Новые принципы, техника и результаты исследования динамических характеристик твердых тел в микрообъемах

© Ю.И. Головин, А.И. Тюрин, В.И. Иволгин, В.В. Коренков

Тамбовский государственный университет им. Г.Р. Державина, 392000 Тамбов, Россия

(Поступило в Редакцию 9 июня 1997 г. В окончательной редакции 9 марта 1999 г.)

Предложено несколько принципиально новых независимых in situ методик для определения динамических физико-механических свойств материалов в микрообъемах и выявления микромеханизмов формирования отпечатка и зоны деформирования вокруг него. Обнаружена многостадийность процесса внедрения твердого индентора и формирования зоны деформирования. На примере ионных кристаллов показано, что отпечаток проходит следующие основные стадии своего формирования: стадию чисто упругой деформации материала, стадию моноатомного вытеснения материала из-под индентора и, наконец, заключительные стадии, в которых определяющую роль играет дислокационная пластичность. Определены кинетические, диссипативные и активационные параметры процесса внедрения и выявлены доминирующие микромеханизмы массопереноса на каждой стадии.

Введение

05:12

Несмотря на большое число современных методов исследования поверхности и тонких приповерхностных слоев твердых тел, предложенных и развитых в течение последних двух-трех десятилетий, определение микротвердости продолжает оставаться наиболее употребимым, легким и быстрым способом тестирования [1-8]. Однако истинный физический смысл понятия "микротвердость" остается недостаточно ясным, так как отношение приложенной нагрузки к площади поверхности отпечатка, которым обычно характеризуют величину микротвердости Н, есть величина эффективная. Ее невозможно однозначно связать с каким-либо одним физическим процессом с участием надежно установленных элементарных физических объектов (точечные дефекты, дислокации и др.) и микромеханизмов или соотнести с определенными фундаментальными свойствами твердого тела, так как она зависит от очень многих обстоятельств.

В первую очередь это обусловлено спецификой напряженного состояния под индентором: деформация очень локализована (в области порядка размера отпечатка), напряжения в максимуме превышают предел текучести в сотни раз даже при квазистатическом индентировании, структура и межатомные расстояния сильно искажены. В этих условиях нельзя ожидать поведения материала, похожего на то, которое он демонстрирует при одноосном сжатии или растяжении до невысоких степеней деформации. Так, в [8-11] обнаружены признаки аморфизации исходной кристаллической структуры в приповерхностных слоях отпечатка. Различными независимыми методами в [10-12] получены прямые указания на индуцирование в этих случаях нетрадиционных элементарных механизмов массопереноса и пластичности (в частности, межузельных, краудионных), а в [13] дано теоретическое обоснование их возможности и действенности.

Трудности исследования динамических характеристик материалов и структуры тонких приповерхностных слоев и малых объемов (~ $1 \,\mu m^3$) усугубляется еще и тем, что обычно скорости относительной пластической деформации при микроиндентировании $d\varepsilon/dt$ чрезвычайно велики, а протекающие при этом процессы весьма быстротечны и, по-видимому, очень многообразны. Так, при размере отпечатка, контактного пятна или выступов на поверхности тела $R \sim 1 \,\mu m$ и скорости внедрения или перемещения вдоль поверхности $v \sim 1 \, \text{mm/s}$ (что очень далеко от экстремальных значений) локальное значение ($d\varepsilon/dt$) ~ vR может достигать величины порядка $10^3 \, \text{s}^{-1}$.

Таким образом, ни при измерении микротвердости, ни в случае кратковременного контактного взаимодействия тел, например при соударении мелких частиц между собой или с поверхностью транспортных средств (включая космические), микроабразивном износе при сухом трении одного шероховатого тела по другому (например, при движении магнитного носителя мимо записывающих или воспроизводящих головок), шлифовке с использованием абразивов и т.п., нет причин ожидать, что отклик и поведение материала в столь экстремальных условиях (одновременно очень высокие напряжения, деформации и скорости деформирования) будут хоть сколько-нибудь похожи на поведение при обычных испытаниях квазистатическим одноосным сжатием или растяжением. Следовательно, создание экспериментальных ситуаций, в которых бы, с одной стороны, материал ставился в подобные условия, а с другой — имелась бы возможность изучать его времязависимую реакцию (спектр дефектов структуры, их подвижность, характер взаимодействия, степень влияния на макросвойства и т.д.), — весьма актуальная задача.

В работе описано несколько подходов и методик для исследования динамических свойств материала в микрообъемах в условиях контролируемого импульсного индентирования и предварительные результаты, полученные с их помощью.

