05;12 Разброс электрофизических параметров сегнетопьезоэлектрических твердых растворов и возможность его минимизации

© Л.А. Резниченко, А.Я. Данцигер, С.И. Дудкина, Л.А. Шилкина, О.Н. Разумовская, В.А. Сервули, И.В. Позднякова

Научно-исследовательский институт физики Ростовского государственного университета, 344090 Ростов-на-Дону, Россия E-mail: Larisa@riphys.rnd.su

(Поступило в Редакцию 28 января 1999 г. В окончательной редакции 23 сентября 1999 г.)

Рассмотрен разброс электрофизических параметров в широком интервале концентраций компонентов твердых растворов систем на основе цирконата-титаната свинца и ниобиевых оксидов. Показано, что существенный вклад в отклонение параметров от среднего значения вносят флуктуации состава, особенно заметные в областях с нестабильной кристаллической структурой (морфотропные переходы, границы растворимости компонентов), и связанная с ними дефектность твердых растворов. Оптимизация методов получения твердых растворов значительно снижает влияние технологических факторов на воспроизводимость их свойств.

В серийном производстве пьезотехнических устройств не последнюю роль играет воспроизводимость электрофизических свойств используемых в них активных элементов. Минимальные колебания их параметров внутри одной партии и между ними исключают необходимость индивидуальной подстройки аппаратуры и обеспечивают надежность и точность ее работы. Учитывая, что основу таких элементов составляют сложные сегнетоэлектрические композиции (чаще твердые растворы (ТР) системы цирконата-титаната свинца (ЦТС) и ниобиевых оксидов), химический и фазовый состав которых определяет их функциональное назначение, представляет интерес выяснить возможность влияния на разброс параметров вариаций состава ТР.

С этой целью в работе рассмотрено поведение статистических характеристик разброса параметров в системах на основе ЦТС и ниобата натрия при изменении содержания одного из компонентов ТВ: среднеквадратичное отклонение среднего значения

$$S_n = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (x_1 - \bar{x})^2},$$
 (1)

абсолютное отклонение

$$\overline{\Delta x} = S_n \cdot tn_\alpha, \tag{2}$$

относительное отклонение

$$\overline{\delta x} = \frac{\overline{\Delta x}}{\overline{x}} (100\%), \tag{3}$$

где x — среднее значение параметра ($\bar{x} = \sum_{i=1}^{n} x_i/n$), x_i — текущее значение параметра, n — число образцов в партии, tn_{α} — коэффициент Стьюдента, характеристики оценивались при доверительной вероятности равной 0.95 [1]. Для наиболее детального анализа выбрано по одной системе указанных типов: NaNbO₃–PbTiO₃ (рис. 1) и PbZrO₃–PbTiO₃–PbW_{1/2}Cd_{1/2}O₃ (рис. 2). На рис. 1, 2 показаны зависимости величин \bar{x} , Δx и δx (кривые *a*, *b* и *c* соответственно) от содержания PbTiO₃ в указанных системах TP, полученных в лабораторных условиях.¹ Эти величины рассчитывались для трех электрофизических параметров: относительной диэлектрической проницаемости $\varepsilon_{33}^T/\varepsilon_0$ (*A*), коэффициента электромеханической связи K_p (*B*) и механической добротности Q_M (*C*).

Видно, что на ряде участков изменения содержания PbTiO₃ зависимости $\overline{\delta x}$ параллельны оси абсцисс, т.е. относительные отклонения параметров примерно одинаковы (с некоторым разбросом). На рис. 1 в наиболее полно изученной системе NaNbO3-PbTiO3 такие участки имеют место в тетрагональной фазе T_2 ,² прилегающей к морфотропной области МО2 (для всех параметров) и в самой MO₂ для параметров $\varepsilon_{33}^T/\varepsilon_0$ и K_p , а также в ромбической фазе (R₁), граничащей с МО₁ (для Q_M и в значительной части МО1). На рис. 1 заштрихованы вертикальные полосы, соответствующие указанным горизонтальным участкам $\overline{\delta x}^3$ Здесь зависимости абсолютных отклонений $\overline{\Delta x}$ качественно совпадают с концентрационными зависимостями самих электрофизических параметров. Это следует и из аналитического выражения (3): при $\overline{\delta x} = \overline{\Delta x} / \overline{x} \approx \text{const} \ \overline{\Delta x} \approx \text{const} \overline{x}$, т. е. $\overline{\Delta x} \sim \overline{x}$.

