01;03;05 Синергетическая теория стеклования жидкости

© А.И. Олемской, А.В. Хоменко

Сумский государственный университет, 244007 Сумы, Украина

(Поступило в Редакцию 28 января 1999 г.)

Процесс стеклования представлен как спонтанное появление сдвиговых компонент упругих полей деформации и напряжений в результате охлаждения жидкости со скоростью, превышающей критическое значение. В рамках адиабатического приближения найдены стационарные значения упругой деформации и напряжений и эффективное время релаксации. Показано, что учет деформационного дефекта модуля приводит к тому, что процесс стеклования реализуется по механизму кинетического перехода первого рода. Критическая скорость охлаждения оказывается пропорциональной температуропроводимости и нерелаксированному значению модуля сдвига и обратно пропорциональной температурному дефекту его релаксированного значения и квадрату длины теплопроводности образца.

В предыдущей работе [1] на основе реологических представлений об упруговязкой среде, обладающей теплопроводностью, получена система кинетических уравнений (7), (9), (18), которые определяют взаимно согласованное изменение скалывающих компонент деформации и напряжений, и температуры среды. Предлагаемая работа посвящена анализу этих уравнений в рамках синергетического подхода. Он основывается на использовании адиабатического приближения для характерных времен изменения деформации ε , напряжений σ и температуры T

$$\tau_{\sigma} \ll \tau, \qquad \tau_T \ll \tau.$$
 (1)

Согласно (1), в процессе эволюции среды упругие напряжения $\sigma(t)$ и температура T(t) следуют за изменением деформации $\varepsilon(t)$. Первое из условий (1) сопоставляет микроскопическое время $\tau_{\sigma} \sim 10^{-12}$ s и макроскопическое τ и всегда выполняется. Используя определения температуропроводности $\chi = \kappa/c_p$, кинематической вязкости $\nu = \eta/\rho$, время релаксации $\tau = \eta/G$ и скорости звука $c = (G/\rho)^{1/2}$, где κ — коэффициент теплопроводности, c_p — теплоемкость, η — сдвиговая вязкость, ρ — плотность среды, G — модуль сдвига, второму условию (1) удобно придать вид

$$l^2 \ll L^2, \tag{2}$$

согласно которому характерный размер теплопроводности $l = (\chi \tau_T)^{1/2}$ не должен превышать значение

$$L = \frac{(\chi \nu)^{1/2}}{c}.$$
 (3)

Физический смысл этого условия выражается гидродинамическим неравенством

$$\tau_T \tau_\varepsilon \omega_{\mathbf{k}}^2 \ll 1,\tag{4}$$

означающим, что среднегеометрическое значение времен теплопроводности τ_T и конвекции τ_{ε} намного меньше обратной частоты звука $\omega_{\mathbf{k}}$ (здесь мы учли соотношения $kl \sim 1$, $\tau_{\varepsilon}^{-1} \equiv \nu k^2$, $\omega_{\mathbf{k}} ck$, $\tau \tau_{\varepsilon} \omega_{\mathbf{k}}^2 = 1$, **k** — волновой вектор). В системах, предрасположенных к

стеклованию, это условие выполняется автоматически. Перепишем уравнения (7), (9), (18) работы [1] в виде

$$\tau \dot{\varepsilon} = -\varepsilon + \sigma/G,\tag{5}$$

$$\tau_T \dot{T} = (\tau_T Q - T) - (a_T v) \varepsilon \sigma, \qquad (6)$$

$$\sigma_{\sigma}\dot{\sigma} = -\sigma + (a_{\sigma/\nu})\varepsilon T,$$
(7)

где постоянная величина

1

$$Q = Q_0 + \sigma^2 / \eta c_p \tag{8}$$

определяется внешним отводом тепла Q_0 и вкладом упругих напряжений, который описывает эффект диссипативного разогрева вязкой жидкости. В уравнениях (5)-(7) введены безразмерные константы [1]

$$a_{\sigma} \equiv \tau_{\sigma} g_{\sigma} v = v \left| \frac{dG}{dT} \right|, \qquad a_T \equiv \frac{\tau_T g_T}{v} = \frac{\tau_T \tau_{\varepsilon} \omega_{\mathbf{k}}^2}{c_p v}; \quad (9)$$

согласно (4), выполняется условие $a_T \ll 1$.

