Реверсивные характеристики поляризации сегнетокерамики в быстронарастающем электрическом поле

© С.А. Садыков,¹ В.З. Бородин,² А.Ш. Агаларов

05:12

¹ Дагестанский государственный университет, 367025 Махачкала, Россия ² Ростовский государственный университет, Научно-исследовательский институт физики, 344090 Ростов-на Дону, Россия

(Поступило в Редакцию 1 декабря 1998 г. В окончательной редакции 19 октября 1999 г.)

Представлены результаты измерений комплексной диэлектрической проницаемости сегнетоэлектрической керамики системы ЦТС двух составов в процессе импульсной поляризации в быстронарастающем электрическом поле. Обнаружено, что зависимость действительной составляющей от времени имеет три максимума, разделенных минимумами, соответствующими максимумам мнимой составляющей. Анализированы возможные механизмы доменного вклада в диэлектрическую поляризацию сегнетоэлектрика, определяющие найденные временные зависимости.

В процессе переключения поляризации в сегнетоэлектриках под действием электрического поля наблюдается значительное возрастание комплексной диэлектрической проницаемости ε^* , обусловленное перемещением доменных стенок. Особенности нелинейного поведения ε^* исследованы преимущественно на кристаллических сегнетоэлектриках при возбуждении переполяризации прямоугольными биполярными импульсами напряжения. В частности, в [1,2] показано, что диэлектрическая проницаемость неодназначно связана с током переключения и имеет сильную частотную зависимость. Обнаружено отставание во времени максимального значения действительной составляющей ε' диэлектрической проницаемости от максимального значения тока переключения i_p , тогда как мнимая составляющая ε'' и ток переключения *i_p* изменяются синхронно. Подобные результаты получены и на поликристаллических образцах системы цирконат-титан-свинец (ЦТС) при поляризации импульсным электрическим полем с регулируемой скоростью нарастания [3]. Однако при таком способе переключения на зависимостях $\varepsilon^*(t)$ появляются три явно выраженных максимума ε' и два размытых максимума ε'' . Данные [1–3] указывают на то, что компоненты ε^* пропорциональны не только полной площади доменных стенок, иначе зависимости $\varepsilon'(t)$ и $\varepsilon''(t)$ имели бы одинаковый вид. Они также свидетельствуют, что различные релаксационные процессы, сопровождающие движение доменных стенок, вносят вклад в изменение диэлектрической проницаемости ε^* сегнетоэлектрика.

Поляризация керамики внешним полем связана со значительно более сложными микроскопическими процессами, чем для монокристаллов. В большей степени это относится к поляризации в сильном быстронарастающем электрическом поле, когда в микросекундном временном диапазоне при обычных температурах в образце сегнетокерамики формируется макроскопическая поляризованность такой же величины, что и при поляризации обычными методами [4]. Несмотря на практическую важность, природа возрастания ε^* в случае керамических

сегнетоэлектриков детально не исследована. Мало также сведений о динамических свойствах доменной структуры и практически не исследованы их релаксационные свойства в импульсных полях.

Нами продолжены исследования реверсивных характеристик $\varepsilon'(t)$ и $\varepsilon''(t)$ керамических сегнетоэлектриков на основе ЦТС, начатые в [3]. Реверсивные характеристики сегнетоэлектрика позволяют выявить подвижность тех или иных элементов доменной структуры и получить информацию о динамике ее изменения во внешних электрических полях. Таким образом, открывается возможность исследовать особенности динамики доменов на различных этапах быстрого переключения поляризации, когда процесс протекает в микросекундном временном диапазоне.

Методика эксперимента

Исследования проводились на широко используемых в практике сегнетокерамических материалах ПКР-1 и ЦТС-19 [5] с относительно низкими значениями коэрцитивного поля E_c (0.6–1.0 и 1.2 kV/mm, соответственно). Состав ПКР-1 принадлежит к твердым трехкомпонентным растворам сложных окислов типа PbTiO₃ – PbZrO₃ – PbB'_{1/2}B'_{1/2}O₃, расположенным в ромбоэдрической фазе вблизи морфотропной области. Керамика ЦТС-19 также относится к морфотропной области и отличается повышенным значением диэлектрической проницаемости ($\varepsilon_{33}^T = 1600$) по сравнению с керамикой ПКР-1 ($\varepsilon_{33}^T = 700$). Образцы в виде дисков диаметром 10 nm и толщиной 1 mm изготавливались методом горячего прессования. На торцевые поверхности дисков были нанесены серебряные электроды без закраин.

