Краткие сообщения

04;12

Локальные параметры плазмы и интегральные характеристики магнитогазодинамического канала в ионизационно неустойчивой плазме

© Р.В. Васильева, Е.А. Дьяконова, А.В. Ерофеев, Т.А. Лапушкина

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

(Поступило в Редакцию 16 июля 1999 г.)

В эксперименте исследовалось развитие ионизационной неустойчивости в модели дискового фарадеевского МГД канала, сопряженного с ударной трубой, в чистом инертном газе (ксеноне) без щелочной присадки. Определена связь локальных параметров ионизационно неустойчивой плазмы с интегральными характеристиками в неравновесных МГД каналах. Изучен механизм усиления возмущений и увеличения эффективной проводимости. Делается вывод о том, что основная причина этого явления заключается в особенностях трехчастичной рекомбинации инертных газов.

Работа направлена на то, чтобы на основе изучения структуры неоднородностей и измерения локальных параметров плазмы построить некую непротиворечивую физическую модель, объясняющую обнаруженное авторами явление повышения эффективной проводимости плазмы при развитии ионизационной неустойчивости в чистых инертных газах.

Описание экспериментальной установки приводится в [1,2]. Она состоит из ударной трубы с дисковым МГД каналом диаметром 0.32 m и высотой 0.01 m. Максимальная величина магнитной индукции 1.4 T. Эксперимент проводился в Xe при числе Маха падающей ударной волны 6.9 и начальном давлении 26 Torr. Параметры плазмы на входе в дисковый канал: r = 0.04 m, $u_0 = 1.27 \cdot 10^3$ m/s, $\rho_0 = 0.45$ kg/m³, $T_{a0} = 2600$ K, $T_{e0} = 3100$ K, $\alpha_0 = 2.6 \cdot 10^{-4}$, M = 2.45. В дисковом канале индуцируется кальцевой фарадеевский ток и радиальное поле Холла. Канал работал или в режиме короткозамкнутого фарадеевского канала или в него помещалась узкая вставка в виде сектора с тремя парами электродов, к которым подключалось сопротивление нагрузки. При этом значения коэффициента нагрузки находились в диапазоне 0 < k < 0.2.

Методы определения газодинамического поля течения, методы измерения эффективной проводимости плазмы, параметра Холла, концентрации и температуры электронов, регистрации светящихся неоднородностей, определения критического для развития ионизационной неустойчивости магнитного поля $B_{\rm cr}$ изложены в [1–5].

Основные результаты предыдущих исследований [1–3], используемые в данной работе, заключаются в следующем. При $B > B_{\rm cr}$ эффективная проводимость плазмы, средняя концентрация электронов и величина флуктуации концентрации электронов возрастают при движении объема плазмы вдоль канала. С ростом магнитной индук-

ции значения эффективной проводимости концентрации электронов и их флуктуации увеличиваются.

Исследования показали, что степень расслоения электронной температуры Те и температуры тяжелого компонента плазмы T_g достигает $T_e/T_g = 4$. Если при B = 0 плазма рекомбинирующая $\alpha > \alpha_{eq}$, то при селективном нагреве электронов в индуцированном электрическом поле степень ионизации оказывается меньше равновесных значений как в начальном состоянии, так и во флуктуациях, т.е. в случае МГД взаимодействия плазма ионизуемая $\alpha < \alpha_{eq}$. Степень ионизации газа достаточно велика $\alpha > 10^{-4}$, так что распределение электронов по скоростям можно считать максвелловским. Состояние плазмы характеризуется тем, что по мере увеличения степени ионизации газа с ростом магнитного поля изменяется соотношение между частотами передачи импульса при столкновении с нейтралами ν_{ea} и при столкновении с ионами ν_{ei}