Учитывая условия (1), левые части уравнений (6), (7), содержащие малые времена релаксации τ_{σ} , τ_{T} , можно положить равными нулю, в результате чего эти уравнения дают выражения температуры и упругих напряжений через величину деформации¹

$$T = \frac{\tau_T Q}{1 + \varepsilon^2 / \varepsilon_m^2},\tag{10}$$

$$\sigma = \frac{a_{\sigma}}{v} (\tau_T Q) \varepsilon \left(1 + \frac{\varepsilon^2}{\varepsilon_m^2} \right)^{-1}, \qquad (11)$$

где введено обозначение

$$\varepsilon_m^{-2} \equiv a_T a_\sigma = \frac{1}{c_p} \left| \frac{dG}{dT} \right| \tau_T \tau_\varepsilon \omega_{\mathbf{k}}^2 \tag{12}$$

(во втором равенстве учтены соотношения (9)). Согласно (10), температура T монотонно спадает с ростом

¹ Укажем, что при сохранении в (8) квадратичного по σ слагаемого зависимости (10), (11) выражались бы через корни квадратного уравнения, что намного усложняет анализ, но не дает ничего принципиально нового.

деформации ε от значения $T^0 \equiv \tau_T Q$ при $\varepsilon = 0$ до $T^0/2$ при $\varepsilon = \varepsilon_m$. Очевидно, это спадание обусловлено отрицательной обратной связью в уравнении (6), которая является отражением принципа Ле-Шателье для рассматриваемой задачи. Действительно, причиной самоорганизации жидкости, приводящей к стеклованию, является положительная обратная связь между деформацией и температурой в уравнении (7). Следовательно, рост температуры должен усиливать эффект самоорганизации. Однако, согласно (10), система устроена так, что следствие самоорганизации — рост упругой деформации приводит к уменьшению ее причины — температуры. Что касается зависимости (11), выражающей упругие напряжения через деформацию, то она при $\varepsilon \ll \varepsilon_m$ имеет линейный вид закона Гука с эффективным модулем сдвига

$$G_{\rm ef} \equiv (a_{\sigma}/v)\tau_T Q = \left|\frac{dG}{dT}\right|\tau_T Q,$$
 (13)

где второе равенство следует из (9).

При $\varepsilon = \varepsilon_m$ функция $\sigma(\varepsilon)$ выходит на максимум, при $\varepsilon > \varepsilon_m$ проявляет спадающий характер, не имеющий физического смысла. Отсюда можно заключить, что постоянная ε_m , определенная равенством (12), имеет смысл максимально достижимой деформации. Как видно из (12), (13), рост температурного дефекта модуля |dG/dT| приводит к уменьшению максимальной деформации ε_m и увеличению эффективного модуля $G_{\rm ef}$, величина которого пропорциональна характерной температуре $T^0 = \tau_T Q$. С другой стороны, отношение характерных значений тепловой энергии $E_T = c_p \tau_T Q$ и упругой $E_{\varepsilon} = G_{\rm ef} \varepsilon_m^2$

$$\frac{E_T}{E_\varepsilon} = \tau_T \tau_\varepsilon \omega_k^2 \tag{14}$$

имеет, согласно (4), малые значения. Подставляя (11) в (5), находим уравнение эволюции системы в процессе стеклования

$$\eta \dot{\varepsilon} = -\frac{\partial V}{\partial \varepsilon}.$$
 (15)

Его вид задается зависимостью синергетического потенциала $V(\varepsilon)$ от деформации

$$V = \frac{G\varepsilon_m^2}{2} \left[\frac{\varepsilon^2}{\varepsilon_m^2} - \frac{T^0}{T_c} \ln \left(1 + \frac{\varepsilon^2}{\varepsilon_m^2} \right) \right], \qquad (16)$$

где введены характерные температуры

$$T^0 \equiv \tau_T Q, \tag{17}$$

$$T_c \equiv \frac{vG}{a_{\sigma}} = G \left| \frac{dG}{dT} \right|^{-1},\tag{18}$$

а во втором равенстве (18) использовано соотношение (9). Интересно отметить, что отношение этих температур

$$\frac{T^0}{T_c} = \frac{G_{\rm ef}}{G} \tag{19}$$

сводится к отношению эффективного модуля упругости (13) к его характерному значению *G*. При $T^0 \leq T_c$

