соли марки ОСЧ. Образцами служили тонкие пластинки с поперечными размерами  $15 \times 15$  mm и толщиной  $\approx 150-350 \,\mu$ m. На образцы напылялись платиновые электроды и охранное кольцо для предотвращения поверхностного протекания тока.

Генерация рентгеновского излучения осуществлялась при облучении Al мишени толщиной ~  $300 \,\mu$ m сильноточным электронным пучком с параметрами: максимальная энергия электронов ~ 0.3 MeV, длительность импульса (на полувысоте)  $\tau_i \approx 20 \, \text{ns}$ , плотность тока  $\approx 400 \, \text{A/cm}^2$ .

Для фотовозбуждения использовался одномодовый лазер на YAG: Nd, работающий в режиме модулированной добротности. Межэлектродное пространство образца облучалось через боковую грань. Флюэнс энергии излучения лазера на основной длине волны 1.06  $\mu$ m в месте расположения образца составлял 0.2 J/cm<sup>2</sup> при длительности импульса  $\tau_l \sim 30$  ns (на полувысоте). На основной длине волны возбуждались  $F^-$ -центры окраски. Для возбуждения F-центров излучение лазера преобразовывалось с помощью кристалла ниобата лития во вторую гармонику с длиной волны 0.53  $\mu$ m. Эффективность преобразования достигала  $\sim 10\%$ .

Для корректного сопоставления результатов рентгенои фотопроводимости была реализована схема каскадного возбуждения, в которой окрашенный первым импульсом рентгеновского излучения кристалл "довозбуждался"



**Рис. 1.** Вольт-амперные характеристики кристаллов: I - CsI, 2 - KBr, 3 - KCl, 4 - KI, 5 - NaCl, 6 - CsI-Tl (при рентгеновском возбуждении). На вставке схема эксперимента: I - рентгеновское излучение, 2 - образец, 3 - электроды, 4 - охранное кольцо, 5 - осциллограф.



**Рис. 2.** Зависимости плотности тока (*a*) и удельной проводимости (*b*) от напряженности электрического поля при рентгеновском (*1*) и лазерном возбуждении в полосе поглощения *F*-(2) и *F*<sup>-</sup>-центров (*3*) окраски в кристалле KBr. На вставке приведены действие рентгеновского и лазерного ( $\lambda = 0.53 \,\mu$ m) импульсов при каскадном возбуждении кристалла KBr и осциллограмма оптического пропускания *F*-центров. *1* — импульсы рентгеновского тока, *2* — фототока.

импульсом лазерного излучения. Действие каскадного возбуждения на кристалл КВг иллюстрируется на вставке к рис. 2, *а* осциллограммой изменения пропускания образца на длине волны He–Ne лазера ( $\lambda = 0.63 \,\mu$ m) (вверху) и токами проводимости (внизу). Следует отметить, что импульсное возбуждение светом в области *F*-полосы поглощения приводит к практически полному разрушению *F*-центров. По данным оптического пропускания (рис. 2, *a*) определялась концентрация *F*- и *F*<sup>-</sup>-центров окраски при рентгеновском облучении по формуле Смакулы.

Измерения вольт-амперных характеристик проводились в атмосфере при комнатной температуре. К электродам образца (рис. 1) прикладывалось импульсное напряжение V длительностью 20 µs отрицательной полярности. Через 8 µs после подачи напряжения срабатывал ускоритель электронов. Постоянная времени цепи  $\tau_{RC}$ , связанная с перезарядкой емкости образца при изменении его сопротивления, определялась как  $\tau_{RC} = (R_1 + R_2)C_1$ , где  $C_1 = 10^{-11}F$  межэлектродная емкость образца,  $R_1 = 100 \Omega$ ,  $R_2 = 50 \Omega$ (рис. 1, *a*). В этом случае  $\tau_{RC}$  (~ 1 ns) меньше длительности нарастания фронтов импульса рентгена и лазера (~ 5 ns) и исключается искажение сигнала. ВАХ строилась по амплитудным значениям импульса тока при соответствующих напряжениях.