1. Методика исследования

В работе было использовано несколько различных подходов и методик, позволяющих исследовать комплекс физико-механических свойств и времязависимых параметров материалов.

1) Стандартное индентирование. Оно основано на внедрении в материал жесткого индентора и измерении установившегося размера отпечатка и сдеформированной зоны около него после поднятия индентора (рис. 1, *a*). Зону деформации материала около отпечатка выявляли методом избирательного химического травления. Для измерения размеров отпечатка, величины и характера зоны деформирования материала использовали оптическую часть твердомера ПМТ-3 или оптический микроскоп. В настоящей работе данную методику применяли для проведения тарировочных экспериментов.

2) Индентирование кратковременно приложенной силой (рис. 1, b). Продолжительность приложения усилия к индентору могла варьироваться в пределах шести порядков величины (от 1 ms до 10³ s). Измерение размеров отпечатка и сдеформированной зоны осуществляли после разгрузки. Нагружение короткими импульсами позволяет поэтапно исследовать про-

Рис. 1. Схема процедуры и определяемых параметров для известных и предлагаемых методов: a — традиционное микроиндентирование дискретно варьируемой нагрузкой, b — динамическое микроиндентирование с непрерывной регистрацией глубины и скорости погружения при скачкообразном приложении нагрузки; c — наноиндентирование импульсной нагрузкой регулируемой продолжительности τ (W_2 — энергия отскока индентора после нагрузки). F — усиление внедрения; h — глубина отпечатка; t — время; H — твердость, индекс e соответствует равновесному значению величины, d — динамическому.

цессы, происходящие в материале на различных стадиях внедрения индентора, и таким образом реконструировать динамику формирования отпечатка и сдеформированной зоны.

3) Динамическое индентирование. Как известно, наиболее полно и просто динамические свойства системы могут быть исследованы путем анализа ее отклика на скачкообразное возмущение. В настоящей работе этот подход применительно к индентированию реализован посредством скачкообразного приложения постоянной испытательной нагрузки к индентору и непрерывной регистрации кинетики его погружения в материал с адекватным временным разрешением (рис. 1, с). В результате появляется возможность непрерывно in situ анализировать скорость деформации в функции мгновенного значения контактных напряжений, выделять различные фазы процесса, проводить их термоактивационный анализ и по его результатам судить о микромеханизмах массопереноса в приконтактной области.

4) Прямое измерение времязависимых диссипативных свойств материала при контактном взаимодействии. Метод основан на анализе соотношения энергии, сообщаемой приводом внедряющемуся индентору, и энергии отскока штока с индентором при прекращении действия импульса нагрузки в функции продолжительности контакта (рис. 1, b). Разница между сообщаемой энернией и энергией отскока составляет энергию, поглощаемую в процессе формирования отпечатка и деформированной зоны около него.

Сочетание перечисленных выше методик позволяет в совокупности исследовать комплекс динамических свойств, недоступный каждой из них в отдельности.

2. Экспериментальная техника

Установка (рис. 2) содержала горизонтально расположенный подвижный шток, смонтированный на нитях подвеса, обеспечивающих поступательное движение без трения. Суммарная жесткость подвеса такой системы крепления штока составляла 1 N/m. На одном конце штока был закреплен стандартный индентор (алмазная пирамида Виккерса), а в средней части штока— емкостной датчик смещения, подвижный электрод которого был расположен на штоке, а неподвижные жестко закреплены на корпусе прибора.

Нагружение осуществляли электродинамическим приводом, в котором взаимодействовали две катушки с током. Подвижная катушка была закреплена на противоположном от индентора краю штока, а неподвижная — на корпусе установки. Импульс силы возникал в результате пропускания электрического тока через обе катушки. Задавая амплитуду, длительность и форму токов, протекающих по катушкам, можно было варьировать величину, продолжительность и форму импульса нагрузки, прикладываемой к индентору.

Рис. 2. Схема экспериментальной установки: 1 — пьезодатчик, 2 — образец, 3 — индентор, 4 — шток, 5 — элементы подвеса штока, 6 — емкостный датчик перемещения, 7 — неподвижная катушка, 8 — подвижная катушка, 9 — блок обработки сигнала емкостного датчика, 10 — генератор импульсов тока, 11 аналого-цифровой преобразователь с коммутатором сигналов, 12 — компьютер, 13 — принтер.

