01;05 Динамика вихрей локального магнитного потока в сверхпроводниках

© И.М. Голев, В.Е. Милошенко, Н.А. Андреева

Воронежский государственный технический университет, 394026 Воронеж, Россия

(Поступило в Редакцию 9 июня 1999 г.)

Механическим методом исследуется динамика вихрей локализованного магнитного потока в высокотемпературных сверхпроводниках. Дается анализ физических условий в градиентном магнитном поле. Обсуждение результатов проводится в рамках модели о свободных и закрепленных вихрях. Вычислены значения модулей упругости, силы пиннинга, величины диссипации энергии, вязкого трения вихрей и величины потенциала пиннинга. Показано, что этим методом исследуются не интегральные характеристики сверхпроводника, а локальные, что позволяет изучать распределение центров пиннинга кристаллической структуры по объему.

С открытием высокотемпераутрной сверхпроводимости появились широкие возможности использования ее в технике. Обычно измерение критических параметров и исследование их производных проводят в однородных магнитных полях и всего образца в целом [1–3], т.е. определяют интегральные параметры и характеристики сверхпроводника. Однако большой интерес представляет изучение распределения неоднородностей в их объеме, в том числе центров пиннинга, что важно для практического использования, например, в криогенном электромашиностроении и приборострении со сверхпроводящими конструктивными элементами [4–6]. В работе предлагаются результаты экспериментального исследования динамики вихрей локального градиентного магнитного потока в металлооксидах на основе иттрия.

Исследования проводились механическим методом [7], где пластина из сверхпроводника вывешивалась между полюсами магнитной системы (рис. 1). При внешнем поле B, превышающем некоторое первое критическое поле B_{c1} , в центральной части пластины формируется пятно магнитного потока. Установка позволяет проводить исследование вдоль образца на различных участках. Для этого имеется возможность смещать магнитную систему, а для повышения чувствительности уменьшать ширину пятна. Длина пятна магнитного потока *a* определяется геометрией образца, а ширина *b* — толщиной полюсных наконечников и нивелируется распределением магнитного поля между полюсами, которое можно записать

$$B(z) = B_0 \exp(-\beta z^2), \qquad (1)$$

с учетом величины В_{с1} запишем

$$b = 2\sqrt{\ln\left(\frac{B_0}{B_{k1}}\right)^{\frac{1}{\beta}}},\tag{2}$$

где B_0 — максимальное значение магнитного поля; β — константа магнитной системы, равная $2.2 \cdot 10^5 \text{ m}^{-2}$; z — линейное смещение.

При смещении пластины под действием силы *F* на каждый из вихрей, перемещающийся вместе со сверх-проводником в неоднородном магнитном поле, будет

действовать возвращающая сила

$$f = p_{mz} \frac{\partial B}{\partial z} = -2p_{mz} B_0 \beta z \exp(-\beta z^2), \qquad (3)$$

где p_{mz} — магнитный момент вихря.

При f меньше силы пиннинга вихря f_{pi} будет происходить упругое (обратимое) смещение вихрей. Дальнейшее движение пластины приводит к возрастанию этой силы и при достижении последней значения f_{pi} некоторые вихри начнут срываться с центров закрепления и естественно становиться в определенном смысле неподвижными относительно магнитной системы. Сила пиннинга вихрей различна, поэтому число открепленных вихрей будет нарастать по мере смещения пластины. Зависимость числа сорванных вихрей N_f от смещения пластины можно записать как

$$N_f(z) = N\left[1 - \exp\left(-\frac{z}{k_1}\right)\right],\tag{4}$$

где k_1 — коэффициент, характеризующий дисперсию силы пиннинга вихрей; $N = \Phi/\Phi_0$ — чило вихрей, где

Рис. 1. Расположение пластины из сверхпроводника в магнитной системе: *1* — сверхпроводящая пластина; *2* — полюса магнитной системы; *3* — пятно магнитного потока.