Поглощенная энергия рентгеновского излучения в образцах определялась по зависимости свечения кристалла CsI от плотности энергии возбуждения. Образец CsI облучался электронными импульсами различной мощности и измерялась интенсивность люминесценции. Падающая на образец энергия электронного пучка измерялась с помощью калориметра типа ИМО-2H. Затем при рентгеновском возбуждении CsI по интенсивности свечения определялась энергия, поглощенная в образце W.

#### Экспериментальные результаты

Зависимости плотности тока *i* и удельной проводимости  $\sigma$  от напряженности электрического поля *E* при возбуждении щелочно-галоидных кристаллов рентгеновским и оптическим излучением приведены на рис. 1, 2. Как видно из рис. 1, значения плотности тока при изодозном облучении рентгеновскими импульсами убывают в ряду CsI, KBr, KCl, KI, NaCl. В CsI ток был на порядок больше, чем в других кристаллах. Однако в CsI– Tl проводимость достаточно мала, что, видимо, связано с захватом носителей ионами активатора [5]. Как для KBr (рис. 2), так и для KCl значение плотности тока при возбуждении зеленым светом ( $\lambda = 0.53 \,\mu$ m), ионизирующим *F*-центры окраски, превышает в 3–4 раза плотность тока при возбуждении *F*<sup>-</sup>-центров окраски основной гармоникой лазерного излучения ( $\lambda = 1.06 \,\mu$ m).

Для всех изученных образцов ВАХ как при рентгено-, так и фотовозбуждении существенно нелинейны. В диапазоне изменения напряженности поля  $E \sim 10^4 - 10^5 \,\mathrm{V/cm}$  можно выделить четыре участка. На первом, в области малых *E* (до 10<sup>4</sup> V/cm), ВАХ близки к линейным, на втором ( $E \sim 10^4 - 210^4 \, \text{V/cm}$ ) наблюдается сверхлинейный рост тока с увеличением напряженности поля, близкий  $i \sim E^2$ . На третьем участке зависимость iот Е становится более пологой, на четвертом, при больших Е, ВАХ выходят на участок, близкий к линейному. Значения пороговой напряженности поля Е<sub>m</sub>, соответствующие переходу ВАХ в линейный режим протекания тока, несколько отличаются для различных кристаллов и находятся в диапазоне 4-6 · 10<sup>4</sup> V/cm. Закон изменения плотности тока от Е для рентгено- и фотовозбуждения (рис. 2, а) близок в идентичных материалах. Приведенные на рис. 2, b зависимости удельной проводимости от напряженности поля в области 10<sup>4</sup>-6 · 10<sup>4</sup> V/ст имеют вид кривых с насыщением.

В работе проведены исследования зависимости РИП от плотности поглощенной энергии для образцов КВг и CsI при рентгеновском возбуждении и возбуждении светом в F- и  $F^-$ -полосе поглощения в кристаллах КВг, КСl. Рентгеновская проводимость зависит от плотности энергии возбуждения как  $\sigma \sim \sqrt{W}$ . Фотопроводимость при возбуждении в полосе поглощения F- и  $F^-$ -центров окраски светом меняется линейно с плотностью энергии излучения лазера. Полученные результаты подтверждают принципиальное отличие в характере рекомбинации носителей — квадратичном при рентгеновском возбуждении и линейном при фотовозбуждении, что удовлетворительно согласуются с имеющимися литературными данными [6,7].

## Обсуждение результатов

Согласно данным работ [5,8,9], в щелочно-галоидных кристаллах после облучения ионизирующим облучением дырки быстро  $(10^{-12} \text{ s})$  автолокализуются, образуя с соседними атомами конфигурацию типа  $X_2^-$  (X — атом галоида) — так называемый V<sub>k</sub>-центр. Подвижность дырок близка к нулю и в проводимости участвуют свободные электроны до момента их рекомбинации с V<sub>k</sub>-центром или захвата на ловушки. Основным каналом захвата свободных электронов в щелочно-галоидных кристаллах является захват на *F*-центры с образованием  $F^-$ -центров.

