01;09;12 Измерение и верификация параметров импульсного электромагнитного излучения кольцевого тока большого диаметра

© В.М. Федоров, Е.Ф. Лебедев, В.Е. Осташев, В.П. Тараканов, А.В. Ульянов, В.Е. Фортов, Б.Д. Янковский

Научно-исследовательский центр теплофизики импульсных воздействий Объединенный институт высоких температур РАН, 127412 Москва, Россия

(Поступило в Редакцию 24 мая 1999 г.)

Представлены результаты расчетно-экспериментальных исследований процесса формирования и распространения электромагнитного излучения, индуцированного повторяющимися импульсами тока наносекундной длительности с пиковой мощностью до 1 MW и скоростью изменения тока до 3.5 A/ns. Антенна представляла собой тонкий кольцевой проводник большого радиуса ($\rho_a = 1.4 \,\mathrm{m}$). Электрический ток в проводнике возбуждался одновременно по всей его длине за время τ , меньшее, чем пробег электромагнитной волны вдоль диаметра контура ($\tau \leq 2\rho_a/c$). Измерены параметры волны излучения. Отмечено, что экспериментальные данные согласуются с результатами расчетов, учитывающими отражения излучения от электропроводящих стен экспериментального зала. Эффективность преобразования энергии импульса возбуждения в сверхширокополосное излучение составила около 15%. Предложено использовать кольцевую антенну, быстро возбуждаемую повторяющимися импульсами тока (за время $\tau \leq 2\rho_a/c$), в качестве эталонного сверхширокополосного излучателя.

Введение

Излучение сверхширокополосных (СШП) электромагнитных импульсов излучения является новой областью исследований, имеющей перспективные приложения как для расширения возможностей радиолокации, так и моделирования электромагнитных эффектов от разрядов молний, воздействий мощных электромагнитных импульсов на нелинейные среды и пространственно распределенные системы электронного управления и контроля различных объектов [1,2]. Диагностика параметров электромагнитных полей СШП излучений является сложной задачей из-за отсутствия как апробированных технических средств, так и апробированных алгоритмов обработки регистрируемых ими данных. Вследствие этого актуально создание эталонного излучения СШП электромагнитных импульсов [3,4]. Накопление согласованных экспериментальных и расчетных данных в этой сравнительно новой и перспективной области исследований позволило бы достоверно их верифицировать.

Антенной эталонного излучателя может быть тонкий кольцевой проводник. Его параметры и как излучателя, и как приемника рассчитываются точно, поскольку пространственная конфигурация контура тока задана определенно. В [5] показано, а в [7,8] экспериментально проиллюстрировано, что при возбуждении такого проводника одновременно во всех его точках коротким импульсом тока ($\tau \ll \rho_a/c$) он излучает с высокой эффективностью $\eta_a \sim \ln(\rho_a/c\tau)/\ln(\rho_a/r)$ (r — радиус проводника, $r < c\tau$) в сверхширокой полосе частот ($\Delta f \sim f \sim \tau^{-1}$) и с малой угловой расходимостью потока электромагнитной энергии ($\Theta \approx c\tau/\rho_a \ll 1$). Разработки генераторов импульсного возбуждения эффективно излучающих токовых контуров больших размеров подготовлены созданием сильноточных (~ 1 kA)

полупроводниковых импульсных генераторов с быстрым временем установления тока ($\sim 1 \text{ ns}$) и частотным режимом работы ($\sim 1 \text{ kHz}$) [6,9,10]. Длительная (часы) и стабильная генерация наносекундных импульсов излучения в частотном режиме значительно упрощает регистрацию параметров электромагнитного поля.

Цель данной работы состояла в том, чтобы практически реализовать режим быстрого (за время $\tau < 2\rho_a/c$) и одновременного возбуждения тока во всех точках кольцевой антенны большого радиуса ($\rho_a = 1.4 \,\mathrm{m}$), провести прямые измерения тока возбуждения антенны и параметров поля ее излучения, сопоставить полученные экспериментальные данные с расчетами, учитывающими также и электромагнитный отклик электропроводящей арматуры экспериментального зала, оценить методическую точность измерений параметров широкополосного поля излучения открытых токовых контуров больших размеров.