зависимость (16) имеет монотонно возрастающий характер с минимумом в точке $\varepsilon = 0$. Это означает, что в стационарном состоянии ($\dot{\varepsilon} = 0$) упругая деформация отсутствует, т.е. реализуется жидкое состояние, в котором деформация, обусловленная внешними напряжениями, релаксирует за время

$$au_{\rm ef} = au (1 - T^0 / T_c)^{-1},$$
 (20)

выражение для которого следует из уравнения движения (15), записанного в линейном приближении. С ростом эффективной температуры T^0 до критического значения T_c время релаксации неограниченно нарастает, и при $T^0 > T_c$ система переходит в стеклообразное состояние. Здесь зависимость (20) приобретает множитель 1/2, а минимум синергетического потенциала (16) отвечает упругой деформации

$$\varepsilon_0 = \varepsilon_m \left(T^0 / T_c - 1 \right)^{1/2},$$
 (21)

величина которой корневым образом нарастает с увеличением разности $T^0 - T_c$. Согласно (10), при этом температура системы приобретает критическое значение (18), упругие напряжения принимают стационарное значение

$$\sigma_0 = G\varepsilon_0 = \sigma_m \left(T^0/T_c - 1\right)^{1/2}, \qquad (22)$$

где $\sigma_m \equiv G \varepsilon_m$.

С физической точки зрения процесс стеклования обусловливается тем, что при $T^0 > T_c$ в согласии с (19) эффективный модуль сдвига $G_{\rm ef}$ превосходит характерное значение G. Согласно определениям (17), (18), исходной причиной стеклования является увеличение скорости охлаждения (8) до значений Q, превышающих критическую величину,

$$Q_c \equiv \frac{G}{\tau_T} \left| \frac{dG}{dT} \right|^{-1} = \frac{\kappa}{c_p l^2} G \left| \frac{dG}{dT} \right|^{-1}.$$
 (23)

Из параметров, влияющих на величину Q_c , можно выделить кинетические, определяющие время теплопроводности τ_T , и синергетические, характеризующие процесс самоорганизации упругого и температурного полей. Согласно (23), к первой группе относятся температуропроводность κ/c_p и длина теплопроводности l; рость первой приводит к увеличению Q_c, а увеличение l сказывается противоположным и более сильным (квадратичным) образом. Влияние синергетических факторов определяется отношением модуля сдвига G к его температурному дефекту |dG/dT|: чем меньше это отношение, тем ниже критическое значение скорости закалки. Иными словами, к стеклованию предрасположены системы, обладающие относительно небольшими значениями модуля сдвига, сильно зависящими от температуры. Именно такая ситуация реализуется в полимерах [2], среди металлических стекол этому свойству удовлетворяют эвтектики [3,4].

Везде выше мы принимали, что скорость охлаждения *Q* представляет параметр теории, не зависимый от величин ε , σ , T. Однако из (8) видно, что величина Q складывается из составляющей Q_0 , обусловленной внешним теплоотводом, и диссипативного вклада $\Delta Q = \sigma^2/\eta c_p$, определяющегося величиной упругих напряжений (22). Полагая Q независимым от σ , мы фактически пренебрегли слагаемым ΔQ , так что везде выше под величиной Q следует понимать внешнюю составляющую Q_0 . Скорректируем теперь это приближение, используя стационарное значение диссипативного вклада,

$$\Delta Q_0 \equiv \frac{\sigma_0^2}{\eta c_p} = \frac{G \varepsilon_m^2}{\tau c_p Q_c} (Q_0 - Q_c) = Q_0 - Q_c.$$
(24)

Тогда из (8) следует

$$Q = 2Q_0 - Q_c, \qquad (25)$$

а выражения (20)-(22) принимают вид

$$au_{\rm ef} = (\tau/2)|1 - Q_0/Q_c|^{-1},$$
 (26)

$$\varepsilon_0 = 2^{1/2} \varepsilon_m (Q_0 / Q_c - 1)^{1/2},$$
 (27)

$$\sigma_0 = 2^{1/2} \sigma_m (Q_0/Q_c - 1)^{1/2}.$$
 (28)

Здесь два последних выражения относятся к закритической области $Q_0 > Q_c$, а первое — к докритической (при переходе через Q_c в (26) в соответствии с законом двойки возникает дополнительный множитель 1/2). Сравнение равенств (20)–(22) с (26)–(28) показывает, что учет диссипативного разогрева среды со скоростью (24) приводит к тривиальному уменьшению времени релаксации $\tau_{\rm ef}$ в 2 раза, а стационарные значения ε_0 , σ_0 упругих полей деформации и напряжений увеличиваются в $\sqrt{2}$ раз.