Концентрация и время жизни носителей могут быть определены из экспериментальных данных следующим образом. При однородном возбуждении объема импульсами рентгеновского и лазерного излучений концентрация электронов в зоне проводимости щелочно-галоидных кристаллов дается уравнением

$$\partial n_{1,2}/\partial t = G_{1,2} - n_{1,2}/\tau_{1,2},$$
 (1)

где  $n_1$ ,  $n_2$  — концентрации электронов;  $G_1$ ,  $G_2$  — скорость генерации пар носителей;  $\tau_1$ ,  $\tau_2$  — времена жизни электронов при рентгено- и фотовозбуждении соответственно; t — время.

Для случая рентгеновского возбуждения форма записи (1) справедлива в пренебрежении захватом электронов на центры захвата (т.е. при низкой концентрации центров окраски).

В щелочно-галоидных кристаллах в зависимости от плотности возбуждения  $\tau_1 \sim 10^{-10} - 10^{-11}$  s [8], что значительно меньше длительности рентгеновского и лазерного импульсов ( $\sim 10^{-8}$  s). Поэтому в первом приближении можно перейти к квазистационарному случаю и представить (1) в виде

$$n_{1,2} = G_{1,2}\tau_{1,2}.\tag{2}$$

С другой стороны, *n*<sub>1,2</sub> можно определить из экспериментальных ВАХ, исходя из соотношения

$$i = en_{1,2}\mu E, \tag{3}$$

где *е* — заряд электрона, *µ* — подвижность.

47

При рентгеновском возбуждении скорость генерации электронно-дырочных пар в единице объема рассчитывается из условия  $G_1 = W/A\tau_i$ , где  $A = 1.5E_g$  — средняя энергия, расходуемая на создание в данном веществе одной электронно-дырочной пары ( $E_g$  — ширина запрещенной зоны). Для КВг при поглощении в образце энергии рентгеновского импульса  $W = 0.6 \cdot 10^{-2}$  J/cm<sup>3</sup>,  $\mu = 10$  cm<sup>2</sup>/V · c [5],  $E = 10^4$  V/cm находим из (3), (2)  $n_1 = 1.1 \cdot 10^{13}$  cm<sup>-3</sup>,  $G_1 = 3.4 \cdot 10^{23}$  cm<sup>-3</sup> · s<sup>-1</sup>,  $\tau_1 = 3 \cdot 10^{-11}$  s.

При фотовозбуждении в *F*-полосе поглощения образца КВг ( $E = 10^4$  V/cm) из (3)  $n_2 = 2.25 \cdot 10^{13}$  cm<sup>-3</sup>. По данным эксперимента, после возбуждения импульсом рентгеновского излучения концентрация *F*-центров составляет  $N_F = 3 \cdot 10^{14}$  cm<sup>-3</sup>. В предельном случае, полагая, что светом возбуждаются все *F*-центры, находим  $G_2 = N_F / \tau_l = 10^{22}$  cm<sup>-3</sup> · s<sup>-1</sup>,  $\tau_2 = 2 \cdot 10^{-9}$  s. Полученные значения  $\tau_1$  и  $\tau_2$  удовлетворительно согласуются с характером рекомбинации носителей, квадратичной при рентгеновском возбуждении и линейной при фотовозбуждении.

Возможной причиной нелинейности ВАХ может служить механизм, известный как ток, ограниченный объемным зарядом [10]. При приложении напряжения к тонкому слою высокоомного образца в материале возникает ток, обусловленный инжекцией носителей заряда из металлического электрода. Механизм дает зависимость  $i \sim E^2$ .