Оценка параметров поля излучения диполя при нестационарном режиме его возбуждения

Осевая симметрия кольцевой антенны (магнитного диполя) упрощает расчеты параметров поля ее излучения. При заданной зависимости тока возбуждения от времени и его распределения в проводнике они рассчитываются с использованием известных аналитических формул [5,11].

Эксперименты по исследованию кольцевого тока были проведены в экспериментальном зале с электропроводящими стенками и характерными размерами зала $\sim 15 \text{ m}$. При радиусе антенны $\rho_a = 1.4 \text{ m}$ и полном времени нарастания тока в ней $\tau \approx 8 \text{ ns}$, когда $c\tau \leq 2\rho_a$, характерная длина волны излучения со-

Рис. 1. Осесимметричная модель расчетной области (обозначено положение излучающего кольца с радиусом ρ_a и точек наблюдения параметров поля излучения) и зависимость от времени тока возбуждения экспериментальной модели кольца (сплошная кривая — эксперимент, пунктир — расчет).

Рис. 2. Расчет поперечных компонент магнитного и электрического полей излучения кольца в свободное пространство в точках $r_1 = 4.5$ (1) и $r_2 = 9$ m (2) на радиальной оси для реального тока его возбуждения $J_{\varphi}(t)$.

ставляет $\lambda_{\sim} \approx 2c\tau \approx 4\rho_a \approx 5-6$ m и оказывается сопоставимой с размером области ее распространения. Электропроводящая арматура экспериментального зала (стенки, экраны и т.п.) формирует отраженные электромагнитные волны. Задержка времени прихода этих волн к точке наблюдения определяется ее положением по отношению к антенне и отражающим поверхностям. Для учета конкретных условий проведения экспериментов параметры поля излучения предварительно оценивались с использованием известного электромагнитного кода "Карат" [12], решающего уравнения Максвелла в 2.5-мерном приближении.

Кольцо имеет две выделенные геометрические оси: по нормали к центру (в дальнейшем ось z) и любая вдоль радиуса (ось r). Строго по оси z кольцо не излучает вследствие симметрии. Точка наблюдений в представленной серии экспериментов была выбрана нами вдоль радиальной оси r, поскольку зависимость параметров электромагнитного поля от угла в этом направлении слабая. Выбор координат на этой оси в ограниченном пространстве экспериментального зала определялся двумя связанными, но противоположными факторами: степенью соответствия поперечных компонентов поля излучения условию на плоской волне $E_{\varphi}/B_z = c$ и задержкой времени прихода отраженных волн (волна

формируется по мере увеличения *r*, но при этом время задержки уменьшается).

В качестве исходных данных для численных расчетов использованы осциллограммы тока возбуждения кольца $J_{\varphi}(t)$ и осесимметричная модель расчетной области с отражающими границами (рис. 1). Время подъема тока до амплитудного значения составляло ≈ 8 ns, а максимальная скорость его изменения ~ 3.5 A/ns.

Для моделирования динамики формирования волны излучения и ее распространения в пространстве были проведены расчеты излучения кольцевого проводника в свободное пространство (рис. 2). В точке $r_1 = 4.5$ m ($\approx 3\rho_a$) на радиальной оси различие амплитуд первой и второй полуволн колебания магнитного поля (8 и 6 mGs соответственно), формируемых диаметрально противо-положными участками кольца, указывает на относительную близость точки наблюдения r_1 к антенне. При этом поперечные компоненты электрического и магнитного полей (E_{φ}, B_z) не связаны между собой пропорциональной зависимостью, характерной для плоской волны излучения.