№ образца	Плотность, g/cm^3	$p_H, \ \Omega \cdot \mathrm{m}, 10^{-5}$	$F_{p\mathrm{mech}},\mathrm{N/m}^3$	$F_{p\mathrm{cur}},\mathrm{N}/\mathrm{m}^3$	C, N/m ²	$W, J, 10^{-7}$	η , kg / m · s	U_0, meV
1	3.3	3.4	1900	9.8	68	7.2	20	16
2	4.2	1.5	3445	210	$26 \cdot 10^2$	16.4	52	27
3	5.2	0.76	4282	1480	$94 \cdot 10^{2}$	18.8	300	31

Ф — магнитный поток, приходящийся на исследуемую площадь,

$$\Phi = k_2 a B_0 \int_{\frac{k}{2}}^{\frac{2}{2}} \exp(-\beta z^2) dz.$$
 (5)

Здесь k_2 — коэффициент ослабления внешнего поля B_0 в объеме сверхпроводника, измеренное значение которого при B > 0.01 Т не менее 0.9. Будем считать, что все вихри изначально закреплены, и чтобы сорвать их, необходимо приложить некоторую силу $F = \sum_{i=1}^{N} f_{pi}$. С учетом (4) смещение образца и сила, вызывающая его, связаны между собой

$$F(z) = \sum_{i=1}^{N} f_{pi} N\left[1 - \exp\left(-\frac{z}{k_1}\right)\right].$$
 (6)

Движение сорванных вихрей вызывает появление дополнительной силы, обусловленной их вязким трением в объеме сверхпроводника. Коэффициент вязкого трения η в этом случае равен

$$\eta = \frac{\Delta F \Delta z}{VS},\tag{7}$$

где ΔF — изменение силы при смещении образца на Δz ; V — скорость движения образца; S = ad — сечение образца; d — толщина образца, чувствительность при измерении силы составляла 10^{-7} N, а величины смещения — 10^{-6} m.

Нами исследовались металлооксиды Y–Ba–Cu–O состава 1-2-3, полученные по двухстадийной керамической технологии с различной плотностью (см. таблицу), размером (4 × 1.5 × 20) mm при температуре 78 К. В данных экспериментах в полях 0.007–0.1 Т ширина пятна магнитного потока изменялась от $5.5 \cdot 10^{-3}$ до $9 \cdot 10^{-3}$ m. Скорость перемещения была $3 \cdot 10^{-5}$ m/s.

Известно, что сила *F* зависит не только от плотности вихрей, но и от реальной кристаллической структуры металлооксида. Поэтому нами проводились исследования как в различных по величине магнитных полях, так и на образцах, отличающихся пористостью и размерами гранул, при прочих равных условиях.

Кривые зависимости F(z) для всех исследованных металлооксидов в постоянных магнитных полях имеют одинаковый характер. Экспериментальные результаты для B = 0.025 T представлены на рис. 2.

При начальном смещении происходит линейное возрастание величины силы, что свидетельствует об упругом смещении вихрей (рис. 2, участок АВ). Вычисленные значения модуля упругости вихревой структуры приведены в таблице. При больших смещениях происходит отклонение кривой F(z) от линейности (участок BC) и наблюдается гистерезис, что говорит о срыве вихрей с центров пиннинга. В дальнейшем кривые выходят на насыщение (участок CD), т.е. все вихри практически сорваны. Наклон этого участка определяется вязким трением движущихся вихрей, а измеренная величина F и есть характеристика силы пиннинга. Вычисленные нами значения силы пиннинга и коэффициента вязкого трения представлены в таблице. При уменьшении величины смещения z кривые F(z), естественно, не повторяют прямой ход. Площадь такой петли гистерезиса характеризует величину диссипации энергии W в этой четверти периода за счет вязкого движения вихрей. Рассчитанные значения W при смещении z(0-2-0) mm приведены в таблице.