В нашем случае (рис. 1) контакт металл-диэлектрик является неомическим. Второй контакт диэлектрикметалл не является запирающим для электронов. Отсутствие контактной проводимости ведет к тому, что в момент облучения на границе раздела металл-диэлектрик формируется положительно заряженный слой дырок за счет ухода электронов в глубь образца. Хотя внешне поле будет экранироваться в диэлектрик, в области перехода при большой напряженности поля  $\geq 10^6$  V/ст может возникнуть туннельная инжекция электронов из металла, что приведет к увеличению тока в образце.

Используя данные о концентрации и времени жизни носителей, можно оценить степень пространственной неоднородности электрического поля в объеме образца. Толщина слоя положительного заряда d ограничена малыми значениями подвижности и времени жизни носителей  $au \sim 10^{-10}\,\mathrm{s}$  и составит  $d = \mu E au = 0.1\,\mu\mathrm{m}$  $(E = 10^4 \, \text{V/cm})$ . При концентрации электроннодырочных пар  $n = 10^{13} \,\mathrm{cm}^{-3}$  этому слою соответствует поверхностная плотность дырок  $N = 10^8 \, {\rm cm}^{-2}$ . Для образца КВг толщиной 350  $\mu$ m при  $E = 10^4$  V/cm плотность отрицательного заряда в металлическом электроде составляет  $N_{\rho} = 10^{11} \, {\rm cm}^{-2}$ . Таким образом, в нашем случае слой дырок компенсирует внешнее поле менее чем на 1% и можно считать, что в образце отсутствуют области с большими напряженностями электрического поля, а пространственное распределение Е близко к равномерному.

Не в пользу инжекции электронов с контакта говорит и тот факт, что при фотоионизации  $F^-$ -центров не должен возникать слой положительного заряда, так как F-центры заряжены нейтрально. Однако нелинейность ВАХ сохраняется даже при наведении F-центров без приложения напряжения. Следует также отметить, что при реализации механизма тока, ограниченного объемным зарядом, основное напряжение приложено к области пролета носителей. В нашем случае при наличии инжекции носителей с контакта и при глубине пробега носителей, значительно меньшей толщины образца, ток в цепи будет ограничен объемным сопротивлением образца.

Полученные экспериментальные закономерности позволяют исключить и влияние эффекта Онзагера на нелинейность ВАХ по следующим причинам. Во-первых, как отмечалось выше, для всех трех способов возбуждения (F-, F-центров и межзонном) ВАХ имеют идентичный характер. Хотя можно было ожидать, что нейтральность F-центра должна исключать действие эффекта Онзагера и приводить к линейности фототока при возбуждении F-центров. Во-вторых, как показывают оценки [11], значения напряженности поля, отвечающие полному разделению зарядов в эффекте Онзагера, составляют ~  $10^6$  V/ст. Это существенно выше, чем получено для экспериментальной зависимости, где выход на линейный участок определен полями  $4-5 \cdot 10^4$  V/ст.

В электрических полях >  $10^4$  V/ст существует вероятность проявления электростатической ионизации [12], т. е. уменьшения энергии ионизации электронов на *F*, *F*<sup>-</sup>-центрах за счет уменьшения потенциального барьера центра. Однако в электростатическом эффекте проводимость должна увеличиваться с полем ~  $\exp(\sqrt{E})$ , что не согласуется с ходом кривых РИП в электрическом поле (рис. 2).

На участке ВАХ с зависимостью  $i \sim E^2$  приращение проводимости в электрическом поле  $\Delta \sigma$  может быть представлено как

$$\Delta \sigma \sim E.$$
 (4)

Закон изменения РИП (4) близок для рассеяния носителей на полярно-оптических колебаниях решетки или диполях [13]. Для этого типа рассеяния время свободного пробега носителей  $\tau_p \sim (W_0 + W(E))^{1/2}$ , где  $W_0$  — тепловая энергия электрона,  $W(E) = el_0$ , E — приращение энергии носителей в электрическом поле  $(l_0$  — средняя длина свободного пробега электрона между столкновениями с фононами). При  $W_0 \ll W(E)$  можно считать  $\tau_p \sim \sqrt{W} + W(E)/2\sqrt{W_0}$ . Такой результат удовлетворительно согласуется с представлениями о том, что в ионных кристаллах рассеяние электронов на оптических колебаниях решетки являются преобладающим, если энергии носителей меньше 2–3 eV [14,15].