В точке $r_2 = 9 \,\mathrm{m}$ $(\approx 6\rho_a)$ компоненты полей E_{arphi} являются B_z определяющими: И $\{B_r, B_{\varphi}\} \ll B_z, \{E_z, E_r\} \ll E_{\varphi}.$ Их соотношение $E_{\omega}(V/cm) \cong 3.3B_{z}(mGs)$ соответствует условию на плоской электромагнитной волне. Амплитуды электрического поля в первой и второй полуволнах равны $\approx 1 \,\mathrm{B/cm}$, характерная длина волны излучения составляет 5-6 m, т.е. $\lambda_{\sim} \approx 4\rho_a$. Таким образом, кольцевая антенна, возбуждаемая за время $\tau \leq 2\rho_a/c$, формирует вдоль своей радиальной оси плоскую электромагнитную волну уже при условиях $r/
ho_a \geq 6$ и $r/\lambda_{\sim} \geq 1.5.$

Антенна большого диаметра индукционно связана с электропроводящими границами реальной области распространения излучения (рис. 1). Излучение кольца возбуждает в них вихревые токи и, как следствие, отраженные волны, искажающие первичное поле. На рис. 3 представлены результаты расчета, где эти эффекты учитываются. Данные приведены для точки r_2 на радиальной оси кольца — нижней границе области излучения, в которой уже сформировалась плоская электромагнитная волна.

Рис. 3. Зависимости параметров поля излучения в точке $r_2 = 9$ m на оси кольца при учете эффектов, обусловленных электропроводящими границами расчетной области; 1 и 2 — поперечная B_z и продольная B_r компоненты магнитного поля соответственно.

Влияние эффектов отражения на параметры поля излучения в точке наблюдения проявляется двояко (рис. 3). Во-первых, через $\approx 16\,\mathrm{ns}$ от момента прихода фронта прямой волны излучения 1 появляется сильное продольное магнитное поле B_r 2, обусловленное разной удаленностью от плоскости кольца боковых отражающих экранов, расположенных в координатах z = -5 и 7 m. Во-вторых, нарушается равенство амплитуд первой и второй полуволн: амплитуда второй возрастает примерно на 30% вследствие "подкачки" излучением вихревых токов, индуцированных кольцом в ближайших к нему симметрично расположенных экранах ($z = \pm 2 \,\mathrm{m}$). Однако необходимо отметить, что соотношение $E_{\omega}/B_z \cong c$ в волне излучения не нарушается по крайней мере до появления продольной компоненты магнитного поля B_r. Таким образом, численная модель процесса излучения кольцевой антенны при быстром ее возбуждении за время $\tau \leq 2\rho_a/c$ прогнозирует возможность регистрации прямой волны излучения вдоль радиальной оси кольца в координате $r_2 \approx 6
ho_a \approx 1.5 \lambda_{\sim}$ в течение ограниченного времени $\approx 16 \, \mathrm{ns} \ (\approx 2 \tau)$, определяемого конкретной конфигурацией отражающих излучение экранов.

Экспериментальная установка

а) Схема. Время τ установления тока в контуре с индуктивностью L_a и сопротивлением (импедансом) R_a определяется временем квазистационарной релаксации тока в контуре $\tau_R \approx L_a/R_a$ и длительностью фронта τ_g нарастания напряжения генератора возбуждения. Если $\tau_g \ll \tau_R$, то установление тока до уровня 0.95 от амплитудного значения осуществляется за время $\tau \approx 3\tau_R$. При этом параметр "быстроты" процесса возбуждения кольцеовй антенны $2\rho_a/c\tau$ (терминология авторов [5]) и сопротивление контура R_a (или сопротивление, вводимое в контур) оказываются связанными соотношением

$$R_a \approx 1.5 \mu_0 c \left(rac{2
ho_a}{c au}
ight) \ln rac{
ho_a}{r},$$

причем R_a слабо зависит от радиуса антенны ρ_a при фиксированном значении параметра $2\rho_a/c\tau$ ($\mu_0c = 377 \Omega$ волновое сопротивление вакуума). При условии $\tau_g \ll \tau_R$ нестационарный режим возбуждения кольцевой антенны $2\rho_a/c\tau \ge 1$ достигается при сопротивлении контура $R_a \ge (4-5) k\Omega$ (здесь принято, что $\rho_a/r = 200-500$), причем вне зависимости от радиуса антенны. Радиус же антенны ρ_a при фиксированном параметре $2\rho_a/c\tau$ определяет верхнюю граничную частоту в спектре излучения (меньше радиус, выше граничная частота), а при задании амплитуды тока возбуждения — полную энергию импульса излучения. Если фронт импульса напряжения генератора таков, что $\tau_g \approx \tau_R$, то радиус антенны, которая может быть возбуждена "быстро", ограничивается снизу ($\rho_a \ge c\tau_g$).