$$\nu_{ea} = n_a c_e Q_{ea}, \qquad \nu_{ei} = n_e c_e Q_{ei}.$$

Здесь n_a , n_e — концентрация атомов и ионов соответственно, c_e — средняя интегральная скорость электронов, Q_{ea} и Q_{ei} — соответственно осредненные по максвелловской функции сечения передачи импульса при столкновениях с атомами и при кулоновских столкновениях. В условиях эксперимента $0.2 < \nu_{ei}/\nu_{ea} < 1$. Таким образом, частота столкновений становится зависящей не только от температуры электронов и концентрации атомов, но и от концентрации электронов. Основным отличительным признаком плазмы инертных газов являются сравнительно низкие значения коэффициента рекомбинации, что обусловлено особенностями структуры энергетических уровней. Так, при $T_e = 8000$ K для щелочных металлов $K_r = 5 \cdot 10^{-39}$ m⁶/s, для инертных газов $K_r = 5 \cdot 10^{-41}$ m⁶/s.

Рис. 1. Изменение со временем измеренных значений температуры и концентрации электронов и расчетных значений проводимости и параметра Холла (B = 1 T, r = 0.09 m).

На рис. 1 приведен типичный пример того, как при возникновении ионизационной неустойчивости изменяются со временем локальные параметры плазмы, регистрируемые в фиксированной точке канала (в данном случае при $r = 0.09 \,\mathrm{m}$). Непосредственно в эксперименте были измерены значения температуры и концентрации электронов. Значения проводимости и параметра Холла были рассчитаны с помощью приведенных значений T_e и n_e и известных значений концентрации атомов (при B = 0 $n_a = 10^{24} \,\mathrm{m}^{-3}$). На зависимостях $T_e(t)$ и $n_e(t)$ выделяются крупномасштабные неоднородности длительностью 20-50 µs. Эти неоднородности обусловлены плазменными процессами. Более высокочастотные колебания периодом меньше 5 µs могут быть связаны с шумами фотоумножителей. Поэтому в дальнейшем будут анализироваться только крупномасштабные колебания. Обращает на себя внимание то, что областям с повышенной температурой электронов соответствуют области с повышенной концентрацией электронов и, наоборот, областям с пониженной температурой электронов соответствуют области с пониженной концентрацией. Также изменяются локальные значения проводимости: в областях с большей концентрацией электронов проводимость газа больше. Изменения параметра Холла находятся в противофазе с изменением проводимости. Это обусловлено, тем что при этих условиях велика роль кулоновских столкновений и частота передачи импульса растет при увеличении концентрации электронов. Приведенные зависимости служат для определения средних величин $\langle T_e \rangle$, $\langle n_e \rangle$, $\langle \sigma \rangle$, $\langle \beta \rangle$. Однако они еще не дают представления о том, как положительные и отрицательные флуктуации относительно средних величин соотносятся с флуктуациями по отношению к начальным, невозмущенным параметрам плазмы. Т.е. следует выяснить, какова роль положительных и отрицательных возмущений в раскачке колебаний.

Неоднородности имеют определенную ориентацию в пространстве. Она была определена с помощью покадровой киносъемки собственного свечения [2]. Оказалось, что светящиеся неоднородности имеют форму спиц, наклоненных примерно на 20% к азимутальному направлению. Скорость их распространения по порядку величины равна скорости потока, т.е. они как бы вморожены в поток. По мере распространения яркость свечения отдельных спиц возрастает. В среднем на длине канала одновременно существует около двух спиц. Они возникают с определенной скважностью. Эти светящиеся неоднородности для объема плазмы, находящейся на радиусах, значительно больших, чем начальный радиус, в первом приближении можно представить в виде полос в прямоугольной системе координат (рис. 2). В дисковой геометрии направлению у соответствует направление φ , направлению *x* — направление *r*. На рис. 2 показана система координат, направление основных векторов *j*₀ и E_0^* , значения начального тока и напряженности электрического поля в плазме, tg $\delta = \beta$, θ — угол между направлением тока и нормалью к плоскости слоя $\pi/2 < \theta < \pi$. Обозначим приращения основных параметров плазмы как $j' = j - j_0, \sigma' = \sigma - \sigma_0,$

Рис. 2. Схема флуктуаций тока и поля при ионизационной неустойчивости.