Рис. 3. Зависимость РИП от напряженности электрического поля: *1* — KBr, *2* — KCl, *3* — NaCl, *4* — кристаллический кварц.

На третьем участке ВАХ представлением  $\sigma(E)$  может служить эмпирическая формула

$$\sigma(E) = \sigma_0 + \Sigma \sigma_j \exp(-b_j/E), \qquad (5)$$

где  $\sigma_0$  — значение проводимости до  $E \approx 10^4$  V/cm;  $b_1$ ,  $b_2$  — параметры, определяющие наклоны пологого и крутого участков функции  $\sigma(E)$ ;  $\sigma_1$ ,  $\sigma_2$  — приращение проводимости на этих участках.

Ход экспериментальных кривых  $\sigma(E)$  в координатах ln ( $\sigma(E) - \sigma_0$ ), 1/E иллюстрируется рис. 3. Для группы кристаллов KBr, KCl, CsI, KI зависимость  $\sigma(E)$ удовлетворительно спрямляется с использованием параметра  $b_1$ . Для второй группы материалов NaCl, CsI– Tl, кристаллического кварца, стекла K208 [2] изменение проводимости в электрическом поле имеет более сложный характер и включает два участка: пологий и крутой. Поскольку значения углов наклона прямолинейных участков в первой группе и пологих участков во второй группе материалов близки друг к другу, то принято решение характеризовать их наклоны общим параметром  $b_1$ . Значения  $b_1$ ,  $b_2$  для рассмотренных материалов приведены в таблице. Максимальные отличия  $b_1$  в щелочногалоидных кристаллах не превышают 30%. В SiO<sub>2</sub> и стекле отклонения  $b_1$  от среднего значения в щелочногалоидных кристаллах составляют ~ 50%. Значения  $b_1$ с точностью до 10% близки для фото- и рентгенопроводимости в кристаллах KBr, KCl. Разброс значений  $b_2$ во второй группе материалов достаточно велик (порядка 3–4 раз). Наблюдается тенденция к увеличению  $b_2$ ,  $E_m$  при переходе от кристаллов NaCl, CsI–Tl к оксидным материалам кристаллическому кварцу и стеклу. Значения параметров приращения проводимости составляют  $\sigma_1 \approx (0.7-1.5)\sigma_0, \sigma_2 \approx \sigma_0$ .

Можно предположить, что характер зависимости (5) соответствует проводимости активационного типа. Действительно, в электрических полях  $10^4 - 10^5$  V/ст энергетический барьер преодолевают, видимо, те ускоренные полем носители, чья длина свободного пробега l превышает  $l_0$ . Доля таких электронов  $\beta \sim (-l/l_0) \approx (W_b/el_0 E)$  [16], где  $W_b = elE$  — энергия активации надбарьерного движения.

В ионных кристаллах, по данным работы [5],  $l_0 \approx 10a$ , где a — постоянная решетки. Сопоставляя (5) и зависимость  $\beta$ , находим  $W_{b1,2} = el_0b_{1,2}$ . Для всех материалов, при несколько отличающихся значениях a и  $b_1$ , значения  $W_{b1}$  достаточно близки и имеют порядок  $\sim kT$ . Значение энергии ионизации  $W_{b2}$ , отвечающее крутому участку экспериментальной зависимости  $\sigma(E)$ , в электрических полях  $E \sim 4-8 \cdot 10^4$  V/ст заметно больше kTи лежит в диапазоне от 0.05 eV для NaCl до 0.19 eV для стекла K208 (см. таблицу).