Используем в системе уравнений Лоренца (5)–(7) вместо τ зависимость $\tau(\varepsilon)$ [1]

$$\frac{1}{\tau(\varepsilon)} = \frac{1}{\tau_p} \left(1 + \frac{\Theta^{-1} - 1}{1 + \varepsilon/\varepsilon_p} \right), \tag{29}$$

где введены время релаксации на участке пластического течения $\tau_p = \eta/\Theta$ (Θ — коэффициент упрочнения), параметр $\Theta = \Theta/G < 1$ и характерное значение деформации $\varepsilon_p < \varepsilon_m$.

Нетрудно видеть, что тогда в рамках адиабатического приближения (1) она сводится, как и выше, к уравнению Ландау–Халатникова (15). Однако при этом в синергетическом потенциале (16) коэффициент G заменяется на Θ и появляется нечетное слагаемое, пропорциональное G - Q,

$$V = \Theta \frac{\varepsilon_m^2}{2} \left[\frac{\varepsilon^2}{\varepsilon_m^2} - \frac{T^0}{T_{c0}} \ln \left(1 + \frac{\varepsilon^2}{\varepsilon_m^2} \right) \right] + (G - \Theta) \varepsilon_p^2 \left(\frac{\varepsilon}{\varepsilon_p} - \ln \left| 1 + \frac{\varepsilon}{\varepsilon_p} \right| \right).$$
(30)

Здесь введена критическая температура (ср. с (18))

$$T_{c0} \equiv \frac{v\Theta}{a_{\sigma}}.$$
 (31)

При малых значениях эффективной температуры (17) зависимость (30) имеет монотонно возрастающий вид с минимумом в точке $\varepsilon = 0$, отвечающей стационарному состоянию жидкости. Как видно из рис. 1, при значении

$$T_{c}^{0} = T_{c0} \left\{ \left(D^{1/2} - q/2 \right)^{1/3} - \left(D^{1/2} + q/2 \right)^{1/3} - \frac{\alpha^{2}}{12} \left[\left(\Theta^{-1} + 9 \right)^{2} - 2^{2} 3^{3} \right] + 1 \right\};$$

$$\alpha \equiv \varepsilon_{p} / \varepsilon_{m}, \qquad D \equiv (p/3)^{3} + (q/2)^{2},$$

$$p \equiv -\frac{1}{3} \left\{ (\alpha/2)^{2} \left[\left(\Theta^{-1} + 9 \right)^{2} - 2^{2} 3^{3} \right] - 3 \right\}^{2} + (\alpha^{2} / \Theta) \left[(\alpha / \Theta)^{2} - 5 / \Theta + 3^{2} \right] + 3,$$

$$q \equiv \frac{2}{3^{3}} \left\{ (\alpha/2)^{2} \left[\left(\Theta^{-1} + 9 \right)^{2} - 2^{2} 3^{3} \right] - 3 \right\}^{3} - \frac{1}{3} \left\{ (\alpha/2)^{2} \left[\left(\Theta^{-1} + 9 \right)^{2} - 2^{2} 3^{3} \right] - 3 \right\} \times \left\{ (\alpha^{2} / \Theta) \left[(\alpha / \Theta)^{2} - 5 / \Theta + 3^{2} \right] + 3 \right\} - \left[(\alpha / \Theta)^{2} + 1 \right]^{2} \qquad (32)$$

появляется плато, которое при $T^0 > T_c^0$ трансформируется в минимум, отвечающий деформации $\varepsilon_0 \neq 0$, и максимум ε^m , разделяющий минимумы, соответствующие значениям $\varepsilon = 0$ и $\varepsilon = \varepsilon_0$. С дальнейшим ростом эффективной температуры T^0 минимум упорядоченной фазы, соответствующий состоянию стекла $\varepsilon = \varepsilon_0$, углубляется, а высота межфазного барьера убывает, принимая нулевое

Рис. 1. Вид зависимости синергетического потеницала от упругой деформации при различных температурах. $I - T^0 < T_c^0, 2 - T^0 = T_c^0, 3 - T_c^0 < T^0 < T^c, 4 - T^0 \ge T^c$.