Испытания проводились на предварительно отожженных образцах в импульсных полях с регулируемой скоростью нарастания на установке, электрическая схема которой приведена на рис. 1. При помощи сменных катушек индуктивности, включаемых в измерительную I_{P}, A

цепь, скорость нарастания поля в образце подбиралась такой, чтобы продолжительность процесса полной поляризации t_p составила примерно (50–100) μ s. Указанный временной диапазон являлся оптимальным для проведения измерений диэлектрических характеристик осциллографическим методом на частотах (0.3-1.5) MHz. По измерениям мгновенных значений амплитуд низковольтного входного сигнала U0 и сигнала на образце в момент переключения U, а также разности фаз между ними φ , соответствующей диэлектрическим потерям, были рассчитаны эффективные кинетические параметры поляризационного процесса — действительная ε' и мнимая ε'' части реверсивной диэлектрической проницаемости. С этой целью сегнетокерамический образец был представлен как емкость C и сопротивление R в параллельной схеме замещения. Анализ измерительной цепи методом проводимостей дал следующие расчетные формулы:

$$C = \left(\frac{R}{A} - 1\right)^{1/2} (\omega R)^{-1},$$
 (1)

$$R = \left(A \operatorname{tg} \varphi - \frac{1}{\omega C_0}\right)^2 A^{-1} + A, \qquad (2)$$

где $A = (U_0 R_0 U^{-1})(1 + \mathrm{tg}^2 \varphi)^{-1/2}$; C_0 — разделительная емкость (1 nF); R₀ — нагрузочное сопротивление $(6.3 \Omega); \omega$ — круговая частота измерительного напряжения. ε' вычислялась из выражения (1), а ε'' — из (2) $(\sigma = \varepsilon_0 \varepsilon'' \omega$, где σ — эквивалентная параллельная проводимость).

Точность расчетов С и R контролировалась путем замены образца сегнетокерамики доскретными емкостью и сопротивлением с известными параметрами.

На рис. 2 представлены типичные осциллограммы напряжения и тока переключения, соответствующие трем временным режимам поляризации. Здесь же приведена осциллограмма выходного измерительного напряжения для одного времени переключения. Амплитуда входного

Рис. 1. Схема экспериментальной установки. *G*₁ — генератор высоковольтного импульсного напряжения, G2 — генератор синусоидального измерительного напряжения, HPF 1 — высокочастотный разделительный фильтр, НРГ 2 — высокочастотный проходной фильтр, О1 и О2 — осциллографы.

напряжения (1'-3') и токи переключения (1-3) для образца ПКР-1. t_p , μ s: 1 - 40, 2 - 60, 3 - 100, 4 - осциллограмма выходного измерительного напряжения частотой 1 MHz, $t_p = 40 \,\mu s.$

сигнала составила 5 V. Видно, что основная часть поляризации протекает в постоянном поле, равном динамическому коэрцитивному полю $E'_{c} > E_{c}$. Процесс завершается на участке монотонного повторного роста поля, где достигает величины 2-3Ес. Токи переключения имеют характерный асимметричный вид с плавным "горбом" и резким спадом на "хвосте". Отмеченная закономерность изменения поля обусловлена характером изменения поляризационного тока, который в свою очередь зависит как от исходной скорости нарастания поля, так и от свойств сегнетоэлектрика. Таким образом, напряжение на образце в процессе поляризации регулируется поляризационным током, а процессы переключения при этом протекают в самосогласованном электрическом поле.

Изменение амплитуды высокочастотного выходного сигнала является прямым следствием изменения импеданса образца в процессе поляризации. В момент завершения переключений доменных стенок и установления нового полярного состояния прекращается рост выходного сигнала, несмотря на то что поле в образце продолжает непрерывно расти. По этому признаку время полной поляризации t_p образца определялось как интервал времени с начала подачи высоковольтного импульса до момента прекращения изменения выходного низковольтного сигнала.

Обсуждение

На рис. 3 представлены временные зависимости реальной части ε' диэлектрической проницаемости керамики ПКР-1 в процессе поляризации. За время переключения ε' имеет три максимума различной амплитуды, причем с уменьшением t_p от 100 до 40 μ s характер зависимости $\varepsilon'(t)$ не изменяется.