Сила пиннинга в сверхпроводниках зависит от энергии закрепления вихрей на центрах пиннинга U_0 , которую можно оценить из измерений величины релаксации. Для этого образец под действием силы F смещался на некоторое расстояние z в постоянном магнитном поле, и после прекращения роста этой силы мы продолжали регистрировать смещение (Δz) его во времени, обусловленное термоактивационным крипом части вихрей. Энергия закрепления вихрей рассчитывалась по формуле

$$U_0^* = -\left[\ln\left(1 - \exp\left(-\frac{\Delta z}{k_1}\right)\right)kT\right],\tag{8}$$

где $U_0^* = U_0 - f_i b$, b — смещение вихря под действием приложенной к нему силы $f_i = F/N$; k — постоянная Больцмана.

Рис. 2. Зависимость приложенной силы *F* от смещения сверхпроводника *z* (*1*–*3* — номера образцов).

Рис. 3. Зависимость U_0^* от приложенной силы F (1–3 — номера образцов).

На рис. 3 представлены зависимости $U_0^*(F)$ для $B_0 = 0.025$ Т. Видно, что значение энергии активации U_0^* уменьшается за счет увеличения приложенной в начальный момент силы F. Экстраполируя зависимость $U_0^*(F)$ к F = 0, можно определить значения U_0 для сверхпроводников (см. таблицу). Зная U0, определяем величину смещения вихря b под действием приложенной в начальный момент силы F. Оказалось, что значение b не зависит от F, у образцов 1-3 оно соответственно равно: 86 · 10⁻¹⁰, 42 · 10⁻¹⁰, 36 · 10⁻¹⁰ m. С ростом плотности керамики Y-Ba-Cu-O значения модуля упругости вихрей, сила и энергия пиннинга, величина диссипации энергии возрастают, величина же вязкого трения обратно пропорциональна удельному сопротивлению сверхпроводника в нормальном состоянии. Полученные результаты качественно согласуются с известными данными о поведении вихрей в однородном магнитном поле [8].

В подобной экспериментальной ситуации, в том числе и при той же скорости движения вихрей, были измерены значения критического тока резистивным методом. Сила пиннинга, рассчитанная в этом случае $F_{p \text{ cur}}$, оказалась меньше, чем $F_{p \text{ mech}}$ (см. таблицу). Это связано с тем, что при резистивных измерениях расчет $F_{p \text{ cur}}$ проводится по критическому току, который определяется в момент движения слабо запиннингованных вихрей. В нашем же случае измеряются предельные значения силы пиннинга сверхпроводника.

В заключение можно отметить, что изучение динамики локализованного магнитного потока в сверхпроводниках предложенным механическим методом позволяет не только количественно оценить предельные значения силы и энергии пиннинга, модуля упругости вихрей и коэффициент их вязкого трения, но и исследовать распределение эффективных центров пиннинга.

Список литературы

- Милошенко В.Е., Шушлебин И.М. // СФХТ. 1992. Т. 5. № 2. С. 229–304.
- 2] Brant E.H. // Progr. Phys. 1995. T. 58. N 11. P. 1465–1476.
- [3] Vijayraghavan R., Gupta L.C. // Int. I. Mod. Phys. B. 1995.
 T. 9. N 6. P. 663–668.
- [4] Милошенко В.Е., Кармазин В.М. // Техн. электродинамика. 1982. № 6. С. 10–14.
- [5] Антонов Ю.Ф., Козовский Е.Я. // Электротехника. 1982. № 11. С. 29–34.
- [6] Бауров Ю.А., Меркурова С.П., Антонов Ю.Ф. // СФХТ. 1994. № 8–9. С. 1453–1458.
- [7] Голев И.М., Андреева Н.А., Милошенко В.Е. // ПТЭ. 1998. № 5. С. 161–164.
- [8] Пан В.М. // Журн. всесоюзн. химического общества. 1989.
 Т. 34. № 4. С. 509–519.