Журнал технической физики, 2000, том 70, вып. 6

Рис. 2. Зависимость стационарных значений деформации от температуры термостата при $\varepsilon_m = 1$, $T_{c0} = 1$, $\Theta = 0.25$, $\alpha = 0.5$. Сплошная кривая — устойчивое состояние ε_0 , штриховая — неустойчивое ε^m .

значение при критическом значении

$$T^{c} \equiv T_{c0}/\Theta = (G/\Theta)T_{c0}, \qquad (33)$$

величина которого превышает критическую температуру (31). Указанные стационарные значения деформации в состоянии стекла имеют вид (рис. 1, 2)

$$\begin{aligned} \varepsilon_{0} \\ \varepsilon^{m} \\ \varepsilon^{m} \\ \end{array} &= \varepsilon_{m} \left[2\epsilon \cos \left(\frac{\varphi}{3} \pm \frac{2\pi}{3} \right) - \frac{\alpha}{3\Theta} \right]; \\ \epsilon &\equiv \operatorname{sign} \omega (\psi/3)^{1/2}, \qquad \cos \varphi \equiv \omega/2\epsilon^{3}, \\ \psi &\equiv \left(\frac{T^{0}}{T_{c0}} - 1 \right) + \frac{(\alpha/\Theta)^{2}}{3}, \\ \omega &\equiv \frac{2\alpha}{3\Theta} \left[\left(\frac{\alpha}{3\Theta} \right)^{2} + 1 \right] + \alpha \frac{T^{0}}{T_{c0}} \left(\frac{\Theta^{-1}}{3} - 1 \right). \end{aligned}$$
(34)

Стационарное значение упругих напряжений σ_0 определяется подстановкой значения ε_0 в соотношение (11). При $T^0 \ge T^c$ зависимость $V(\varepsilon)$ имеет тот же характер, что и в отсутствие дефекта модуля (кривая 4 на рис. 1).

Указанные особенности отвечают положительным значениям деформации ε . На отрицательной полуоси с ростом $|\varepsilon|$ наблюдается очень слабый минимум зависимости $V(\varepsilon)$, после которого следует бесконечное нарастание потенциала V при $\varepsilon = -\varepsilon_p$. Таким образом, отрицательные значения упругих полей ε , σ оказываются практически нереализуемыми.

Характерная черта нашей схемы состоит в том, что энергетический барьер, присущий синергетическому переходу первого рода, проявляется только при наличии деформационного дефекта модуля. Поскольку в действительности последний всегда имеет место, то можно заключить, что стеклование жидкости представляет синергетический переход первого, а не второго рода. При этом рассмотренная ситуация является намного более сложной, чем при обычных фазовых переходах. Действительно, в последнем случае стационарное значение температуры системы T_0 сводится к значению T_{00} , фиксируемому термостатом (выше полагалось $T_{00} = 0$).

В нашем случае для синергетического перехода второго рода, имеющего место в отсутствие дефекта модуля, величина T_0 сводится к критическому значению T_c . При учете дефекта модуля реализуется температура

$$T_0 = \frac{T^0}{1 + (\varepsilon_0/\varepsilon_m)^2},\tag{35}$$

величина которой определяется положением минимума зависимости (30). Согласно равенствам (34), (35), величина T_0 плавно убывает от значения

$$T_{m} = T_{c}^{0} \left\{ 1 + \left[3^{-1/2} \left(\frac{T_{c}^{0}}{T_{c0}} + \frac{(\alpha/\Theta)^{2}}{3} - 1 \right)^{1/2} - \frac{\alpha}{3\Theta} \right]^{2} \right\}^{-1}$$
(36)

при $T^0 = T_c^0$ до T_{c0} при $T^0 \to \infty$. Как показано на рис. 3, при квазистатическом росте параметра T^0 от 0 до T^c стационарное значение температуры системы линейно возрастает в том же интервале. После скачка вниз при $T^0 = T^c$ величина T_0 плавно убывает. При обратном уменьшении T^0 величина T_0 совершает скачок в точке (32) от значения (36) до величины (32). Поскольку в актуальной области параметров α , Θ , ограниченной максимальным значением

$$\Theta^m = (\alpha^2/2) \left(\sqrt{1+\alpha^2} - 1\right)^{-1},$$
(37)

температура среды (36) меньше минимального значения (32) температуры термостата, то, как видно из рис. 3, температура среды T_0 всегда меньше ее значения T^0 , обеспечиваемого охлаждением системы со скоростью $Q = T^0/\tau_T$.