U, kV

Рис. 3. Зависимость $\varepsilon'(t)$ для керамики ПКР-1. t_p , μ s: I - 40, 2 - 60, 3 - 100.

Первый, самый значительный по величине, максимум ε' приходится на передний фронт импульса напряжения и соответствует малым значениям диэлектрических потерь. В [3] этот максимум ε' связывается с упругими колебаниями доменных стенок около их положений равновесия. При этом доменные стенки, закрепленные на дефектах, рассматриваются как демпфированные осцилляторы.

На начальном этапе переключения имеет место дестабилизация 180°-ных доменных стенок и рост их подвижности без изменения исходной структуры. Затем со временем происходят возникновение и прямое прорастание 180°-ных клиновидных доменов, ориентированных по полю. Увеличение числа доменов, участвующих в поляризации, и подвижности доменных границ приводит к росту ε' . Одновременно появляются условия взаимного пьезоэлектрического зажатия доменов, приводящие к снижению ε' . Существование отрицательного $\Delta \varepsilon'$ объясняется эффектом доменного зажатия, являющегося следствием пьезоэлектрических деформаций отдельных доменов под влиянием высокочастотного измерительного поля. При компенсации указанных процессов ε' достигает максимума, что наблюдается в полях $E \approx E'_c$. С увеличением скорости нарастания поля в образце, т.е. с усилением интенсивности процесса переключения, наблюдается рост как абсолютной величины ε' , так и скорости ее изменения.

Появление второго максимума ε' разумно связвать со вкладом бокового движения распиряющихся 180°ных доменов. Последующее монотонное убывание ε' может быть результатом одновременного проявления нескольких факторов. К числу наиболее вероятных причин снижения ε' следует отнести частичное уменьшение доли 180°-ных переключений и усиление эффекта доменного зажатия. Немаловажным является и влияние полей объемных и поверхностных зарядов экранирования на динамику доменной структуры. Известно [6], что различные подвижные точечные дефекты пиннингируют доменные границы и оказывают существенное влияние на их подвижность. Скорость экранирования доменных границ определяется как подвижностью точечных дефектов, так и величиной силы взаимодействия между ними, приводящей к дрейфу последних. При сверхбыстром переключении объемные заряды не успевают следовать за доменной границей. Освобождаясь от влияния поля объемных зарядов, доменная граница увеличивает свою подвижность в поле высокой частоты, и ее вклад в ε' возрастает. Между тем экспериментальные данные [4] свидетельствуют о полном экранировании поляризационного заряда в процессе переключения в микросекундном диапазоне, т.е. когда времена, характеризующие развитие процессов изменения поляризации, намного меньше времени максвеллловской релаксации объемных зарядов. Приведем некоторые соображения по этому поводу.

В [7] показано, что в результате взаимодействия доменных границ с точечными или линейными дефектами в ходе переполяризации в окрестности точек закрепления границ возникают концентраторы поля области с аномально высокими значениями внутреннего поля. Для линейных дефектов фактор усиления поля может достигать $\sim 10^3$. В сильном локальном поле $E \approx 10^5 - 10^6 \,\mathrm{V/cm}$ в результате ударной ионизации примесных центров в образце генерируются свободные носители заряда, ответственные за экранирование связанного заряда и рекомбинационное излучение, поскольку этот процесс сопровождается излучением [8]. Так как время релаксации процесса τ < 10^{-6} s, то деполяризующие поля быстро нейтрализуются избыточными зарядами уже на стадии роста зародышей. В результате компенсации скорость движения стенки замедляется, приводя к уменьшению величины ε' . Влияние электронной подсистемы на эволюцию доменной структуры существенно в течение всего времени переключения. Подтверждением сказанного может служить тот факт, что электролюминесценция сегнетоэлектрической керамики в самосогласованном поле возникает синхронно с началом переполяризации в виде нескольких пиков, по форме напоминающих максимумы ε' [8].

Участие 90°-ной доменной структуры на завершающей стадии переключения приводит к появлению третьего максимума є'. Электронно-микроскопические исследования доменной структуры поляризованных в самосогласованном поле образцов керамики показывают, что она представляет собой систему пластинчатых 90°-ных доменов с доменными стенками, ориентированными преимущественно перпендикулярно направлению приложенного поля с переходом через границы зерен (рис. 4). Исследования доменной структуры частично поляризованных образцов керамики подтверждают, что процессы перестройки подвижных 90°-ных доменных стенок начинаются практически одновременно с появлением второго максимума ε' , но их преобладающее влияние сказывается в области третьего пика ε' . С уменьшением времени переключения t_p этот максимум ε' возрастает и имеет тенденцию к насыщению. Таким образом, каждый максимум ε' ведет себя индивидуально.

