Фотоэлектрические явления и переориентация, индуцированные короткими лазерными импульсами в нематиках, активированных ионными красителями

© С.В. Серак, А.А. Ковалев, А.В. Агашков

Институт электроники АН Белоруссии, 220090 Минск, Белоруссия E-mail: inel@inel.bas-net.by

05:07

(Поступило в Редакцию 16 марта 1999 г. В окончательной редакции 21 декабря 1999 г.)

Исследованы индуцированные наносекундными лазерными испульсами фотоэлектрические явления и ориентационная нелинейность в планарных слоях жидких кристаллов, ориентированных моноокисью кремния, активированных добавками полиметиновых красителей. Явления обусловлены фотогенерацией поверхностных и объемных зарядов в жидкокристаллической ячейке, пространственным распределением последних в направлениях вектора решетки и распространения луча и электрогидродинамической неустойчивостью.

Ранее, в [1,2], нами была обнаружена запись статических решеток в планарных слоях нематиков, ориентированных моноокисью кремния и активированных красителями, такими как фталоцианины, бисантены, полиметины, которые использовались для пассивной модуляции добротности резонатора рубинового лазера [3,4] и обращения волнового фронта [5,6]. Решетки записывались при мощности излучения 5 · 10⁶ W/cm² с высокой пространственной частотой не хуже 500 line/mm, хранились длительное время (несколько недель) и стирались при нагреве жидкого кристалла выше точки фазового перехода в изотропное состояние или при подаче электрического напряжения (около 30 V). Решетки представляли собой области "доменов" с ориентацией директора, отличной от исходной, окруженные линиями дисклинаций [7,8]. Исследование переориентации в этих областях методами поляризационной микроскопии и динамической голографии выявило ряд особенностей, связанных с фоторефрактивными свойствами жидких кристаллов, активированных красителями.

Фоторефрактивность в жидких кристаллах (ЖК), обнаруженная экспериментально в работах [9,10], вызывает активный интерес благодаря необычайно большому нелинейному отклику среды. К настоящему времени предложены различные механизмы фоторефрактивности, наблюдавшейся в нематиках, активированных красителями [9,10], фуллереном С₆₀ [11], а также в дискотических нематиках [12]. Индуцированное интерференционным полем излучения непрерывных газовых лазеров поле пространственного заряда возникало в присутствии небольшого статического напряжения (1-2 V) как следствие диффузии, дрейфа или движения генерируемых зарядов или анизотропии проводимости и диэлектрической проницаемости (эффект Карра-Хелфриха). Одной из причин фоторефрактивности может быть фотовольтаический эффект в ЖК ячейках, о котором сообщалось в [13,14].

Наносекундным излучением рубинового лазера нами были записаны ориентационные динамические голограммы с высокой дифракционной эффективностью в нематиках, активированных ионными полиметиновыми красителями [15], и обнаружены при этом фотоэлектрические явления, изучению которых посвящена настоящая работа.

ЖК образцы

Эксперименты проводились с планарно-ориентированными ЖК ячейками двух типов: с проводящими и ориентирующими покрытиями и только с ориентирующими покрытиями. Ориентация осуществлялась косонапыленными в вакууме диэлектрическими пленками из моноокиси кремния SiO толщиной ~ 300 Å. Угол преднаклона директора к поверхности колебался от 1 до 3°. Методом рентгеновской фотоэлектронной спектроскопии с использованием спектрометра ESCA $(E_{MeK\alpha 1,2} = 1253.6 \text{ eV})$ был исследован стехиометрический состав прироверхностного слоя пленки моноокиси кремния на глубине до 14 Å. В электронной полосе Si_{2n} обнаружен максимум, принадлежащий Si⁴⁺, характерный для диоксида кремния SiO2, а после ионной очистки также максимум, смещенный на 0.5 eV, характерный для SiO. Отношение кислород/кремний было равно ~ 1.2 . В такой неоднородной структуре существуют вакансии кислорода, которые способствуют образованию локальных уровней энергии в запрещенной зоне диэлектрической пленки SiO. Отметим также, что напыленные пленки имеют поглощение ($lpha \approx 1.5\,{
m cm}^{-1}$) на длине волны излучения рубинового лазера ($\lambda = 694.3 \text{ nm}$). Изучение электропроводности проводилось в ЖК ячейках с напыленными прозрачными токопроводящими электродами из оксида индия In₂O₃, на которые наносилась пленка моноокиси кремния.