Рис. 3. Зависимость стационарного значения температуры системы T_0 от температуры термостата. $T_{c0} = 1$, $\Theta = 0.25$, $\alpha = 0.5$.

А.И. Олемской, А.В. Хоменко

Представленная картина основана на предположении, что процесс стеклования обусловлен самоорганизацией сдвиговых компонент упругих полей деформации и напряжений, с одной стороны, и температуры образца — с другой. При этом роль параметра порядка играет деформация ε , сопряженное поле сводится к упругим напряжениям σ , а температура T является управляющим параметром. Изначальной причиной самоорганизации является положительная обратная связь между величинами T и ε (см. (7)). Согласно (9), она обусловлена температурной зависимостью характерного значения модуля сдвига. В указанных выражениях мы не учитывали деформационный дефект модуля, в связи с чем там фигурировала величина модуля сдвига G. Однако нетрудно видеть, что в действительности следует брать не затравочное значение G модуля сдвига, который практически не изменяется с температурой, а релаксированное значение Θ , определяющее наклон зависимости $\sigma(\varepsilon)$ на участке пластической деформации. Поэтому в формулах (5), (9), (12), (13), (16), (18), (19), (22)–(24) следует произвести замену G на Θ . Тогда с учетом перенормировки (33) выражение (23) для критической скорости охлаждения Q^c принимает вид

$$Q^{c} = \frac{\kappa}{c_{p}l^{2}} G \left| \frac{d\Theta}{dT} \right|^{-1}.$$
 (38)

Характерно, что оно определяется как величиной G нерелаксированного, так и релаксированным значением Θ модуля сдвига.

Кинетика процесса стеклования задается уравнением Ландау–Халатникова (15), где синергетический потенциал имеет вид (30), присущий переходу первого рода. В переохлажденной жидкости, где $\eta = \infty$, может произойти замораживание системы ($\dot{\varepsilon} \rightarrow 0$) даже в нестационарном состоянии $\partial V / \partial \varepsilon \neq 0$.

Развитая картина имеет феноменологический характер, и уместно сопоставить ее с микроскопической теорией [5,6]. В рамках последней наряду с температурой закалки T_{00} роль параметра состояния играет интенсивность закаленного беспорядка

$$h^{2} \equiv N^{-1} \sum_{i} (\sigma_{i} - \bar{\sigma})^{2} - N^{-1} \sum_{i} (\sigma_{i}(t) - \sigma(t))^{2},$$

$$\bar{\sigma} \equiv N^{-1} \sum_{i} \sigma_{i}, \qquad \sigma(t) \equiv N^{-1} \sum_{i} \sigma_{i}(t), \qquad (39)$$

равная разности дисперсии микронапряжений σ_i , полученных в результате закалки, и дисперсии микроскопических значений $\sigma_i(t)$, которые на временах $\sim \tau_{\sigma}$ флуктуационным образом изменяются вблизи использованного выше² макроскопического значения $\sigma(t)$ (в (39) N означает число атомов, по которым проводится суммирование). Согласно [5,6], включение поля $h \neq 0$ приводит к появлению слагаемого $-(h^2/2)\varepsilon^2$ в эффективном гамильтониане, роль которого играет в нашем случае синергетический потенциал (30). Проводя в нем разложение логарифмов, получаем слагаемое

$$-\left(\Theta\frac{T^0}{T_{c0}}-(G-\Theta)\right)\frac{\varepsilon^2}{2},$$

отвечающее указанному вкладу закаленного беспорядка. В результате его интенсивность выражается следующим образом:

$$h^{2} \equiv \Theta(T^{0}/T_{c0}) - (G - \Theta)$$

= $\tau_{T} |d\Theta/dT|Q - (G - \Theta),$ (40)

где использованы зависимости (17), (31).