¹ Твердофазный синтез (800°С, $1.8 \cdot 10^4$ s, 850° С, $1.8 \cdot 10^4$ s) с последующим экспрессным горячим прессованием индивидуальных образцов (ø 12×4 mm) при температурах $1150-1200^\circ$ С (в зависимости от состава TP), давлении 19.6 MPa, изотермической выдержке $2.4 \cdot 10^3$ s. Методика и установка горячего прессования описаны в [2]. Определение параметров TP проводилось на партии из 10 образцов каждого состава.

² Обозначения фаз на рис. 1 в системе NaNbO₃-PbTiO₃ даны в соответствии с [3].

³ Двойной штриховкой на рис. 1, C обозначен участок некоторого разброса $\overline{\delta x}$ для Q_M .

Рис. 1. Зависимости величин $\bar{x}(a)$, $\overline{\Delta x}(-\text{it b})$, $\overline{\delta x}(c)$ от содержания PbTiO₃ в системе $(1 - \alpha)$ MaMbO₃- α PbTiO₃ для параметров $\varepsilon_{33}^T/\varepsilon_0(A)$, $K_p(B)$ и $Q_M(C)$.

Рис. 2. То же, что на рис. 1, в системе α PbTiO₃- β PbZrO₃- γ PbW_{1/2}Cd_{1/2}O₃.

Что касается остальных участков изменения содержания PbTiO₃, то им, как следует из рис. 1, соответствуют значительные изменения параметров $\overline{\delta x}$, доходящие до 24% для $\varepsilon_{33}^T/\varepsilon_0$ и до 130% для K_p внутри МО₁, а также до 200% для Q_M внутри MO₂. Необходимо отметить, что изменения δx значительно больше изменения самих электрофизических параметров в пределах рассмотренных МО. Поэтому абсолютные отклонения параметров Δx имеют на вышеописанных участках такой же характер, как и относительные. Это следует качественно и из выражения (3): при $\overline{\delta x} = \overline{\Delta x} / \overline{x} \neq \text{const}$ $\overline{\Delta x} = \overline{x} \cdot \overline{\delta x}$, т. е. при мало меняющемся \bar{x} $\overline{\Delta x} \sim \overline{\delta x}$. Подтверждается это и тем, что положения максимумов и минимумов δx и Δx здесь совпадают. Что касается электрофизических параметров, то картина противоположная: совпадают положения максимумов $\varepsilon_{33}^T/\varepsilon_0$ и K_p с минимумами $\overline{\delta x}$ и $\overline{\Delta x}$, а минимумов K_p и Q_M — с максимумами $\overline{\delta x}$, $\overline{\Delta x}$. Рассмотренный ход параметров $\overline{\delta x}$ и $\overline{\Delta x}$ в МО можно считать, на наш взгляд, аномальным и связать его с особенностями образования ТР в МО.

Наконец, отметим на рис. 1 еще один узкий участок изменения содержания PbTiO₃, в фазе T_2 вдали от MO, на котором с ростом содержания PbTiO₃ $\overline{\delta x}$ начинает резко возрастать (после практически неизменных его значений). Таков же ход и величины $\overline{\Delta x}$ на этом участке, в то время как параметры $\varepsilon_{33}^T/\varepsilon_0$ и K_p продолжают монотонно уменьшаться, а Q_M — увеличиваться.

Установленные закономерности концентрационных изменений разбросов параметров в системе NaNbO₃-РbTiO₃ проявляются и в других системах ТР. Так, в более простой по фазовому составу системе PbZrO₃-РbTiO₃-PbW_{1/2}Cd_{1/2}O₃ (рис. 2) участки с $\overline{\delta x} \approx \text{ const}$ зафиксированы для тех же электрофизических параметров в одной фазе Т, граничащей с МО. Так же, как и на рис. 1, здесь заштрихованы вертикальные полосы, соответствующие горизонтальным участкам δx . Ширина этих участков составляет 15 mol% PbTiO3, что значительно больше, чем в первой системе в фазе T_2 (2.5 mol%). Концентрационные зависимости Δx (при $\delta x \approx \text{const}$) и электрофизических параметров близки между собой (для каждого параметра). С ростом содержания PbTiO₃ за пределы заштрихованных полос δx значительно возрастает, особенно резко для Q_M , так же как это имеет место для системы NaNbO3-PbTiO3. На этих же участках возрастает $\overline{\Delta x}$, а электрофизические параметры продолжают монотонно уменьшаться. Заметим, что в системе NaNbO₃-PbTiO₃ с гетеровалентным замещением ионов в обеих катионных подрешетках наблюдается меньшая, чем в ЦТС системе, протяженность участков постоянства δx в однофазных областях, характеризующихся структурной неустойчивостью ТР. Это может быть следствием разупорядочения катионов, находящихся в эквивалентных кристаллографических позициях, и в результате — усиление неоднородности составов и их дефектности. Что касается МО в системе на основе ЦТС, то она изучена не столь детально, как в ниобатной системе.

