02;10;12 Угловые характеристики процессов потери электронов отрицательными ионами и атомами водорода в газах

© Г.Д. Ведьманов, Ю.Г. Лазарев, В.И. Радченко

Уральский государственный технический университет, 620002 Екатеринбург, Россия

(Поступило в Редакцию 23 февраля 1998 г. В окончательной редакции 19 октября 1998 г.)

Представлены результаты экспериментального измерения пространственно-угловых распределений частиц водорода (H⁻, H⁰, H⁺), полученных при рассеянии коллимированного ленточного пучка ионов H⁻ и атомов H⁰(1s) в газовых мишениях He, Ar, Kr, Xe, H₂, O₂, CO₂ для некоторых значений энергии из диапазона 0.6...15 MeV. Описаны экспериментальная установка и методика измерений с угловым разрешением $5 \cdot 10^{-6}$ гаd. Определены угловые характеристики измеренных распределений: ширина на половине высоты и страндартное отклонение. Показано, что для пучка атомов водорода, полученных при нейтрализации ионов H⁻ в газовой мишени, форма распределения изменяется в зависимости от толщины и сорта мишени и угловые характеристики минимальны для H₂-мишени. Изменения формы распределения обусловлены вкладом процессов рассеяния без изменения заряда частиц.

Введение

Существует ряд крупных научно-технических проектов, связанных с созданием накопителей, тандемных ускорителей, мезонных фабрик, с пучковым разогревом термоядерной плазмы и т.п., для которых необходима информация об изменении поперечного размера (фазового объема) и зарядового состава ионного пучка, проходящего порой весьма значительные расстояния, в зависимости от условий его транспортировки [1]. Рассеяние быстрых частиц, сталкивающихся с атомами мишени, полностью характеризуется набором дифференциальных сечений рассеяния (ДСР) для различных процессов с изменением или без изменения зарядового состояния налетающих частиц (суммированных по всем конечным состояниям мишени). Эти сечения служат основой для расчета любых других величин, используемых в конкретных приложениях.

Экспериментальное определение ДСР, особенно в области энергий столкновения $E > 0.5 \,\text{MeV}$, связано с необходимостью выполнения ряда жестких требований к угловой расходимости и интенсивности начального пучка, к разрешающей способности системы детектирования и т.д., что делает измерения ДСР весьма трудоемкими. В то же время в экспериментальной и теоретической практике части используются характеристики, полученные на основе ДСР, например полное сечение $\sigma(E)$ рассеяния в зависимости от энергии столкновения Е или характерный угол $\Theta_{1/2}(E)$ рассеяния. В экспериментальных исследованиях и в ускорительной технике под характерным углом рассеяния $\Theta_{1/2}$ обычно понимают полную ширину углового распределения частиц в пучке на половине его высоты (ПШПВ). В теории в качестве характерного угла рассеяния часто используют значение Θ_m , при котором достигается максимум произведения $\sin \Theta(d\sigma(\Theta)/d\Omega)$. Как правило, значения углов $\Theta_{1/2}$ и $2\Theta_m$ совпадают с погрешностью в единицы процентов.

Требования к экспериментам по измерению полных сечений и характерных углов являются менее жесткими. В частности, для проведения угловых измерений допустимо использование ионных пучков ленточного вида (хотя полученные при этом величины не дают вполне четкого представления о форме и характерных углах ДСР).

Объектом, представляющим интерес для перечисленных выше практических приложений и удобным для теоретического описания, является пучок частиц водорода (H⁻, H⁰, H⁺). ДСР ионов H⁻ и атомов H⁰ с изменением и без изменения заряда при E > 50 keV в газообразных мишенях изучены недостаточно, в первую очередь это относится к экспериментальным исследованиям. Для сравнительно малых значений энергии $E = 50 \dots 150 \,\text{keV}$ в работе [2] на пучках круглого поперечного сечения были измерены угловые распределения и характерные углы рассеяния атомов водорода, образующихся при нейтрализации ионов H⁻ в H₂, He и Li мишенях, исследована зависимость характерного угла рассеяния от толщины мишени. В работе [3] развит способ и выполнены измерения дифференциальных по углу сечений нейтрализации и упругого рассеяния ионов Н- с энергией 100 и 200 keV на H₂ и Не мишенях в ленточной геометрии пучка. В области более высоких энергий столкновения подобные публикации экспериментального материала отсутствуют. Теоретические результаты, относящиеся к вычислению ДСР и характерных углов рассеяния в соударениях с нейтрализацией ионов Н⁻, опубликованы в работах [4–8] для $E \ge 100$ keV.