Были использованы нематики с небольшой положительной диэлектрической анизотропией, такие как 5ЦБ ($\Delta \varepsilon = 5$) и смесь ЖК-440 ($\Delta \varepsilon < 0$) с добавкой (до 15 wt.%) ЖК-497 ($\Delta \varepsilon > 0$) (НИОПиК, Москва). На рис. 1, *а* приведены структурные формулы полиметиновых красителей ПК-686 и ПК-742 (Институт органической химии, Киев), используемых в качестве добавок.

Рис. 1. Структурная формула полиметинового красителя (*a*) и схема измерения электропроводности жидких кристаллов, активированных полиметиновыми красителями (*b*).

R_н

Дихроизм поглощения ПК-686 и ПК-742 в 5ЦБ соответственно равен 0.02 и 0.33, в ЖК-440+ЖК-497 — 0.46 и 0.69. Толщина слоя ЖК ячейки была равна 50 μ m.

Собственная проводимость в ЖК, активированных ионными полиметиновыми красителями

ЖК, активированные ионными добавками красителей, представляют собой слабый раствор электролита. В полярных ЖК растворителях полиметиновые красители диссоциируют на органические катионы (ОК) и анионы иода (J^-). В стационарном случае, когда плотность тока dj(t)/dt = 0, константа электропроводности определяется известным выражением [16]

$$\sigma = e \cdot (\mu^+ + \mu^-) \cdot n^{\pm}$$
$$= e \cdot (\mu^+ + \mu^-) \cdot [\gamma_D(E) \cdot n_0 / \gamma_R]^{1/2}, \qquad (1)$$

где e — заряд носителя; μ^{\pm} — подвижности положительных и отрицательных ионов; $n = n^+ = n^-$ — число носителей заряда; n_0 — концентрация примеси; $\gamma_D(E)$, γ_R — константы диссоциации и рекомбинации соответственно (в сильных электрических полях γ_D зависит от поля).