Установка позволяла осуществлять индентирование с нулевой и ненулевой начальной скоростью движения индентора. В первом случае образец с помощью микровинта плавно подводили к индентору до контакта и только затем производили нагружение, прикладывая импульс нагрузки.

Момент касания индентором образца, а затем глубину внедрения во времени h = f(t) контролировали емкостным датчиком смещения. Кроме того, момент касания и величину нагрузки F, прикладываемой индентором к образцу, можно было определять с помощью пьезодатчика, расположенного непосредственно под образцом. Чувствительность силоизмерительного канала составляла $\sim 2 \cdot 10^3$ N.

Сигналы с датчика смещения и пьезодатчика подавали на аналогоцифровой преобразователь с последующей обработкой его специальной программой на персональном компьютере, что обеспечивало синхронную регистрацию получаемых с датчиков сигналов (с точностью 25 µs).

Чувствительность тракта к перемещению составляла 20 nm, а временное разрешение — 50 µs.

Описанная выше методика и установка обеспечивали измерение динамики процесса микро- и наноиндентирования в диапазоне нагрузок от единиц mN до 2N, а времен — от 0.1 ms до 1000 s. Быстрое приложение испытательной нагрузки к индентору обеспечивалось скачкообразным ростом тока в катушках электродинамического привода (крутизна переднего фронта импульса тока 100 μ s).

Результаты калибровочных экспериментов показали, что в отсутствие образца движение индентора происходит без всяких задержек (рис. 3, a) с постоянным ускорением (рис. 3, b). Это означает, что в системе шток– индентор действительно приложена постоянная сила. Из этого также следует, что получаемые экспериментальные

Рис. 3. Кинетика перемещения штока с индентором в отсутствии образца (*a*) и зависимости h(t), а $(t) = 2h/t^2$, F(t) для перемещения штока с индентором в отсутствии образца (*b*). Величина прикладываемого импульса силы 0.11 N, T = 293 K.

Рис. 4. Кинетика начальной стадии индентирования ионных кристаллов: a, b — LiF; c — KCl:Ba (C = 10 mol.%); d — LiF. T = 293 (a, b); 77 K (c, d).

зависимости глубины погружения индентора в материал от времени h(t) (см., например, рис. 4 и 5,*a*) отражают реальную динамику физических процессов, происходящих в зоне деформирования, и могут быть использованы для определения микромеханизмов вытеснения материала из-под индентора.

В ряде опытов на фоне роста h(t) наблюдались затухающие осцилляции сигнала с датчика перемещений (рис. 4,*d*). Установлено, что колебания возникают только при нагружении жестких материалов (MgO, Si при комнатной температуре, LiF при $T \leq 200$ K, NaCl и KCl при *T* ≤ 100 K) импульсами нагрузки с короткими фронтами $au_f \leq 2 \,\mathrm{ms.}$ Индентирование KCl, NaCl, LiF, Pb, Al при комнатной температуре не сопровождается такими осцилляциями. Анализ возможных причин их возникновения показывает, что они не являются следствием автоколебаний каких-либо элементов установки друг относительно друга, а возникают в системе штокзона образца, сдеформированная под индентором. На рис. 6 представлена динамическая модель осциллирующей системы, которая учитывает массу подвижных частей нагружающего устройства т, жесткость пружин их подвески С1, жесткость штока С2, жесткость образца в контактной области С и демпфирующие свойства этих упругих элементов соответствующими коэф-

фициентами затухания D1, D2 и D. Наиболее сложным и одновременно существенным параметром здесь является $C = kE_r A^{1/2}$ [3,5], где k — коэффициент пропорциональности, который зависит от формы индентора; $E_r = \left[(1 - \nu^2) E^{-1} + (1 - \nu_i) E_i^{-1} \right]^{-1}$ — приведенный модуль Юнга; Е и ν — модуль Юнга и коэффициент Пуассона материала образца; E_i и ν_i то же для материала индентора; $A = 13.2 h^2$ площадь проекции отпечатка индентора Виккерса на поверхность образца; k = 1.15 [3]. Угловая частота собственных затухающих колебаний ω связана с этими параметрами очевидным соотношением $\omega = \left\{ \left[(C^{-1} + C_2^{-1})^{-1} + C_1 \right] m^{-1} - D^2 \right\}^{1/2}$. Конструктивные особенности установки сознательно приняты такими, чтобы удовлетворялись условия $C_2 \gg C$, $C_1 \ll C$, $D_1 \ll D$ и $D_2 \ll D$ (реально $C_2 = 50$ MN/m, $C_1 = 1$ kN/m, $D_1 < 1 \, {
m s}^{-1}, \, D_2 < 0.1 \, {
m s}^{-1}, \, D \geqslant 30 \, {
m s}^{-1}, \,$ а измеренные значения C составили 3-5 MN/m), так что в первом приближении режим погружения и возникающих колебаний определялся только свойствами материала в контактной области, т.е. величинами С и D. Поскольку С растет пропорционально h, то при некотором критическом значении h_c начинает выполняться условие $Cm^{-1} \ge D^2$ и система из апериодического режима переходит в колебательный. В исследованных кристаллах (KCl, NaCl,