Аксиальная симметрия антенны предполагает, что сопротивление R_a равномерно распределено вдоль ее кон-

Рис. 4. Фрагмент схемы генератора излучения: *1* — генератор возбуждения; *2* — коаксиальные кабели, связывающие генератор с антенной; *3* — элементы кольцевой антенны; *4* — измеритель тока.

тура, а ток в каждой точке этого контура изменяется одновременно. Это может быть реализовано практически, если продольная пространственная структура кольцевого проводника Δs определяется из условия $2\Delta s/c \leq 0.2\tau \ll \tau$, т.е. допустимый порядок продольной дискретизации контура должен составлять число $\geq 10\pi(2\rho_a/c\tau)$. В соответствии с вышеизложенным, была сконструирована экспериментальная модель кольцевого излучателя, усеченный фрагмент схемы которой представлен на рис. 4.

б) Генератор тока возбуждения кольцевой антенны 1 был построен на основе использования серийных дрейфовых диодов с резким восстановлением запирающих свойств при специальном режиме накачки прямого тока диодов [6]. Схема формирования импульсов — последовательная трехкаскадная. Выходной каскад генератора содержал 24 параллельных канала. При работе генератора на согласованную нагрузку (0.5Ω) регистрировался трапецеидальный импульс напряжения с фронтом нарастания $\tau_g \approx 3$ пs, амплитудой до 600 V и длительностью по полувысоте ≈ 20 пs. Импульсная мощность генератора не превышала 0.7 MW, а частота повторения импульсов — 100 Hz.

в) Антенна представляла собой кольцевой проводник радиусом $\rho_a = 1.4 \,\mathrm{m}$, составленный из N = 96 отрезков тонкого (r = 1 mm) медного провода длиной 91 mm. Квазистационарная индуктивность антенны — $L_a = 13.3 \,\mu$ H. Генератор тока возбуждения 1 подключался в разрыв 96 элементов антенны 3 коаксиальными кабелями 2 равной длины (1.6 m) с волновым сопротивлением $R_c = 50 \,\Omega$. При этом создавался только кольцевой ток — радиальные токи были скомпенсированы в кабелях. Время нарастания тока в кольце $au \approx 8\,\mathrm{ns}$ было меньше, чем удвоенное время пробега импульса по кабелям 2 (16 ns). Поэтому в течение 16 ns генератор оказывался нагруженным на оптимальное для него сопротивление $R_c/N \approx 0.5 \Omega$, а в антенну, равномерно по ее контуру, вводилось сопротивление $R_a \approx R_c \times N \approx 5 \,\mathrm{k}\Omega$, необходимое для реализации режима

Рис. 5. Классический симметричный магнитный зонд с интегрирующими сопротивлениями R(a) и схема использованного в экспериментах двойного симметричного зонда (b) с повышенной защищенностью от паразитного воздействия электрического поля волны излучения.

быстрого ее возбуждения. При напряжении на выходе генератора 510 V амплитудное значение импульсов тока в антенне составляло $(J_{\varphi})_{\text{max}} = 18.7 \text{ A}$, а максимальная скорость его нарастания — 3.5 A/ns (рис. 1). Активное сопротивление в цепи антенны (антенна и 96 подводящих кабелей) оценивалось по характерному времени спада тока $\tau_d \approx 150 \,\mathrm{ns}$ значением $L_a/\tau_d \approx 100 \,\Omega$. Колебания на спаде тока в антенне связаны в основном с неполным электрическим согласованием ее элементов 3 с подводящими кабелями 2. Прямые измерения тока в разных точках кольцевого проводника, а также при повороте плоскости кольца относительно радиальной оси подвеса в экспериментальном зале с электропроводящей арматурой дали одинаковые результаты в пределах точности регистрации. Таким образом, экспериментально реализована схема нестационарного за время $\tau \leq 2\rho_a/c$ возбуждения кольцевого тока с малой разновременностью его установления ($\ll \tau$) вдоль проводника.