Для измерения электропроводности использовалась схема, представленная на рис.1, b, где величина σ определялась как $\sigma = d \cdot U' / [S \cdot R_H \cdot (U - U')]$. Здесь d — толщина слоя, S — сечение образца, через которое протекает ток; R_H — сопротивление нагрузки; U — напряжение источника; U' — показания вольтметра. При исследовании электропроводности планарных слоев измерялась перпендикулярная компонента электропроводности σ_{\perp} (j \perp L, L — директор слоя), параллельная компонента σ_{\parallel} в 1.5 раз больше. Типичная вольт-амперная характеристика ЖК, активированного полиметиновым красителем, и графики зависимости электропроводности от напряжения на электродах для ряда концентраций представлены на рис. 2. В областях напряжений от 0 до 1 V ток растет медленно, а проводимость не изменяется и равна $\sigma \approx 10^{-9} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$. Для сравнения отметим, что собственная проводимость 5ЦБ $\sigma_0 \approx 2 \cdot 10^{-11} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$, смеси ЖК-440+ЖК-497 — $5 \cdot 10^{-11} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$. Уже при малых напряжениях (~ 0.1 V) ЖК ячейка имеет свойства гальванического элемента, что может говорить о существовании двойного электрического слоя вблизи электрода. Толщина слоя в соответствии с формулой для радиуса экранирования Дебая $r_D = (D\varepsilon/4\pi\sigma)^{1/2}$, где D — коэффициент диффузии. Для молярных концентраций примеси $10^{-4} \dots 10^{-3}$ mol/l, используемых в экспериментах, радиус экранирования, как правило, менее 1 µm [17]. В таком случае для значения проводимости $\sigma = 10^{-9} \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$ значение коэффициента диффузии $D = 10^{-6} \,\mathrm{cm}^2 \cdot s^{-1}$. Из соотношения Эйнштейна для коэффициента диффузии $D = k_B T \sigma / ne^2$ получаем число носителей заряда $n = 1.4 \cdot 10^{13} \text{ cm}^{-3}$. Можно также найти подвижность зарядов $\mu = \sigma / 2en = 2 \cdot 10^{-5} \text{ cm}^2 \cdot V^{-1} \cdot s^{-1}$. При существенно различных размерах ионов (радиус иона йода $r_{j_-} \approx 2.19$ Å, а органического катиона $r_{OK+} \approx 20$ Å) их подвижности и коэффициенты диффузии будут различаться. Можно воспользоваться связью между подвижностью ионов и вязкостью, установленной Вальденом для жидких диэлектриков [18]: $\mu \cdot \chi = e/6\pi \cdot r$, где χ — вязкость, и оценить μ^{\pm} и D^{\pm} через отношение $r_{j_{-}}/r_{OK+}$. В результате получаем $\mu^{-} = 1.8 \cdot 10^{-5} \text{ cm}^2 \cdot V^{-1} \cdot s^{-1}, \mu^{+} = 2 \cdot 10^{-6} \text{ cm}^2 \cdot V^{-1} \cdot s^{-1};$ $D^{+} = 9 \cdot 10^{-7} \text{ cm}^2 \cdot s^{-1}, D^{+} = 10^{-7} \text{ cm}^2 \cdot s^{-1}.$ Тогда параметр $u = (D^+ - D^-)/(D^+ + D^-),$ характеризующий относительную подвижность ионов, равен 0.8 и будет существенно выше, чем в других фоторефрактивных ЖК [9,10]. В действительности эта величина будет несколько меньше из-за различной степени сольватирования катионов и анионов молекулами растворителя.

Если при напряжении до 1V ток растет медленно, то в области 1...2V наблюдается резкий рост тока и проводимости, что связано с повышением степени ионизации красителя при повышении напряженности электрического поля в соответствии с теорией Онзагера $\sigma \sim \exp(E)^{1/2}$ [18]. Для концентрации раствора $n_0 = 3 \cdot 10^{17}$ cm⁻³ проводимость возрастает с 10^{-9} до $9 \cdot 10^{-9} \Omega^{-1} \cdot \text{сm}^{-1}$, а число носителей увеличивается

Puc. 2. Вольт-амперная характеристика ЖК ячейки (штриховая кривая) и зависимости проводимости (*1–3*), фотопроводимости (*1′–3′*) от коэффициента поглощения (*a*) и напряжения для *I*, $I' - n_0 = 3 \cdot 10^{16}$ ($\alpha = 14 \text{ cm}^{-1}$); 2, $2' - 9.6 \cdot 10^{16}$ ($\alpha = 48 \text{ cm}^{-1}$); 3, $3' - 3 \cdot 10^{17} \text{ cm}^{-3}$ ($\alpha = 154 \text{ cm}^{-1}$).

почти на порядок $n = 1.3 \cdot 10^{14} \text{ cm}^{-3}$. При большом токе концентрационная эдс вызывает насыщение вольт-амперной характеристики.