Рис. 5. Кинетика активной стадии индентирования кристалла NaCl (*a*) и зависимости h(t), v(t), F(t), $\sigma(t)$ на активной стадии внедрения индентора в грань (001) NaCl (*b*). T = 293 K, нагрузка на индентор 0.11*N*.

LiF, MgO) при нагрузке в несколько N он наступал при $h_c = 3 - 14 \,\mu$ m. Собственная частота колебаний штока в подвесе $\omega_p \ll \omega$, а собственная частота колебаний отдельных элементов штока $\omega_i \gg \omega$ и, следовательно, не влияет на результаты измерений.

Определенные по частоте собственных колебаний значения модуля Юнга исследуемого материала E_s , в случае отсутствия разрушений под индентором совпадают со справочными значениями E_c с точностью лучше 10%. Так, при отсутствии разрушений около отпечатка для кристаллов NaCl $E_s = 50$ GPa, $E_c = 49$ GPa; для кристаллов LiF $E_s = 125$ GPa, $E_c = 114$ GPa; для кристаллов MgO, формирование отпечатка в которых сопро-

вождается множественным разрушением, $E_s = 41$ GPa, $E_c = 286$ GPa. При этом совпадение расчетных и справочных данных для кристаллов LiF и NaCl не может быть случайным, несмотря на то, что величина E_s является эффективной (так как отражает свойства материала сильно и неоднородно сдеформированной области контакта). В тех случаях, когда индентирование сопровождается трещинообразованием, $E_s < E_c$, что вполне естественно, так как к податливости сжатия кристаллической решетки добавляется податливость, связанная с образованием и раскрытием трещин.

Таким образом, амплитуда, частота и декремент затухания колебаний содержат информацию о механических свойствах материала в контактной области. Измерение параметров собственных колебаний системы индентор– образец в материалах, не склонных к хрупкому разрушению, может быть использовано для определения модуля Юнга в объемах порядка $1-10^3 \,\mu m^3$, а в хрупких материалах — для обнаружения факта появления трещин в зоне укола (по дефекту модуля).

Описанные выше методики и установка обеспечивали измерение комплекса времязависимых характеристик материала (динамической микротвердости, размеров зоны деформирования около отпечатка, поглощенной энергии, эффективного модуля упругости и др.).

3. Результаты

1. Эксперименты проводились на ионных кристаллах с разным примесным составом в диапазоне температур T = 77-300 К. Обработку экспериментальных данных осуществляли по результатам измерений не менее 10 отпечатков, полученных при одинаковых условиях проведения эксперимента. Несмотря на значительное различие механических свойств исследованных кристаллов (более

Рис. 6. Модель осциллирующей системы: *1* — индентор, 2 — образец, *m* — масса подвижных частей нагружающего устройства.

Журнал технической физики, 2000, том 70, вып. 5

чем на порядок величины по модулю Юнга и почти на два порядка величины по твердости), кинетика погружения индентора в них носила качественно схожий характер (рис. 4).

За первые 10-15 ms движения глубина погружения индентора h достигала 70-90% от окончательно устанавливающегося значения. Выход на стационарные или близкие к ним значения занимал для h от десятков до сотен секунд, в зависимости от типа кристалла, температуры и нагрузки.

Непрерывная регистрация глубины погружения индентора во времени позволяет определить мгновенные значения его скорости v(t) = dh/dt; силы, действующей на материал со стороны внедряющегося индентора $F(t) = F_0(t) - m(d^2h/dt^2)$; усредненных по площади отпечатка контактных напряжений под индентором $\sigma(t) = F(t)/S(t)$; динамической твердости $H_d(t) = k_2 F(t) / h^2(t)$. Здесь $F_0(t)$ — сила, прикладываемая к штоку со стороны привода; т — масса штока с индентором; $S(t) = k_1 h^2(t)$ — текущая площадь проекции отпечатка на поверхность материала; k_1 и k_2 коэффициенты, учитывающие геометрию индентора (для индентора Виккерса, используемого в работе, $k_1 = 24.5$, k₂ = 0.03784). Типичные динамические зависимости $v(t), F(t), H_d(t)$ на примере кристаллов NaCl представлены на рис. 5 и 9.