Рис. 3. Пояснение механизма усиления положительных возмущений концентрации электронов.

 $\beta' = \beta - \beta_0$, $T'_e = T_e - T_{e0}$, $n'_e = n_e - n_{e0}$, где индексом 0 обозначены значения параметров в окружающей невозмущенной среде. Можно показать [6,7], что в случае безграничной плазмы флуктуации тока и напряженности электрического поля связаны с флуктуациями проводимости и параметра Холла следующим образом:

$$j' = J_0 \left(\sin \theta - \beta \cos \theta \right) \frac{\sigma'}{\sigma_0} + J_0 \beta' \cos \theta, \qquad (1)$$

$$\pm E' = -\frac{1+\beta_0^2}{\sigma_0^2} J_0 \cos\theta \frac{\sigma'}{\sigma_0} + \frac{J_0}{\sigma_0} (\sin\theta + \beta_0 \cos\theta) \beta', \quad (2)$$

(знак "+" — при совпадении направления векторов *E* и *k*, знак "-" — при противоположных направлениях).

Отсюда следует, что к усилению флуктуационного тока в направлении *j*₀ и напряженности электрического поля приводят положительные флуктуации σ и отрицательные В. На рис. 3 условно показаны возмущения основных параметров плазмы вдоль нормали к наблюдаемым неоднородностям. Цифрами обозначены некоторые безразмерные расстояния вдоль по нормали, соответствующие обозначения на рис. 2. Проследим за судьбой положительных и отрицательных флуктуаций концентрации и температуры электронов. Пусть в некоторый момент времени t_1 произошла флуктуация T_e , показанная на рис. 3, а. В области с повышенной температурой электронов (А), согласно закону кинетики ионизации [8], возрастает концентрация электронов, характерное время ионизации при этих условиях около $1 - 5 \cdot 10^{-5}$ s. В области с пониженной температурой (B) она практически не уменьшится по сравнению с начальным значением вследствие медленного механизма трехчастичной рекомбинации в инертных газах характерное время рекомбинации в условиях эксперимента порядка 10^{-1} s. Соответственно в области А возрастет проводимость, в то время как в области В она остается практически без изменений. Приращения параметра Холла могут быть противоположны приращениям σ' , как показано на рис. 3, a. Положительное приращение σ и отрицательное β приводят к усилению флуктуационного тока в области А, который складывается с начальным током, что приводит к большему джоулеву нагреву, увеличению температуры электронов и увеличению концентрации. Таким образом, положительные возмущения *T_e* и *n_e* приводят к усилению возмущений, в то время как отрицательные не имеют перспектив на развитие. Предположим, произошла отрицательная флуктуация n_e. Она приведет к уменьшению проводимости и в соответствии с формулой (1) к уменьшению тока, уменьшению джоулева нагрева, уменьшению Te, но дальнейшего снижения n_e не произойдет.

За время $t_1 - t_2$ объем плазмы A, занимавший положение 1-2, переместился вдоль по каналу и занял положение 3-4 (рис. 3, b). За это время в нем продолжали развиваться положительные возмущения T_e , n_e , σ и отрицательные β . А на месте 1-2 за это время успела возникнуть новая флуктуация.

В ограниченном объеме картина флуктуационных токов будет существенно другой по сравнению с рис. 2. В [6,7] представлены расчетные распределения токов в фарадеевском канале с идеально секционированными электродами. Они показывают, что фарадеевский ток по линиям равной концентрации электронов замыкается в основном через электроды и частично замыкается внутри плазмы. Все это влияет на величину эффективной проводимости и эффективного параметра Холла. В условиях данного эксперимента эффективная проводимость $\sigma_{\rm eff}$ и эффективный параметр Холла $\beta_{\rm eff}$ определяется следующим образом:

$$\sigma_{\text{eff}} = \langle j_{\varphi} \rangle / (uB), \qquad \beta_{\text{eff}} = \langle E_r \rangle / (uB), \qquad (3), (4)$$

 $\langle j_{\varphi} \rangle$ — плотность азимутального тока при коэффициенте нагрузки $k \to 0.$

Данные по σ_{eff} и β_{eff} являются по существу интегральными характеристиками МГД канала.