Фотоиндуцированная проводимость в ЖК, активированных полиметиновыми красителями

При импульсном возбуждении рубиновым лазером (длительность импульса 60 ns) электропроводность ЖК ячеек возрастала. Пучок излучения расширялся линзой до размеров образца таким образом, что плотность энергии составляла ~ 0.1 J/cm². Фототок измерялся осциллографическим методом по максимальной амплитуде импульса (рис. 1, b). В присутствии статического электрического поля ток релаксировал к стационарному значению в течение ~ 10 ms. Здесь наблюдается постепенный рост фотопроводимости с увеличением концентрации раствора и напряжения на электродах, что отличает эти зависимости от предыдущих (рис. 2, кривые 1'-3'). Одна из причин увеличения фотопроводимости — дополнительная диссоциация возбужденных молекул красителя на ионы, распределение которых в объеме можно представить в виде $\rho(z) = \rho_0 \exp(-\alpha z)$ в соответствии с коэффициентом поглощения а. Здесь ось z определяет направление распространения луча перпендикулярно директору слоя L и подложкам. Об этом говорит рост проводимости с увеличением коэффициента поглощения слоя и интенсивности излучения (рис. 3). Для ячейки с $\alpha = 154 \,\mathrm{cm}^{-1}$ число носителей под действием излучения возрастает с $1.3 \cdot 10^{14} \,\mathrm{cm}^{-3}$ до $2 \cdot 10^{14} \,\mathrm{cm}^{-3}$. Можно найти зависимость фотопроводимости от интенсивности излучения I и коэффициента α при некоторых упрощенных предположениях. Уравнение баланса индуцированных ионов имеет вид [9]

$$\frac{\partial n}{\partial t} + \gamma_R n^+ n^- = aI(z), \qquad (2)$$

где $\gamma_R = D^{\pm} e^2 / k_B T$, $I = I_0 \exp(-\alpha z)$, $a = a_0 \alpha$ — константа, характеризующая эффективность фотодиссоциации.

Диссоциация возбужденных молекул красителя может происходить при наличии долгоживущих состояний, когда есть вероятность столкновений с молекулами жидкокристаллического окружения. С другой стороны, повышение температуры в локальной области воздействия в результате интеркомбинационной конверсии с триплетного уровня также будет способствовать увеличению степени диссоциации. Исследование кинетики взаимодействия моноимпульсного излучения рубинового лазера с полиметиновыми красителями в ЖК показало, что молекулы красителя просветляются по трехуровневой

Рис. 3. Зависимость фотопроводимости от плотности энергии при α , cm⁻¹: 1 - 14, 2 - 48, 3 - 154. На вставке приведена зависимость тока от коэффициента поглощения без напряжения (1) и при напряжении на электродах ячейки (2); U - 1.6 V.

схеме с участием метастабильного состояния, длительность которого равна $\sim 1.5 \,\mu s$ [19]. Таким образом, основные процессы диссоциации и рекомбинации ионов развиваются уже после прохождения моноимпульса. Тогда уравнение (2) разбивается на два

$$\frac{\partial n}{\partial t} = aI_0 \exp(-\alpha z)$$
 для $t < \tau$, (3)

$$\frac{\partial n}{\partial t} = +\gamma_R n^+ n^- = 0$$
для $t > \tau$, (4)

где au — длительность импульса.

Из первого получаем число носителей заряда, индуцированных излучением $n'_0 = aI_0 \exp(-\alpha z)\tau$; второе уравнение позволяет определить изменение концентрации индуцированных зарядов со временем после воздействия импульса

$$n'(t) = \frac{n'_0}{n'_0 \gamma_R t + 1}.$$
 (5)

Для значений параметров $\gamma_R \approx 5.7 \cdot 10^{-13} \,\mathrm{cm}^3 \cdot \mathrm{s}^{-1}$, $t = 100 \,\mu\mathrm{s}$ (момент достижения максимальной амплитуды тока), $n_0' \approx 0.7 \cdot 10^{14} \,\mathrm{cm}^{-3}$ (максимальное число

индуцированных носителей заряда в нашем эксперименте) получаем величину $n'_0 \gamma_R t \approx 0.004$, которая $\ll 1$. Тогда с учетом соотношений (1) и (5) можно определить фотоиндуцированную электропроводность как

$$\sigma'(t) \approx e(\mu^+ + \mu^-)a_0\alpha I_0 \exp(-\alpha z)z.$$
 (6)

Функция $\sigma' \{ \alpha I_0 \exp(-\alpha d) \}$ на самом деле близка к линейной, что видно из рис. 3 (кривые l'-3').