Перестроением кинетических кривых погружения индентора в полулогарифмических координатах $\ln(dh/dt) = f(t)$ (рис. 7) обнаружено несколько прямолинейных участков, которые можно отождествить с отдельными стадиями в процессе формирования отпечатка. Это означает, что в процессе индентирования исследованных ионных кристаллов можно различить не две фазы (быстрая и медленная), как обычно полагают, а до пяти отдельных стадий погружения индентора. Близкий к линейному закон спадания логарифма скорости на каждом из выявленных участков (начиная со второго) отражает экспоненциальный характер релаксации. Различие в показателе экспоненты на разных стадиях достигало четырех порядков величины, а в предэкспоненте — пяти порядков величин. Ясно, что в условиях практически постоянной приложенной нагрузки (рис. 3, b, 5, b) и неизменных контактных напряжений (начиная с 10-15 ms) это поведение dh/dt = f(t) является следствием смены механизмов массопереноса в зоне контакта.

Первая стадия роста h(t) соответствует движению индентора с положительным ускорением, а вторая, начиная с $5 \pm 2 \text{ ms}$ (рис. 7, *a*), — с отрицательным, но нигде не превышающим по модулю 0.3 ms². Начиная с третьей стадии в миллисекундной шкале времен зависимости h(t) и $H_d(t)$ выходят на насыщение (рис. 5, *b* и 9).

2. Результаты измерений динамики развития деформированной зоны на каждой из выявленных стадий формирования отпечатка на примере кристаллов LiF и KCl представлены на рис. 8. Размер зоны деформации выявляли по методике, описанной в разделе 1.2. Она

Рис. 7. a — зависимости $\ln v$ от времени индентирования монокристаллов LiF при T = 293 (*I*), 196 (*2*), 77 K (*3*); римские цифры — стадии индентирования; b — зависимости $\ln v = f(\sigma)$ (*I*-3) и $\ln v_0 = f(1/T)$ (*4*) для кристаллов LiF при T = 293 (*I*), 196 (*2*), 126 K (*3*).

заключалась в прерывании процесса индентирования на каждой стадии нагружения, последующей разгрузке отпечатка, химическом травлении образца и измерении зоны деформации в оптическом микроскопе. В качестве характерного размера зоны принята длина краевых лучей дислокационной розетки. Из рис. 8 видно, что временные зависимости размеров диагонали отпечатка d = f(t) и длины лучей дислокационной розетки l = f(t) имеют быструю и медленную фазы. За время быстрой фазы, составлявшей от 2 до $10 \pm 2 \, {\rm ms}$ (в зависимости от типа исследуемого кристалла, величины прикладываемой нагрузки и температуры), диагональ отпечатка и размеры лучей дислокационной розетки достигали 70-80% от окончательно установившихся значений, а оставшиеся 20-30% могли формироваться еще в течение единицдесятков секунд.

Рис. 8. Зависимость размеров диагонали отпечатка индентора и длины лучей дислокационной розетки от времени индентирования. КСІ: 1 - d, 2 - l; LiF: 3 - d, 4 - l.

Приведенные экспериментальные данные по динамике формирования отпечатка и дислокационной розетки (рис. 8) показывают, что времена быстрого нарастания величин d и l, полученные методом кратковременного нагружения, коррелируют с длительностью быстрых стадий кинетики формирования отпечатка, полученных методом анализа кинетики непрерывного погружения индентора.

Рис. 9. Кинетические зависимости энергии отскока W_2 (1), динамической твердости H_d (2) и времязависимой части поглощенной энергии, нормированной на объем отпечатка W_p (3) при динамическом индентировании кристаллов NaCl.

3. Результаты определения энергии, поглощаемой материалом при формировании отпечатка в кристаллах NaCl, представлены на рис. 9. Значения поглощенной энергии W_p определяли из соотношения $W_p = W_1 - W_2$, где W₁ — энергия, сообщаемая приводом; W₂ — энергия отскока штока с индентором. Реально в работе W₁ определяли как $W_1 = W_k + W_f$ (где $W_k = m(v_1)^2/2$ кинетическая энергия штока с индентором, сообщаемая приводом при отсутствии контакта индентора с образцом; v₁ — скорость движения штока непосредственно в момент касания индентора с образцом; $W_f = Fh$ энергия, сообщаемая приводом в процессе внедрения индентора под действием приложенной силы F на величину h). $W_2 = m(v_2)^2/2$ — кинетическая энергия отскока, где v2 — скорость штока с индентором при снятии нагрузки в момент разрыва контакта индентора с образцом. Видно, что при продолжительности погружения $\tau \ge 50 \,\mathrm{ms}$, величина W₂ уменьшалась в 30-40 раз и становилась практически равной нулю (рис. 9).