г) Диагностика. Измерение напряжений на генераторе и его нагрузке (на концах кабелей 2) было проведено с использованием омического делителя напряжения с временным разрешением не хуже 0.5 пs. Ток возбуждения кольцевой антенны измерялся непосредственно в контуре антенны, встроенным в нее омическим шунтом 4 с компенсирующей индуктивностью (рис. 4). Результаты измерений тока хорошо соответствовали его расчетам (рис. 1) при задании реальной формы импульса напряжения на выходе нагруженного генератора возбуждения.

Индукция магнитного поля в волне излучения регистрировалась зондом на основе классического симметричного магнитного диполя с дифференциальным выходом и *LR*-интегралом (рис. 5, *a*). Однако вследствие воздействия электрической компоненты поля волны излучения такой зонд в виде прямоугольной рамки размером 50×20 ст оказался непригодным для измерений. Уровень паразитного сигнала выявлялся при перефазировке зонда поворотом его плоскости на 180° и составлял около 200%.

В ходе работы был предложен и изгтовлен оригинальный зонд с более высоким порядком симметрии, чем классический (рис. 5, b). Он представлял собой пару одинаковых прямоугольных ($45 \times 11 \text{ cm}$) симметричных магнитных диполей с *LR*-интеграторами. Плоскости диполей были разнесены на расстояние 11 ст. Диполи соединялись последовательно. Для характерных длин волн, излучаемых экспериментальной моделью кольца ($\lambda_{\sim} \approx 5-6$ m), зонд являлся сосредоточенным (локальным) сенсором.

Чувствительность зонда 33 mGs / V. При амплитуде прямой волны 3-4 mGs зонд откликался напряжением ≈ 0.1 V, которое надежно регистрировалось. Постоянная времени *LR*-интегрирования зонда составляла ≈ 150 ns. Это позволило измерять магнитное поле в прямой волне излучения в течение ≤ 20 ns с погрешностью $\leq 10\%$.

д) Регистрация, обработка сигналов. Помехозащищенность измерений в переменном электромагнитном поле была обеспечена комплексом известных методических приемов [13,14]: дополнительной экранировкой коаксиальных кабелей и размещением ферритовых колец поверх их оболочек, развязывающими фильтрами в цепях электропитания регистрирующей аппаратуры, дифференциальной регистрацией и др. Для регистрации сигналов использовались осциллографы С1-97 и С9-4А с полосой регистрируемых частот 0.45 и 1 GHz соответственно. Осцилограммы с экранов осциллографов фиксировались цифровым фотоаппаратом и автоматически оцифровывались. Массивы данных для одной осциллограммы содержали до 400 временных точек. Для последующих расчетов эти данные интерполировались с использованием различных алгоритмов (Ньютон, сплайн интерполяции). Методическая и инструментальная точность проведенных измерений электрофизических параметров оценивается нами в пределах 10%. Задача повышения точности на этом этапе исследований не ставилась.

Результаты измерений, их обсуждение

На рис. 6 представлены результаты прямых измерений поперечной B_z и продольной B_r компонент индукции магнитного поля в волне излучения в точке наблюдения $r_2 = 9$ m на радиальной оси кольца. Зонд регистрирует электромагнитную волну с характерной индукцией

Рис. 6. Регистрация поперечной (1) и продольной (2) компонент магнитного поля в волне излучения в точке наблюдения $r_2 = 9$ m.

Рис. 7. Сравнение экспериментальных *1* и расчетных *2* данных для поперечной и продольной компонент магнитного поля в волне излучения (ось времени смещена для удобства представления данных).

Рис. 8. Расчетные зависимости энергий возбуждения *1* и излучения *2* кольцевого проводника для измеренного тока.