Было обнаружено возбуждение фототока без внешнего статического электрического поля. Эффект качественно отличается от рассмотренного выше. При наличии внешнего поля полярность фототока определяется полярность сигнала на нагрузочном сопротивлении R_H определяется направлением падающего пучка света, фототок направлен от освещенного электрода к неосвещенному, т.е. в направлении входного электрода из объема движутся катионы.

В поле мощного лазерного излучения ($\sim 10^6 \, {\rm W/cm^2}$) может возникать инжекция электронов из электрода (наблюдалась экспериментально), а также генерация за-

рядов на поверхности пленок моноокиси кремния. Существование локальных уровней энергии в запрещенной зоне диэлектрической пленки SiO, ее поглощение, инжектированные из электрода электроны — все это будет способствовать тому, что взаимное тепловое и полевое действие лазерного излучения приведут к накоплению на поверхности пленки отрицательного заряда [20]. Рекомбинация свободных носителей заряда на рельефной поверхности пленки [15] и катионов раствора вызовет образование органических ион-радикалов молекул красителя, которые могут осаждаться в виде дефектов на поверхности, что является одной из причин образования дисклинаций, ограничивающих области с различными ориентациями в объеме ЖК, создаваемыми интерференционным полем излучения в виде статической решетки "доменов".

Время релаксации заряда было порядка единиц миллисекунд. Время дебаевской релаксации объемного заряда $\tau_D = \varepsilon_{\perp}/4\pi\sigma_{\perp}$ и при $\varepsilon_{\perp} = 10, \sigma_{\perp} = 3 \cdot 10^{-9} \,\Omega^{-1} \cdot \text{cm}^{-1}$ составляет $\tau_D = 0.3 \,\text{ms.}$ Это значение на порядок меньше полученного в эксперименте. Таким образом, в результате фотоиндуцированной униполярной инжекции носителей заряда на поверхности и диссоциации молекул красителя возникает неоднородное распределение объемного заряда вдоль направления луча на глубину, превышающую толщину двойного электрического слоя, которое приводит к образованию фотоиндуцированного поля E_z . Фотогенерация объемного заряда приведет также к разрушению двойного электрического слоя и более интенсивному увеличению тока, начиная с малых напряжений, что можно видеть на рис. 2 (кривые I'-3').

Дифракционные решетки в ЖК, активированных полиметиновыми красителями

Методами динамической голографии была исследована ориентационная фоторефрактивная нелинейность в ЖК, индуцированная моноимпульсным излучением рубинового лазера в режиме ТЕМ₀₀-моды (энергия импульса E=60 mJ, длительность $\tau \approx 60$ ns). В качестве зондирующего использовалось излучение Не-Ne лазера. Среди различных геометрий взаимодействия излучения с планарными ячейками была выбрана геометрия, представленная на рис. 4, а, где вектор решетки q совпадает с направлением директора L. В случае, когда векторы поляризаций волн накачки Е1 и Е2 и зондирующей волны **Е**₃ направлены вдоль директора **Е**_{1,2,3} || **L**, дифракционная эффективность решеток в 2-3 раза больше, чем в геометрии $\mathbf{E}_{1,2} \parallel \mathbf{L}, \mathbf{E}_3 \perp \mathbf{L}$, и на порядок больше, когда $\mathbf{E}_{1,2} \perp \mathbf{L}$. Здесь наблюдается преимущественная переориентация директора в плоскости хг.

Поле излучения генерирует пространственно-неоднородное распределение заряда вдоль оси x с периодом решетки Λ и вдоль оси z (рис. 4, b). Когда внешнее статическое электрическое поле отсутствует, в областях

Рис. 4. Геометрия взаимодействия (*a*) и модель образования электрогидродинамических неустойчивостей (*b*) в ЖК, активированных полиметиновыми красителями.