Учитывая перенормировку (25) и зависимость (38), получаем выражение через затравочную скорость охлаждения Q_0

$$h^2 = \Theta + 2G(Q_0/Q^c - 1).$$
 (41)

Отсюда следует, что закаленный беспорядок

$$h^2 = 2G(Q_0 - Q_{c0})/Q^c \tag{42}$$

появляется только при скоростях закалки, превышающих значение

$$Q_{c0} = Q^c (1 - Q/2G).$$
(43)

Полученные зависимости позволяют выразить результаты микроскопической теории через экспериментально наблюдаемую величину — скорость закалки Q_0 . Действительно, для параметра Эдвардса–Андерсона q и параметра неэргодичности Δ имеем $q \propto h^{2/3}$, $\Delta \propto h^{2/3} - h_c^{2/3}$, где критическое поле h_c отвечает скорости закалки (38), при которой стеклование приводит к потере эргодичности. Согласно [7,8], для вязкоупругой среды параметр неэргодичности $\Delta \propto \eta_g - \eta$ определяется разностью вязкостей в стеклообразном (неэргодическом) и жидком (эргодическом) состояниях. Тогда с учетом связи (42) получаем соотношения

$$q \propto \left[(Q_0 - Q_{c0}) / Q^c \right]^{1/3},$$
 (44)

$$\Delta \propto \left[(Q_0 - Q_{c0}) / Q^c \right]^{1/3} - h_c^{2/3}, \tag{45}$$

в которых полагается $Q_0 > Q_{c0}$. Таким образом, с повышением скорости закалки в окрестности точки стеклования Q^c (при значении $Q_{c0} \leq Q^c$) жидкость приобретает память, параметр которой начинает очень быстро нарастать в точке $Q_0 = Q_{c0}$. Согласно (45), в точке стеклования столь же резко возрастает дефект сдвиговой вязкости $\eta_g - \eta \propto \Delta$.

Очевидно, указанные особенности должны наблюдаться в эксперименте, в частности следует ожидать сингулярного нарастания времени релаксации $\tau_g \propto \eta_g$ при переходе в состояние стекла. При этом нетривиальным образом проявляются эффекты памяти [5,6]. Так, при низкочастотных измерениях времени релаксации упругих напряжений (например, с помощью метода внутреннего трения [9]) значение τ_g , полученное в результате

² Благодаря адиабатическому приближению выше мы перешли от микронапряжений $\sigma_i(t)$ к макроскопическим значениям $\sigma(t)$.

закалки образца, изначально подверженного действию постоянных сдвиговых напряжений, должно превосходить значение τ , полученное при закалке, проводимой в отсутствие напряжений. Такая разница, пропорциональная необратимому отклику (45), должна проявляться и для материальной составляющей деформации $\varepsilon^0 = G^{-1} |dG(T)/dT|_{T=0}T$ [1]. Как и в спиновых стеклах [6], следует ожидать, что в ходе структурной релаксации указанная разница будет очень медленно спадать со временем. Однако при этом могут наблюдаться не только логарифмическая зависимость от времени, но и степенная, закон Колерауша (растянутая экспонента) и даже двойное логарифмическое замедление (практически остановка процесса структурной релаксации) [10].

В заключение выражаем благодарность В.Г. Барьяхтару и участникам руководимого им семинара за обсуждение работы, а также признательность М. Марвану за плодотворные дискуссии и гостеприимство, оказанное в период пребывания в Карловом университете (Прага).

Работа выполнена при частичной поддержке ГКНТ Украины, грант № 2.4/4.

Список литературы

- [1] Олемской А.И., Хоменко А.В. // ЖТФ. 2000. Т. 70. Вып. 6. С. 6–9.
- [2] Doi M., Edwards S.F. The theory of polymer dynamics. Oxford: Clarendon Press, 1986. 391 p.
- [3] Металлические стекла / Под ред. Дж. Дж. Гилмана, Х. Дж. Лими. М.: Металлургия, 1984. 264 с.
- [4] Аморфные металлические сплавы / Под ред. Ф.Е. Люборского. М.: Металлургия, 1987. 584 с.
- [5] Binder K., Young A.P. // Rev. Mod. Phys. 1986. Vol. 58. N 4. P. 801–976.
- [6] Гинзбург С.Л. Необратимые явления в спиновых стеклах.
 М.: Наука, 1989. 152 с.
- [7] Олемской А.И., Скляр И.А. // УФН. 1992. Т. 162. № 6. С. 29–79.
- [8] Олемской А.И., Коплык И.В. // УФН. 1995. Т. 165. № 10. С. 1105–1144.
- [9] Постников В.С. Внутреннее трение в металлах. М.: Металлургия, 1974. 352 с.
- [10] Olemskoi A.I., in Physics Reviews / Ed. I.M. Khalatnikov. London: Gordon and Breach, 1996. Vol. 18. Pt. 1. P. 1–173.