3–4 mGs и длительностью периода колебаний 16–20 пs. Амплитуда второй полуволны поперечного поля B_z превышает первую на $\approx 30\%$. Продольная компонента магнитного поля B_r в точке наблюдения r_2 запаздывает относительно поперечной B_z на время ≈ 16 пs. Продольное поле обусловлено отражениями потока излучения от металлической арматуры и границ экспериментального зала. Дополнительно для верификации паразитных сигналов отражений проводилась регистрация магнитного поля строго по оси z кольцевой антенны, где излучения нет вследствие симметрии.

На рис. 7 представлены результаты сравнения экспериментальных и расчетных данных для поперечной B_z и продольной B_r компонент магнитного поля в волне излучения на радиальной оси в координате r_2 . В пределах времени регистрации прямой волны излучения (≈ 16 пs от ее фронта), не искаженной появлением отраженных волн, экспериментальная и расчетная зависимости для поперечного поля B_z совпадают с хорошей точностью. Зависимости для продольной компоненты поля B_r соответствуют количественно — по времени появления волн в точке наблюдения, и качественно — по характеру изменения сигнала в начальной его фазе в течение 15–20 пs. Количественное расхождение измерений и расчетов продольного поля B_r связано с упрощенным

модельным заданием в расчетах пространственного распределения отражающих экранов.

Соответствие экспериментальных и расчетных данных для магнитного поля B_z в прямой волне излучения дает основание определять напряженность поперечного электрического поля волны E_{φ} по измерениям индукции $B_z - E_{\varphi} = cB_z$. В точке наблюдения r_2 амплитудные значения E_{φ} составляли $\approx 1.1 - 1.4 \text{ V/cm}$, а плотность потока энергии излучения — $E_{\varphi} \times B_z \approx 30 - 50 \text{ W/m}^2$.

Полученные результаты позволяют оценить энергетическую эффективность процесса преобразования энергии тока возбуждения кольцевой антенны в поток излучения. Это представляет также и методический интерес, поскольку, как известно, в режиме квазистационарного возбуждения магнитного диполя за время $\tau \gg 2\rho_a/c$ эффективность антенны $\eta_a \sim (\rho_a/c\tau)^3/\ln(\rho_a/r) \ll 1$ [11], а при нестационарном его возбуждении ($\tau \ll 2\rho_a/c$), $\eta_a \leq 1$ [5].

На рис. 8 приведены расчетные зависимости энергий возбуждения экспериментальной модели кольца и полной энергии генерируемого излучения. Из их сопоставления следует, что эффективность антенны η_a , определяемая в данном случае как отношение излученной энергии к сумме энергий излучения и возбуждения, составляет 5-6% к концу первой полуволны (к первому максимуму кривой I) и 15-17% к концу второй полуволны (соответствует первому минимому на кривой I).

Выводы

Создан экспериментальный стенд для исследования излучающих свойств токовых контуров больших размеров, возбуждаемых одновременно по всей длине проводника за время $\tau < 2\rho_a/c$ (нестационарный режим возбуждения), а также эффектов, связанных с воздействием СШП излучений на нелинейные среды. Выбор антенны определялся двумя факторами: поле излучения тонкого контура при известном токе его возбуждения рассчитывается точно; в нестационарном режиме возбуждения токовый контур излучает эффективно.

Практически реализован режим быстрого импульсного возбуждения кольцевого тока радиусом (1.4 m) за время $\tau \approx 8$ ns с малой разновременностью установления тока вдоль контура (≈ 0.5 ns $\ll \tau$).

В качестве генератора тока возбуждения в кольцевом проводнике использован сильноточный (≈ 1 kA) полупроводниковый генератор. Низкий выходной импеданс генератора позволил осуществить многоточечное синфазное возбуждение тока в антенном контуре. Длительная (часы) и стабильная генерация повторяющихся с частотой до 100 Hz импульсов СШП излучения значительно упростила регистрацию параметров электромагнитного поля.

Предложен и тестирован магнитный зонд, составленный из пары одинаковых симметричных диполей. Их выводы соединены таким образом, что сигналы, обусловленные магнитным полем электромагнитной волны, складываются, а электрическим — вычитаются. В нем удалось исключить паразитное влияние электрического поля и надежно регистрировать индукцию поля СШП излучения. Неполная компенсация влияния электрического поля волны излучения на единичный классический магнитный диполь обусловила неприемлемую погрешность его измерений (~ 200%).