дифракционных максимумов вдоль z возникает фотоиндуцированное поле E_z , а вдоль x наблюдается диффузия индуцированных зарядов со временем решеточной релаксации $\tau_D = \Lambda^2 / 4\pi^2 \cdot D$. Слабый электрический ток, который сопровождается градиентом концентрации положительных ионов в направлении z, может вызвать электрогидродинамическую неустойчивость изотропного типа, механизм образования которой при униполярной инжекции рассмотрен Фелици [21]. На рис. 4, в показана модель, которая дает представление о механизме неустойчивости в нашем случае. Из-за неоднородного распределения плотности заряда в объеме слоя в направлении распространения луча и вдоль подложки при образовании решетки возникающая электростатическая сила $F = \delta \rho \cdot E_z$ вызовет образование двух вихрей на длине решетки Л. Поворот директора слоя в результате гидродинамического течения будет иметь периодичность, близкую к толщине ячейки [22]. Пороговое напряжение неустойчивости в ЖК с $\Delta \varepsilon > 0$ может быть ниже порога электрогидродинамической неустойчивости анизотропного типа в модели Карра-Хелфриха [16].

В присутствии статического электрического поля E_0 из-за анизотропии проводимости (в направлении *x* проводимость имеет компоненту σ_{\parallel} , в направлении $z - \sigma_{\perp}$) интерференционное поле излучения приведет к возник-

Рис. 5. Осциллограммы изменения интенсивности дифрагированного в первый порядок зондирующего пучка He–Ne лазера для ЖК ячеек, ориентированных моноокисью кремния (a-e) и полиимидом (f). Временные развертки, ms/div: a - 0.1. b - 5, c-f - 100; $\alpha = 14 \text{ cm}^{-1}$; e - релаксация решетки в присутствии электрического поля (U = 1.2 V), амплитуда больше) и без него.

новению фотоиндуцированного поля E_x (рис. 4, *b*), которое, согласно модели Карра–Хелфриха, определяется соотношением [23]

$$E_{x,\sigma} = -\frac{(\sigma_{\parallel} - \sigma_{\perp})\cos\Theta\sin\Theta}{\sigma_{\parallel}\cos^{2}\Theta + \sigma_{\perp}\sin^{2}\Theta}E_{0},$$
(7)

где Θ — угол отклонения директора в плоскости *xz*.

Электрогидродинамическая неустойчивость анизотропного типа возникает, когда есть первоначальное нарушение ориентации директора слоя, это условие может обеспечить неустойчивость изотропного типа. Когда направление статического поля E_0 совпадает с направлением индуцированного поля E_z , поворот директора слоя будет усиливаться. Период синусоидальной деформации директора остается прежним и близким к толщине слоя.

На рис. 5 приведены типичные осциллограммы изменения интенсивности дифрагированного в первый порядок пучка в ЖК ячейках, ориентированных моноокисью кремния, без электродов. Наблюдаются два характерных времени релаксации: термически-диффузионное $\tau_T = \rho_0 C_p^2 \Lambda^2 / 4\pi^2 \lambda_T$, составляющее 0.5 ms (рис. 5, *a*), и ориентационное, обусловленное в конечном итоге диффузией зарядов $\tau_D = \Lambda^2 / 4\pi^2 D$ (рис. 5, *b*-*f*). Здесь $\rho_0 = 10^3 \text{kg} \cdot \text{m}^{-3}$, $\chi = 7 \cdot 10^{-2} \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-1}$, $D = 10^{-6} \text{ cm}^2 \cdot \text{s}^{-1}$ — типичные параметры для ЖК. Для периода решетки $\Lambda = 40 \,\mu$ m константы $\tau_T \approx 0.5 \text{ ms}$ и $\tau_D \approx 400 \text{ ms}$ и хорошо согласуется с экспериментом. Как видно, ориентационная компонента возникает после