Изменение  $\sigma$  в зависимости от *E*, наиболее близкое к форме (5), можно ожидать при высвобождении носителей из ловушек ударной ионизацией. Согласно [12], коэффициент ударной ионизации  $\alpha$  пропорционален величине  $\alpha \sim \exp(-W_i/el_0E)$ , где  $W_i$  — энергия ионизации.

Нелинейный рост проводимости в кристаллах KBr, KCl можно связать с ионизацией F- и F-центров. Однако полученные значения  $W_{i1} = 0.025 \text{ eV}$  оказываются значительно меньше энергии ионизации F- и F-центров окраски как из основного ( $\sim 1.5 \text{ eV}$ ), так и из возбужденного состояний (0.1 eV [8,9]). Не в пользу

Значения параметров  $b_{1,2}$ ,  $W_{b1,2}$ ,  $E_m$  характеризующие поведение РИП в сильных электрических полях

| Материал       | $b_1$                | $b_2$ | $W_{b1}$ | $W_{b2}$ | $E_m$                |
|----------------|----------------------|-------|----------|----------|----------------------|
|                | 10 <sup>4</sup> V/cm |       | eV       |          | 10 <sup>4</sup> V/cm |
| KBr            | 3.7                  |       | 0.024    |          | 4.5                  |
| KCl            | 3.9                  |       | 0.025    |          | 4.5                  |
| CsI            | 5.1                  |       | 0.023    |          | 4.5                  |
| KI             | 6.1                  |       | 0.043    |          | 4.0                  |
| NaCl           | 5.1                  | 9.2   | 0.029    | 0.052    | 5.5                  |
| CsI–Tl         | 5.3                  | 21.0  | 0.024    | 0.096    | 5.7                  |
| Кристал-       | 7.6                  | 23.0  | 0.037    | 0.11     | 7.5                  |
| лический кварц |                      |       |          |          |                      |
| Стекло К208    | 7.8                  | 38.4  | 0.038    | 0.19     | 8.0                  |

49

ионизационного механизма в этих кристаллах говорит и тот факт, что при рентгеновском возбуждении в области сильных полей  $E \sim 5 \cdot 10^4$  V/cm не происходит смены квадратичного характера рекомбинации на линейный, наблюдаемый при возбуждении  $F^-$ - и F-центров окраски светом.

По нашему мнению, описанные выше закономерности можно трактовать с учетом представлений о имеющихся как в кристаллах, так и (в большей степени) в стеклах хвостов функций плотности электронных состояний. Хвосты состояний есть результат модуляции краев разрешенных зон флуктуациями плотности или напряженности внутренних электрических полей [12,17,18].

Как видно из таблицы, для всех материалов значения  $W_{b1}$  достаточно близки и составляют ~ 0.025 eV. Высота энергетических барьеров сравнима с kT и, видимо, определяется либо энергией оптического фонона (0.03 eV), либо флуктуацией плотности вещества, вызванной колебаниями решетки [12].

В группе материалов NaCl, CsI-Tl, кристаллический кварц, стекло К208 в области электрических полей 4-8 · 10<sup>4</sup> V/ст наибольшая энергия активации получена для стекла  $\sim 0.19 \,\text{eV}$ . Это значение удовлетворительно согласуется с оценкой глубины модуляции зоны проводимости в стекле, которая, по данным работы [18], имеет значение 0.2-0.4 eV. Наиболее вероятно, что в кристалле NaCl идет ионизация F-центров, а в CsI-Tl электрическое поле заряженной примеси локально меняет распределение плотности состояний по энергии [17]. В оксидных материалах, видимо, сказываются флуктуации плотности, обусловленные вариациями химических связей, что приводит к образованию хвостов состояний зоны проводимости [18]. В результате при  $E \sim 1-5 \cdot 10^4 \,\mathrm{V/cm}$  увеличение проводимости можно связать с ростом подвижности носителей, а при более высоких полях ( $E \ge 5 \cdot 10^4 \, \text{V/cm}$ ) происходит освобождение локализованных электронов посредством электрон-электронного взаимодействия по механизму ударной ионизации.