4. Обсуждение

а) Знание реальной динамики погружения индентора позволяет извлечь ценную информацию, проливающую свет на последовательность и природу процессов под индентором. Так, сила, действующая на материал со стороны внедряющегося индентора (рис. 3 и 5), остается постоянной с вариациями порядка 10-20% все время индентирования. Вместе с тем величина h(t), а значит, и площадь отпечатка S(t) в начале его формирования очень малы, вследствие чего динамическая твердость H_d могла достигать величин, сопоставимых с теоретической прочностью. Так, пиковое значение H_d max в первые миллисекунды нагружения составляло для кристаллов NaCl $\sim 1.6 \pm 0.8$ GPa. В последующие 8–10 ms $H_d(t)$ падали до значений, близких к стационарным значениям микротвердости материала.

Вторая и последующие стадии погружения проходят в условиях падающих σ и dh/dt, при небольших изменениях h и могут быть проанализированы в рамках традиционных подходов. Силовая зависимость скорости погружения в координатах $\ln(dh/dt) = f(\sigma)$ имеет участки, близкие к линейным (рис. 7, b). Это позволяет путем экстраполяции на $\sigma_0 = 0$ определить начальную скорость погружения dh_0/dt при различных температурах T. Зависимость $\ln(dh_0/dt) = f(1/T)$ также имела участки, близкие к линейным (рис. 7, b). Это дает право говорить о термоактивационном режиме течения по крайней мере в некотором диапазоне σ и T и определить активационные параметры. Данные о величинах активационного объема γ , полученные из наклонов соответствующих зависимостей $\ln(dh/dt) = f(\sigma)$, имеют на второй стадии погружения (для всех исследованных ионных кристаллов) очень низкие значения $\gamma \approx 10^{-30}\,\mathrm{m^3}$ (рис. 10). Соответствующие активационные энергии U составляют около 0.1 eV. Очевидно, столь низкие

Рис. 10. Динамика изменения величины активационного объема γ при комнатной температуре. 1 - KCl:Ba, 2 - NaCl, 3 - LiF, 4 - MgO.

значения U и γ обусловлены высокими величинами σ на этой стадии, где только упругие деформации могут достигать нескольких процентов.

Активационные объемы, составляющие всего несколько десятых долей от объема, занимаемого катионом в решетке при нормальном давлении, прямо свидетельствуют о деформации за счет движения отдельных атомов [10–13]. Опыты по влиянию всестороннего внешнего давления на скорость диффузии дают также значения γ около 0.6–0.7 от величины объема катиона в решетке [14]. Отсутствие независимых надежных данных об активационных параметрах зарождения и движения межузельных атомов и вакансий в условиях высоких давлений ($\sim 0.1 \div 1$ Mbar) не дает возможности сделать обоснованный выбор между этими возможностями, хотя с ростом напряжений сжатия межузельные, краудионные механизмы, естественно, становятся более вероятными.

По мере углубления индентора и перехода к третьей и последующим стадиям, когда $H_d(t)$ начинает приближаться к статическому значению микротвердости $(t \ge 10-12 \text{ ms}), U$ увеличивается до значений 0.2–0.3 eV, а γ — до 10^{-28} m^3 (рис. 10). Таким образом γ становится равным по порядку величины $\sim 10b^3$, где b — вектор скользящих дислокаций Бюргерса, что согласуется с данными [15,16] и свидетельствует о пре-имущественно дислокационном механизме течения материала под индентором на поздних стадиях внедрения.

Ввиду игнорирования в расчетах неоднородности внешних приложенных напряжений и влияния внутренних точность определения величины γ в описанных выше экспериментах невысока. Ее можно оценить величиной $\sim 50\%$. Тем не менее даже такая погрешность дает возможность сделать вывод о доминирующей роли определенных структурных дефектов, ответственных за массоперенос на каждой из выявленных стадий, так как учет перечисленных выше и других факторов не может изменить порядок величины γ . В то же время γ для моноатомных и дислокационных механизмов различаются на 2–3 порядка величины [13].