затухания термической. Время ее нарастания составляет 20 ms (a), а релаксация изменяется от 0.4 до 1 s. Временные параметры голограмм зависят не только от периода решетки и свойств ЖК среды, но также от физико-технических условий напыления ориентанта и интенсивности излучения, что определяет образование двух типов решеток: динамической и статической. На рис. 5, *d* приведена осциллограмма изменения интенсивности зондирующего пучка в виде прямоугольного импульса, возникающего при условии равновесия ориентационного и гидродинамического моментов. Период Л, близкий к 40 µm, является оптимальным для получения эффективных решеток (рис. 6). С увеличением интенсивности излучения и коэффициента поглощения дифракционная эффективность η возрастает, достигая наибольших значений при $\alpha I_0 = 16 \,\mathrm{J} \cdot \mathrm{cm}^{-3}$ (рис. 7, *a*). При дальнейшем увеличении αI_0 величина η падает из-за конвекционных движений в объеме ячейки. Нагревание слоя жидкого кристалла не влияет на величину дифракционной эффективности, но приводит к уменьшению времени релаксации $\tau_{\Theta} = \chi \Lambda^2 / 4\pi^2 \, \mathrm{K}$ в соответствии с уменьшением вязкости χ от значения 600 ($T = 20^{\circ}$ C) до 150 ms ($T - T_{is} = 1^{\circ}$ С), в изотропной фазе это время 50 ms. Максимальная дифракционная эффективность решеток была равна 3-4%.

Увеличить эффективность решеток можно, используя дополнительное статическое поле. На рис. 5, *е* приведена осцилограмма интенсивности дифрагированного пучка без и с подачей напряжения на электроды. Релаксация ячейки к исходному состоянию здесь отсутствует изза образования статической решетки. Характер зависимости дифракционной эффективности от поглощенного излучения αI_0 в присутствии поля не изменяется (рис. 7, *b*). Исследование эффективности от напряжения показывает несколько этапов изменения η по мере увеличения напряжения. До значений 0.6...0.8 V там, где проводимость изменяется незначительно (рис. 2), и η изменяется несущественно. На участке 0.6...1.3 V, где наблюдается рост проводимости, η возрастает. Величина η примерно в 3 раза превосходит аналогичную величину

Рис. 6. Зависимость дифракционной эффективности η от периода решетки Λ .

Рис. 7. Зависимость дифракционной эффективности от параметра $\alpha I_0(a)$ и напряжения (b) при α , cm⁻¹: I - 14; 2-I' - 48; 3, 4, 2' - 154; U = 0 (I-3), 1.2 V (4).

без напряжения. При U = 1.4 V, близком к переходу Фредерикса (для наших ЖК пороговое значение $U_{\rm Fr} \approx 2$ V), η падает, так как геометрия эксперимента уже не поддерживает условия образования электрогидродинамической неустойчивости. Дифракционная эффективность в присутствии электрического поля составляла 10%.

В результате проведения сравнительных экспериментов с неионными красителями и другими ориентантами можно отметить, что переориентация, описанная выше, имеет ярко выраженные характерные особенности в ионных композициях ЖК+краситель и с ориентантами из моноокиси кремния. На рис. 5 можно сравнить ориентационную компоненту для ЖК ячеек с ориентантами из моноокиси кремния и полиимида. Проводимость и решетка появляются в ЖК ячейках без статического электрического поля и только усиливаются внешним полем. По-видимому, мы наблюдаем здесь вначале более низкопороговую электрогидродинамическую неустойчивость изотропного характера, а затем неустойчивость анизотропного характера — оптический аналог эффекта Карра-Хелфриха в жидких кристаллах. Условия для наблюдения этих эффектов здесь соблюдаются [22]: в планарных слоях эффективность решеток наибольшая, когда период решетки Λ близок к толщине ячейки; имеет место положительная анизотропия проводимости $(\sigma_{\parallel} \approx 1.5\sigma_{\perp})$; эффект наблюдается при напряжениях $U < U_{\rm Fr}$ для ЖК с положительной диэлектрической анизотропией ($\Delta \varepsilon > 0$). Динамика ориентационной решетки показывает, что переориентация начинает возникать за время ~ 20 ms вместе с тем, как релаксирует фототок (10 ms) и начинается макроскопическое движение в объеме жидкого кристалла.