Таблица 1. Относительные погрешности определения электрофизических параметров ТР систем на основе ЦТС

Параметр	Его значение	Относительная погрешность, %		
$\varepsilon_{33}^T/\varepsilon_0$	250-5000	1		
K_p	0.3-0.4	2		
	0.4–0.5	1.5		
	0.5-0.7	1		
Q_M	50-600	10		
	600-5000	20		

Таблица 2. Относительные погрешности определения электрофизических параметров серийно выпускаемых ниобатных материалов

Параметр	Его значение	Относительная погрешность, %		
$\varepsilon_{33}^T/\varepsilon_0$	120-460	1		
K_p	0.20-0.30	5–6		
	0.30-0.40	3		
Q_M	100-200	15		
	200-1000	20		

Таблица 3. Соотношение фаз в различных образцах TP системы $(1 - \alpha)$ NaNbO₃- α PbTiO₃ при $\alpha = 0.225$

Способ получения образцов	№ образ- цов	P/q	Способ получения образцов	№ образ- цов	P/q
Горячее прессо- вание	1 2 3 4 5 6 7	$ \begin{array}{c} 1.2\\ 1.3\\ 1.1\\ 1.2\\ 1.3\\ 1.2\\ 1.1 \end{array} $	Обычная керами- ческая технология	1 2 3 4 5 6 7 _{up} 7	$ \begin{array}{c} 1.7\\ 1.4\\ 1.3\\ 1.4\\ 1.3\\ 1.6\\ 1.4\\ 1.7\\ \end{array} $

При анализе полученных экспериментальных результатов необходимо учитывать также вклад в разброс параметров погрешностей их определения, которые зависят от методов и аппаратуры измерений, состояния окружающей среды и действий измеряющего лица. Обычно [4] эти величины для ТР на основе ЦТС составляют единицы % (лишь для Q_M они равны 10-20%) и являются практически постоянными при изменении электрофизических параметров в широких пределах (табл. 1 составлена по данным [4]). В системах ТР на основе ниобата натрия эти погрешности несколько превышают оцененные в [4] (табл. 2), но остаются значительно меньше анализируемых величин $\overline{\delta x}$. Таким образом, они практически не дают вклад в исследуемый разброс параметров, связанный с положением ТР на фазовой диаграмме.

Партия	Блок	Параметры*								
1		$\varepsilon_{33}^{\scriptscriptstyle T}/arepsilon_0$	K_p	<i>d</i> ₃₁ , pC/N	g_{31} , mV · m/N	$Y_{11}^E \cdot 10^{-11} \mathrm{N/m^2}$	ρ ,g/cm ³	$T_k ^{\circ}\mathrm{C}$	<i>d</i> ^{**} ₃₃ , pC/N	g_{33}^{**} , mV \cdot m/N
Ι	1	450	0.33	36	9.2	1.14	4.5	390	85	21.3
	2	460	0.34	37	9.0	1.15	4.5	388	85	20.3
	3	490	0.32	36	8.2	1.30	4.5	390	85	19.6
II	4	465	0.33	37	9.1	1.17	4.5	390	90	21.3
	5	450	0.32	35	8.8	1.20	4.5	385	85	21.3
	6	400	0.30	37	10.4	1.32	4.5	380	85	24.0
III	7	390	0.31	37	10.7	1.17	4.5	390	90	26.0
	8	385	0.30	36	10.6	1.15	4.5	388	85	24.9

Таблица 4. Электрофизические параметры образцов ГП блоков материала ПКР-34

* Пьезомодули d_{31}, d_{33} , пьезочувствительности g_{31}, g_{33} , модуль Юнга Y_{11}^E , плотность ρ , температура Кюри T_k . $g_{33}(d_{33})$ определены квазистатическим методом.

Таблица 5. Статистические характеристики ГП образцов одного из блоков материала ПКР-34

Результаты статистической обработки	$arepsilon_{33}^T/arepsilon_0$	K_p	<i>d</i> ₃₁ , pC/N	g_{31} , mV · m/N
\overline{x}	425	0.388	41	10.8
S_n	2.0	0.004	0.6	0.2
$\overline{\Delta x}$	4.2	0.009	1.2	0.4
$\overline{\delta x}$, %	1.0	2.3	2.9	3.7