Рис. 4. Доменная структура керамики ПКР-1 после импульсной поляризации. Стрелками указано направление приложения поля. a — ориентационная текстура слоистых серий 90°-ных доменов на боковых гранях зерен, $t_p = 40 \ \mu s. \times 11800$; b — ориентационный эффект в расположении слоистых серий 90°-ных доменов, $t = 20 \ \mu s$ при $t_p = 40 \ \mu s. \times 7250$.

Увеличение частоты f измерительного напряжения от 0.3 до 1.5 MHz сопровождается уменьшением ε' и ε'' (рис. 5). Особенно заметно уменьшение второго и третьего максимумов ε' . Значение ε' в первом минимуме практически не зависит от частоты и близко

Рис. 5. Зависимости $\varepsilon'(t)$ и $\varepsilon''(t)$ для керамики ЦТС-19. $t_p = 60 \,\mu s; f, MHz: 1 - 0.3, 2 - 0.5, 3 - 1.0, 4 - 1.5.$

к начальной величине ε' (при t = 0), поскольку изза эффекта доменного зажатия подавляются колебательные движения доменных стенок. Процессы, связанные с увеличением ε' при уменьшении частоты, носят релаксационный характер, причем наиболее инерционными оказываются 90°-ные доменные стенки. Различный характер частотной зависимости ε^* в разные фазы поляризации означает, что при интерпретации полученных результатов мы должны исходить из возможности существования набора релаксаторов с различными временами релаксации.

Так как диэлектрические потери определяются главным образом движением доменных стенок, то изменение их подвижности в процессе поляризации существенно сказывается на зависимости $\varepsilon''(t)$. Диэлектрическая вязкость возрастает при переходе от прямого прорастания к боковому движению 180° - и 90° -ных доменных стенок. Увеличение подвижности доменных стенок при освобождении от стопоров, обусловленных дефектностью структуры, сопровождается уменьшением потерь.

Заключение

Обнаруженные зависимости реверсивных характеристик $\varepsilon'(t)$ и $\varepsilon''(t)$ свидетельствуют в пользу вклада 180°-ных и 90°-ных доменных стенок в диэлектрическую проницаемость сегнетоэлектрической керамики, роль которых различна в различных фазах процесса переключения. Частотная зависимость ε^* указывает на релаксационный характер переключений доменных стенок с широким спектром времени релаксации. Оценка времени релаксации доменных стенок

$$au = rac{\sigma}{arepsilon_o \omega^2 arepsilon'}$$

для керамики ЦТС-19 дает значение $\approx 0.2 \,\mu$ s, для керамики ПКР-1 — 0.3–0.45 μ s. Эти значения τ приблизительно в десять раз меньше, чем для кристалллов [1]. Предполагается, что в самосогласованном электрическом поле на подвижность доменных стенок влияет не только взаимодействие с дефектами структуры и эффекты доменного зажатия, но и экранирование доменных границ в процессе переключения вследствие ударной ионизации примесных центров.

Список литературы

- [1] Fatuzzo E. // J. Appl. Phys. 1962. Vol. 33. N 8. P. 2588-2596.
- Fouscova A., Janousek V. // J. Phys. Soc. Japan. 1965. Vol. 20. N 9. P. 1619–1624.
- [3] Sadicov S.A., Agalarov A.Sh., Borodin V.Z. // Ferroelectrics. 1996. Vol. 86. P. 127–131.
- [4] Садыков С.А., Бондаренко Е.И., Агаларов А.Ш. // ЖТФ. 1993. Т. 63. Вып. 11. С. 60–65.
- [5] Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985. 256 с.
- [6] Донцова Л.И., Тихомирова Н.А., Шувалов Л.А. // Кристаллография. 1994. Т. 39. № 1. С. 158–175.
- [7] Даринский Б.М., Сидоркин А.С. // ФТТ. 1984. Т. 26. Вып. 6. С. 1634–1639.
- [8] Садыков С.А., Агаларов А.Ш. // Письма в ЖТФ. 1990. Т. 16. Вып. 17. С. 32–35.

112