Таким образом, фотогенерация поверхностных и объемных зарядов в ЖК ячейке, пространственное распределение последних в направлении вектора решетки и распространения луча, взаимодействие фотоиндуцированных полей и приложенного статического поля приводят к явлениям электрогидродинамической неустойчивости и эффективной переориентации директора слоя.

Авторы благодарят С.П. Жвавого и Н.А. Усова за полезные обсуждения результатов, а также Е.А. Тявловскую за помощь в исследовании фотоэлектронных спектров пленок SiO.

Работа выполнена при финансовой поддержке международного фонда INTAS-BELARUS (грант № 0635).

Список литературы

- Пилипович В.А., Ковалев А.А., Некрасов Г.Л., Серак С.В. // Докл. АН БССР. 1978. Т. 22. С. 36–38.
- [2] Некрасов Г.Л., Развин Ю.В., Серак С.В. // Оптические методы обработки информации. Сб. статей / Под ред. В.А. Пилиповича. Минск: Наука и техника, 1978. 232 с.
- [3] Kovalev A.A., Nekrasov G.L., Serak S.V. // Mol. Cryst. and Liq. Cryst. 1990. Vol. 193. P. 51–55.
- [4] Ковалев А.А., Серак С.В. // ЖПС. 1990. Т. 52. С. 197–202.
- [5] Ковалев А.А., Серак С.В., Некрасов Г.Л. и др. // Квантовая электрон. 1995. Т. 22. № 8. С. 838-840.
- [6] Kovalev A.A., Serak S.V., Nekrasov G.L. // Mol. Cryst. and Liq. Cryst. 1997. Vol. 320. P. 425–431.
- [7] Некрасов Г.Л., Ковалев А.А. // Изв. АН БССР. Сер. физ.мат. наук. 1980. № 3. С. 105–108.
- [8] Serak S.V., Kovalev A.A. // Mol. Cryst. and Liq. Cryst. 1998. Vol. 320. P. 417–424.
- [9] Руденко Е.В., Сухов А.В. // ЖЭТФ. 1994. Т. 105. Вып. 6. С. 1621–1634.
- [10] *Khoo I.C., Li H., Liang Y. //* Opt. Lett. 1994. Vol. 19. P. 1723–1725.
- [11] Khoo I.C. // Mol. Cryst. and Liq. Cryst. 1996. Vol. 282.
 P. 53–66.
- [12] Macdonald R., Meindl P., Chilaya G., Sikharulidze D. // Mol. Cryst. and Liq. Cryst. 1998. Vol. 320. P. 115–127.
- [13] Sato S. // Jpn. J. Appl. Phys. 1981. Vol. 20. P. 1989–1995.
- [14] Khoo I.C., Guenther B.D., Slussarenko S. // Mol. Cryst. and Liq. Cryst. 1998. Vol. 321. P. 419–438.
- [15] Kovalev A.A., Serak S.V. // Proc. of SPIE (Liquid Crystals: Physics, Technology and Applications) Zakopane (Poland), 1997. Vol. 3318. P. 327–330.
- [16] Блинов Л.М. // Электро- и магнитооптика жидких кристаллов. М.: Наука, 1978. 175 с.

- [17] Де Жен П. Физика жидких кристаллов. М.: Мир, 1977. 400 с.
- [18] Койков С.Н. Физика диэлектриков. Л.: ЛПИ, 1967. 247 с.
- [19] Ковалев А.А., Некрасов Г.Л., Серак С.В. // ЖПС. 1986. Т. 45. № 3. С. 400–406.
- [20] Handbook of Thin Film Technology // Ed. L.I. Maissel, R. Glang. Mc Craw Hill Hook Company, 1970. Vol. 2. 768 p.
- [21] Felici N.J. // Rev. Gen. Electr. 1969. Vol. 78. P. 717-792.
- [22] Пикин С.А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 197 с.
- [23] *Helfrich W.* // J. Chem. Phys. 1969. Vol. 51. N 9. P. 4092–4105.