Природа последнего, очевидно, обусловлена флуктуациями составов ТР, особенно заметными в областях сосуществования фаз [5,6]. В МО, где имеет место быстрое изменение параметров при незначительных вариациях состава, любое нарушение заданной стехиометрии приводит к заметному изменению фазового состояния и структуры и, как следствие, ощутимым колебаниям электрофизических характеристик ввиду повышенной чувствительности оксидных материалов к изменению химического состава и его однородности [7,8]. Твердофазный метод синтеза, не обеспечивающий, как известно, полноту прохождения реакций образования ТР, а значит однородность составов, и последующее спекание их по обычной керамической технологии еще более ухудшают воспроизводимость свойств. Вышесказанное иллюстрируется данными, приведенными в табл. 3. В ней для различных образцов ТР системы $(1 - \alpha)$ MaMbO₃- $\alpha \mathrm{PbTiO_3}$ при $\alpha = 0.225$ представлены значения параметра P/q, предложенного в [9] для оценки степени тетрагонального искажения перовскитной ячейки ТР и количества тетрагональной фазы, когда определение отношения параметров ячейки с/а невозможно из-за нечеткого расщепления соответствующих дифракционных линий. Как видно из табл. 3, разброс значений Р/q для разных образцов и различных участков одного образца ТР из МО довольно осуществен и зависит от способа их

получения. Меньший разброс значений P/q характерен для образцов, приготовленных горячим прессованием. В рамках этого метода прослежена четкая тенденция уменьшения разброса электрофизических характеристик ТР при переходе от лабораторной [10] к серийной [11] технологии изготовления материалов, при этом в последнем случае минимальный разброс характеристик отмечается внутри одной партии и одного блока материала (табл. 4, 5).

Это объясняется стабилизацией состава, повышением степени совершенства его кристаллической структуры, уменьшением дефектности ТР.

Заключение

1. Установлено различное поведение абсолютных ($\overline{\Delta x}$) и относительных ($\overline{\delta x}$) отклонений параметров в зависимости от положения ТР на фазовых диаграммах. Так, в однофазных областях изменения $\overline{\Delta x}$ подобны \overline{x} , а $\overline{\delta x}$ — постоянны. В неоднофазных повышенная чувствительность ТР к химической неоднородности провоцирует значительно бо́льшие колебания $\overline{\Delta x}$ и $\overline{\delta x}$, чем в первом случае, при этом $\overline{\Delta x}$ изменяется симбатно $\overline{\delta x}$ и, как правило, противоположно \overline{x} , а $\overline{\delta x}$ имеет сложный характер зависимости от концентрации компонентов.

2. Гетеровалентные замещения ионов в обеих катионных подрешетках ниобатных ТР усиливают неоднородность составов и их дефектность, что приводит к более существенному разбросу параметров, чем в ТР системы ЦТС.

3. Оптимизация методов получения ТР позволяет значительно уменьшить разброс параметров.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (грант № 99-02-17575).

Список литературы

- [1] Кассандрова О.Н., Лебедев В.В. Обработка результатов наблюдения. М.: Наука, 1970. 104 с.
- [2] Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.
- [3] Резниченко Л.А., Данцигер А.Я., Разумовская О.Н. и др. // Фундаментальные проблемы пьезоэлектроники. Тр. Международной научно-практической конференции "Пьезотехника-95". Ростов-на-Дону: Книга, 1995. Т. 2. С. 13–32.
- [4] Данцигер А.Я. Докт. дис. Ростов-на-Дону, 1986. 480 с.
- [5] Исупов В.А. // ФТТ. 1980. Т. 22. Вып. 1. С. 172–177.
- [6] Куприянов М.Ф., Константинов Г.М., Панич А.Е. Сегнетоэлектрические морфотропные переходы. Ростовна-Дону: Изд-во Ростовского ун-та, 1992. 245 с.
- [7] Третьяков Ю.Д., Лепис Х. Химия и технология твердофазных материалов. М.: Изд-во Московского ун-та, 1985. 254 с.
- [8] Фесенко Е.Г., Данцигер А.Я., Разумовская О.Н. Новые пьезокерамические материалы. Ростов-на-Дону: Изд-во Ростовского ун-та, 1983. 160 с.
- [9] Завадский Э.А., Ищук В.М. Метастабильные состояния в сегнетоэлектриках. Киев: Наукова думка, 1987. 256 с.
- [10] Данцигер А.Я., Разумовская О.Н., Резниченко Л.А., Дудкина С.И. Высокоэффективные пьезокерамические материалы. Справочник. Ростов-на-Дону: Книга, 1994. Т. 2. 32 с.
- [11] Разумовская О.Н., Клевцов А.Н., Сервули В.А. и др. // Изв. РАН. Сер. неорган. материалы. 1995. Т. 31. № 6. С. 843–847.