Таким образом, можно сделать вывод о том, что для щелочно-галоидных кристаллов KBr, KCl, NaCl, CsI, оксидных материалов кристаллического SiO2, стекла К208 в области электрических полей 10<sup>4</sup>-10<sup>5</sup> V/ст механизм образования нелинейности ВАХ, наиболее вероятно, связан с уменьшением степени пространственной локализации носителей заряда в зоне проводимости диэлектрика. Увеличение проводимости может быть обусловлено как уменьшением рассеяния на колебаниях решетки за счет перевода носителей в надбарьерное движение, так и ростом числа подвижных носителей за счет перевода электронов из хвостов состояний на более высокие уровни энергии. В пользу этого заключения говорит факт наличия двух характерных энергий активации: низкой ( $\sim kT$ ), значения которой близки для всех рассмотренных материалов, и высокой (> kT), значения которой возрастают при переходе от кристаллических к неупорядоченным материалам.

### Список литературы

- Высокоэнергетическая электроника твердого тела / Под ред. Д.И. Вайсбурда. Новосибирск: Наука, 1982. 225 с.
- [2] Куликов В.Д. // ЖТФ. 1996. Т. 66. Вып. 8. С. 181–186.
- [3] Куликов В.Д. // Тез. докл. 9 Междунар. конф. по радиационной физике и химии неорганических материалов. Томск, 1996. С. 234–235.
- [4] Адуев Б.П., Белокуров Г.М., Швайко В.П. // ФТТ. Т. 37. Вып. 8. С. 2537–2539.
- [5] Алукер ЭД., Лусис Д.Ю., Чернов С.А. Электронные возбуждения и радиолюминесценция щелочно-галоидных кристаллов. Рига: Зинатне, 1979. 252 с.
- [6] Бутков В.В., Вайсбурд Д.И. // ДАН СССР. 1987. Т. 293. № 3. С. 598–602.
- [7] Горшков Б.Г., Епифанов А.С., Маненков А.А., Панов А.А. // Тр. ИОФН. 1986. Т. 4. С. 99–151.
- [8] Williams R.T., Bredford J.N., Faust W.L. // Phys. Rev. B. Sol. St. 1978. Vol. 18. N 12. P. 7038–7057.
- [9] Лисицын В.М., Корепанов В.И., Яковлев В.Ю. // Изв. вузов. Физика. 1996. № 11. С. 5–29.
- [10] Ламперт М., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. 416 с.
- [11] Ванников А.В., Матвеев В.К., Сичкарь В.П., Тютнев А.П. Радиационные эффекты в полимерах. Электрические свойства. М.: Наука, 1983. 273 с.
- [12] Шалимова К.В. Физика полупроводников. М.: Энергия, 1976. 416 с.
- [13] Пожела Ю.К. Плазма и токовые неустойчивости в полупроводниках. М.: Наука, 1997. 367 с.
- [14] Ausmees A., Elango M., Kikas A., Pruulmann J. // Phys. St. Sol. (b). 1986. Vol. 137. N 2. P. 495–500.
- [15] Sparks M., Mils D.L., Warren W. et al. // Phys. Rev. B. 1981. Vol. 24. N 6. P. 3519–3536.
- [16] Прикладная электролюминесценция / Под ред. М.В. Фока. М.: Сов. радио, 1974. 414 с.
- [17] Панков Ж. Оптические процессы в полупроводниках. М.: Мир, 1973. 456 с.
- [18] Силинь А.Р., Закис Ю.Р. // Изв. АН Латв. ССР. Сер. физич. и техн. наук. 1987. № 5. С. 68–73.