б) Из рассмотрения экспериментальных данных по динамике формирования зоны деформации около индентора (рис. 8) следует, что ее величина l определяется исключительно размерами отпечатка d. Скоррелированность величин d и l может быть обусловлена, на наш взгляд, двумя причинами: малым временем релаксации дислокационной структуры (< 1 ms) или ее перестройкой при разгрузке отпечатка и последующем химическом травлении. Первая из них представляется менее вероятной. Химическое травление в силу большой инерционности не позволяет однозначно ответить на вопрос, формируется ли дислокационная розетка в процессе внедрения и выдержки индентора в материале или же в процессе ее формирования может вносить существенный вклад релаксация материала во время разгрузки и последующего травления. Из общих соображений ясно, что чем меньше продолжительность нагружения, тем более вероятна ее релаксация при снятии нагрузки и последующем химическом травлении.

В пользу предположения о возможности перестроений дислокационной структуры также свидетельствуют и данные об изменении картин розетки фотоупругости [17] и величины электрического дипольного момента, фиксируемого в ионных кристаллах при внедрении индентора и разгрузке отпечатка [18–22].

Таким образом, полученные результаты указывают на скоррелированность изменения размеров отпечатка и длины краевых лучей срелаксировавшей дислокационной розетки в широком интервале времен индентирования (от 1 ms до 30 s).

в) Прерывание нагружения на ранних стадиях позволяет исследовать не только зависимость динамической микротвердости H_d , но и энергии отскока индентора W_2 от времени нагружения τ . Так, на номинально чистых кристаллах NaCl, нагружаемых при комнатной температуре прямоугольным импульсом силы F = 0.2 N длительностью τ от 4 ms до 10 s, зависимость $W_2 = f(\tau)$ оказалась еще более сильной, чем $H_d = f(\tau)$ на рис. 9. Из этого же рисунка следует, что значения H_d приобретают обычную для NaCl величину ~ 200 MPa при $\tau \ge 1$ s, а при уменьшении τ быстро возрастают (до ~ 450 MPa при $\tau \ge 10^2$ ms становилась близкой к амплитуде механических флуктуаций штока с индентором (~ 1 nJ). Таким образом, времязависимая часть

приведенной поглощенной энергии $W_p(\tau) = (W_1 - W_2)/V$ (здесь V — объем отпечатка) менялась в десятки раз в интервале τ от единиц до десятков миллисекунд (рис. 9). Из этих данных следует, что H_d , W_2 и W_p являются независимыми характеристиками материала, описывающими его времязависимые упругопластические и диссипативные свойства в контактной зоне с объемом $\sim 1 \,\mu m^3$. Характер зависимости $W_p(\tau)$ с резким увеличением диссипации энергии в области времен порядка 10-20 ms подтверждает вывод о смене лидирующего механизма массопереноса на этой стадии индентирования, сделанный по данным термоактивационного анализа. Очевидно, характерные времена изменения H_d и W_p определяются динамикой пластического течения в контактной зоне под действием кратковременно приложенной постоянной силы. С другой стороны, они содержат информацию о динамике зарождения и перемещения структурных дефектов, являющихся элементарными носителями этой деформации, в условиях действия высоких локальных напряжений и относительных скоростей деформации. Действительно, средние значения контактных напряжений $\sigma \approx H_d$ превышают даже при $\tau = 10 \,\mathrm{ms}$ предел текучести этих же кристаллов NaCl при квазистатическом одноосном сжатии почти в 1000 раз, а при $H_d = H_{\rm max} = 1.6 \,{\rm GPa} - {\rm даже}$ более. Скорость относительной деформации $(d\varepsilon/dt) \approx (dh/dt)/h$, несмотря на невысокую абсолютную скорость перемещения индентора dh/dt (< 1 mm/s в максимуме), достигает при $h < 1\,\mu\mathrm{m}$ величин $\sim 10^3\,\mathrm{s}^{-1}$, характерных для соударений макроскопических тел с высокими скоростями.

Заключение

1. В работе предложено несколько принципиально новых независимых методик для определения динамических физико-механических свойств материалов в микрои субмикрообъемах и выяснения микромеханизмов формирования отпечатка и зоны деформации вокруг него. Первая основана на анализе кинетики погружения индентора, предварительно подведенного к поверхности объекта до касания, под действием скачкообразно приложенного к нему постоянного усилия. Предлагаемая методика и аппаратура позволяет in situ с временным разрешением 50 µs исследовать динамику деформирования материала в этих условиях и извлекать из нее информацию о динамической микротвердости H_d и микромеханизмах массопереноса на всех стадиях действия локальной нагрузки. Вторая методика (кратковременное приложение к индентору силы регулируемой длительности) позволяет исследовать промежуточные состояния структуры, возникающей под индентором, и величину удельной энергии, поглощаемой на той или иной стадии индентирования.