На рис. 4 показаны значения средних и эффективных проводимостей при различных значениях магнитного поля. При $B < B_{\rm cr}$ эти значения совпадают. С ростом магнитной индукции значения $\langle \sigma \rangle$ и $\sigma_{\rm eff}$ возрастают. Это обусловлено тем, что вследствие селективного нагрева электронов возрастают значения σ_0 , а при развитии ионизационной неустойчивости возрастают положительные возмущения σ . При наиболее высоких значениях поля эффективная проводимость оказывается несколько ниже, чем средняя $\sigma_{\rm eff}/\langle \sigma \rangle = 0.7$, что обусловлено частичным замыканием в плазме флуктуационных токов.

На рис. 5 представлены значения средних и эффективных параметров Холла. Уменьшение этих величин при росте магнитной индукации связано с тем, что с ростом поля увеличивается концентрация электронов, что приводит к увеличению роли кулоновских столкновений и увеличению средней частоты передачи импульса. Поэтому параметр Холла падает как в окружающем пространстве, так и в неоднородностях. Значения β и β_{eff} , как видно из рис. 5, практически совпадают друг с другом. Теоретически [7] это может происходить, когда направление неоднородностей оказывается близким к направлению начального тока. Условия, при которых в

Рис. 4. Значения средней и эффективной проводимости при различных величинах магнитной индукции: \Box — значения $\langle \sigma \rangle$, Δ — значения σ_{eff} .

Рис. 5. Сравнение средних и эффективных значений параметра Холла: ∇ — средние значения, \Diamond — эффективные.

данном эксперименте $\langle \beta \rangle = \beta_{\rm eff}$, характеризуются тем, что неоднородности в виде спиц наклонены к азимутальному направлению под небольшим углом, неустойчивость развивается при небольших значениях $\beta \approx 2-1$, уровень флуктуаций параметра Холла достигает 40%, частота передачи импульса сложным образом зависит от параметров плазмы.

Таким образом, в результате работы установлена связь между локальными параметрами плазмы и интегральными характеристиками МГД канала. Вскрыт механизм усиления возмущений и увеличения эффективной проводимости в ионизационно неустойчивой плазме инертных газов. Показано, что основная причина этого явления заключается в особенностях трехчастичной рекомбинации инертных газов.

Список литературы

- Васильева Р.В., Генкин А.Л., Горячев В.Л. и др. Низкотемпературная плазма инертных газов с неравновесной ионизацией и МГД генераторы. Санкт-Петербург: ФТИ им. А.Ф. Иоффе, 1991. С. 206.
- [2] Лапушкина Т.А., Васильева Р.В., Ерофеев А.В., Зуев А.Д. // ЖТФ. 1997. Т. 67. Вып. 12. С. 12–15.
- [3] Васильева Р.В., Ерофеев А.В., Миршанов Д.Н., Алексеева Т.А. // ЖТФ. 1989. Т. 59. Вып. 7. С. 27–33.
- [4] Лапушкина Т.А., Дьяконова Е.А., Васильева Р.В. // Письма в ЖТФ. 1998. Т. 24. Вып. 2. С. 58–62.
- [5] Erofeev A.V., Vasil'eva R.V., Zuev A.D. et al. // 12th Intern. Conf. on MHD Electrical Power Generation. Japan, 1996. Vol. 1. P. 74–82.
- [6] Недоспасов А.В., Хаит В.Д. Основы физики процессов в устройствах с низкотемпературной плазмой. М.: Энергоатомиздат, 1991. 224 с.
- [7] Вулис Л.А., Генкин А.Л., Фоменко Б.А. Теория и расчет магнитогазодинамических течений в каналах. М.: Атомиздат, 1971. 384 с.
- [8] Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. 376 с.

Журнал технической физики, 2000, том 70, вып. 8