Измерения временной зависимости индукции магнитного поля показали, что вдоль радиуса кольцевой антенны электромагнитная волна формируется в плоскую уже на удалении $4\rho_a$ от центра антенны. Это обстоятельство дает возможность проводить экспериментальные исследования с таким излучателем в помещениях ограниченных размеров. Напряженность электрического поля у антенны составила 6 kV/m, а на удалении 9 m — 110-140 V/m.

Верификация результатов измерений проводилась с использованием как аналитических, так и численных расчетов. Компьютерный код "Карат" позволил учесть влияние электромагнитных волн, отраженных от электропроводящей арматуры экспериментального зала. Результаты измерений параметров поля СШП излучения совпали с расчетами как по амплитуде и динамике магнитного поля в прямой волне, так и по времени задержки появления отраженных волн в заданной точке наблюдения. Эффективность преобразования энергии импульса возбуждения тонкой кольцевой антенны в излучение за один период колебания составила 15–17%.

Проведенные исследования показали, что использованные инструментальные средства позволяют получать достоверную информацию о параметрах поля СШП излучения открытых токовых контуров больших размеров, в том числе и в пространстве, ограниченном поверхностями, отражающими поток излучения.

Предложенные способы генерации СШП излучений и диагностики параметров этих полей могут быть положены в основу разработки эталона излучателя электромагнитных импульсов наносекундной длительности.

Авторы признательны сотрудникам ФИАН Л.П. Феоктистову и В.В. Климову за сотрудничество на этапе постановки этой работы и стимулирующие дискусии при обсуждении ее результатов.

Список литературы

- [1] *Harmuth H.F.* Antennas and Waveguides for Nonsinusoidal Waves. New York: Academic Press, 1984. 276 p.
- [2] Godman R., Tummala S., Carrara W. // Issues in Ultra-Wideband, Widebeam SAR Image Formation. Proc. on IEEE Intern. Radar Conf. 1995. P. 479.
- [3] Fortov V, Ivanov L, Kovalenko S. et al. // Program and Abstracts of the 11th Intern. Conf. on High-Power Electromagnetics. EUROEM'98. Tel Aviv, 1998. P. 117.
 [4] D. L. L. W. (1998). D. 110.
- [4] Radasky W.A. // Ibid. P. 118.
- [5] Афанасьев Ю.В., Климов В.В., Феоктистов А.Л., Феоктистов Л.П. // ЖЭТФ. 1992. Т. 101. Вып. 4. С. 1118.
- [6] Белкин В.С., Марин О.Ю., Шульженко Г.И. // ПТЭ. 1992. № 6. С. 120.

- [7] Fedorov V.M., Fortov V.E., Ostashev V.E. et al. // Program and Abstracts of the 11th Intern. Conf. on High-Power Electromagnetics. EUROEM'98. Tel Aviv, 1998. P. 244.
- [8] Федоров В.М., Лебедев Е.Ф., Осташев В.Е. и др. // Тр. 5-й Россиской научно-технической конф. "Электромагнитная совместимость технических средств и биологических объектов". СПб., 1998. С. 441.
- [9] Тучкевич В.М., Грехов И.В. Новые принципы коммутации больших мощностей полупроводниковыми приборами. Л.: Наука, 1988. 116 с.
- [10] Kotov Yu.A., Mesyats G.A., Rukin S.N. et al. // Proc. 9th IEEE Intern. Pulsed Power Conf. Albuquerque, 1993. P. 134.
- [11] *Тамм И.Е.* Основы теории электричества. М.: Наука, 1989. 504 с.
- [12] Tarakanov V.P. User's Manual for Code "KARAT". Springfield: Berkeley Research Associates, Inc., 1992.
- [13] Дейчулли П.П., Федоров В.М. // Вопр. атомной науки и техн. Сер. Термоядерный синтез. 1984. Вып. 3(16). С. 22.
- [14] Шваб А. Электромагнитная совместимость / Под ред. И.П. Кужекина. Пер с нем. М.: Энергоатомиздат, 1995. 480 с.