2. Обнаружена многостадийность процесса внедрения твердого индентора и формирования зоны деформирования во всех исследованных кристаллах. Определены основные параметры, в том числе и активационные, и выявлены доминирующие механизмы массопереноса на каждой стадии. Показано, что отпечаток проходит следующие основные стадии своего формирования: стадию чисто упругой деформации материала, стадию моноатомного вытеснения материала из-под индентора, которая сменяется стадиями, где доминирующую роль в процессе формирования отпечатка начинает играть дислокационная пластичность.

3. Установлено, что в ионных кристаллах динамическое значение микротвердости практически сравнивается со статическим при временах нагружения $\tau \ge 1$ s, а наиболее интенсивное поглощение энергии происходит на дислокационных стадиях формирования отпечатка.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 98-02-16549).

Список литературы

- [1] Григорович В.К. Твердость и микротвердость металлов. М.: Наука, 1976. 230 с.
- [2] Булычев С.И., Алехин В.П. Испытание материалов непрерывным вдавливанием индентора. М.: Машиностроение, 1990. 225 с.
- [3] Pharr G.C., Oliver W.C., Brotzen F.R. // J. Mater. Res. 1992.
 Vol. 7. N 3. P. 613–617.
- [4] Hainsworht S.V., Page T.F. // J. Mater. Sci. 1994. Vol. 29. N 21. P. 5529–5534.
- [5] Murakami Y., Tanaka K., Itokazu M., Shimamoto A. // Philos. Mag. A. 1994. Vol. 69. P. 1131–1138.
- [6] Farber B.Ya., Orlov V.I., Heuer A.H. // Phys. St. Sol. (a). 1998. Vol. 166. P. 115–126.
- [7] Farber B.Ya., Orlov V.I., Nikitenko V.I., Heuer A.H. // Philos. Mag. A. 1998. Vol. 78. P. 671–677.
- [8] Kailer A., Gogotsi Y.G., Nickel K.G. // J. Appl. Phys. 1997.
 Vol. 81. N 7. P. 3057–3063.
- [9] Page T.F., Oliver W.C., Hargue C.J. // J. Mater. Res. 1992. Vol. 7. P. 450–459.
- [10] Akchurin M.Sh., Galstyan V.G., Regel V.R. // Scanning. 1992.
 Vol. 14. P. 194–202.
- [11] Akchurin M.Sh., Regel V.R. // Chemistry Rev. 1998. Vol. 23. P. 59–88.
- [12] Акчурин М.Ш., Галстян В.Г., Регель В.Р., Рожанский В.Н. // Поверхность. 1983. № 3. С. 119–123.
- [13] Инденбом В.Л. // Письма в ЖЭТФ. 1970. Вып. 12. С. 526– 531.
- [14] Зайцев В.И., Ляфер Е.И., Токий В.В. // ФТТ. 1975. Т. 17. С. 1866–1872.
- [15] Боярская Ю.С., Грабко Д.З., Кац М.С. Физика процессов микроиндентирования. Кишинев: Штиинца, 1986. 256 с.
- [16] Булычев С.И., Алехин В.П., Шоршоров М.Х. // ФХОМ. 1979. № 5. С. 69–74.
- [17] Головин Ю.И., Шибков А.А., Тюрин А.И. и др. // ФТТ. 1988. Т. 30. Вып. 11. С. 3491–3495.
- [18] Боярская Ю.С., Головин Ю.И., Кац М.С. и др. // Латв. физ.-техн. журн. 1991. № 5. С. 41-46.
- [19] Головин Ю.И., Тюрин А.И. // Письма в ЖЭТФ. 1994. Т. 60. Вып. 10. С. 722–726.

- [20] Головин Ю.И., Тюрин А.И. // Изв. РАН. Сер. физ. 1995. Т. 59. С. 49–54.
- [21] *Головин Ю.И., Тюрин А.И.* // Кристаллография. 1995. Т. 40. Вып. 5. С. 884–888.
- [22] Головин Ю.И., Тюрин А.И. // ФТТ. 1996. Вып. 6. С. 1812– 1818.