В настоящей работе, продолжающей серию наших работ [6–9], выполненных ранее на одном экспериментальном комплексе, представлены результаты измерений пространственно-угловых распределений рассеянных частиц водорода в процессах потери одного и двух электронов ионами H^- и атомами $H^0(1s)$ в газовых мишенях He, Ar, Kr, Xe, H₂, O₂, CO₂ для некоторых значений энергии *E* из диапазона 0.6 ... 15 MeV.

Если пространственное распределение плотности потока частиц пучка определяется не только их ДСР, но и геометрическими условиями коллимации исходного и регистрации рассеянного пучков, то такое распределение называется пространственно-угловым (ПУР).

Экспериментальная установка и методика измерений

Экспериментальная установка, на которой проводилось измерение пространственно-угловых распределений (ПУР) рассеянных пучков частиц водорода, и методика описаны в работах [6–10]. В последующем изложении приведем основные параметры установки применительно к измерению характерных углов рассеяния пучка ленточного вида и особенности методики измерений с пучком атомов водорода, получаемых в газовой мишени при отрыве электрона от иона H⁻, рассмотренных более детально в работе [11].

Ленточный пучок части водорода формировался в установке [6] (схема на рис. 1) с помощью двух щелевых коллиматоров (K_1 , K_2) размерами 20 μ m по вертикали и до 8 mm по горизонтали, удаленных один от другого на 7.25 m вдоль траектории пучка. В исследовательский канал из ускорителя направлялся пучок ионов Н⁻, а другие зарядовые состояния частиц водорода создавались путем отрыва электронов от Н⁻ в перезарядной газовой мишени (ПГМ), установленной на пути пучка до системы коллиматоров. Траектория пучка частиц на участке от К1 до К2 задавалась электическими и магнитными дефлекторами ЭД₁, ЭМ как до (на рис. 1 не показаны), так и после входного коллиматора К₁. Газовая мишень контролируемой толщины и состава ограничивалась щелями коллиматоров K₂ и K₃ камеры столкновений (КС), лимитировавшими поток газа за пределы КС и обеспечивавшими прохождение рассеянных частиц с углами отклонения по вертикали до $0.4 \cdot 10^{-3}$ rad. Смещение

Рис. 1. Экспериментальная установка: ССТ — перезарядная газовая мишень; C_1-C_3 и DC — коллиматоры; $ED_1 \dots ED_3$ — электрические дефлекторы; HVS — источник высокого напряжения; EM — электромагнит; MSD — микрометрический винтовой привод; CC — камера столкновений; A — комплекс аппаратуры; PSD — шаговый привод платформы; P — платформа; D_1 и D_2 — детекторы.

коллиматоров K_2 и K_3 по вертикали и их вращение в плоскости, перпендикулярной пучку, производилось с помощью микрометрических винтовых приводов (МВП). Из-за большой длины траектории пучка в пределах КС (390 mm она была экранирована от внешних магнитных полей трехслойным цилиндрическим экраном с коэффициентом ослабления поперечной (относительно направления пучка) составляющей магнитного поля более 10. Экранировка траектории пучка от магнитных полей с помощью листов анизотропной холоднокатанной трансформаторной стали была применена также на большинстве участков транспортировки пучка части от K_1 до K_2 и от K_3 до детектора D_1 .

ПУР исходного и зарядовых компонентов рассеянного в КС пучка частиц в зависимости от их заряда и энергии измерялись с использованием трех методов.

Методом сканирования пучка электрическим дефлектором, детально описанным в [10], измерялись ПУР заряженных компонентов пучка после КС. Дефлектор ЭД₂ служил для сканирования пучка переменным электрическим полем, а дефлектор ЭД₃ использовался для разделения зарядовых компонентов пучка и нацеливания одного из них на центр детектора Д₁ с коллиматором КД. Для регистрации частиц использовались кремниевые детекторы типа ДКДПс-350 с толщиной чувствительного слоя до 1.5 mm, позволявшие вести энергетический анализ частиц водорода в пучке с энергией до 15 MeV.

ПУР атомов водорода измерялось механическим сканированием, т.е. путем перемещения по вертикали подвижной платформы П с закрепленными на ней детектором Д₁ и установленным перед ним составным коллиматором КД [11]. Платформа перемещалась с помощью шагового привода платформы (ШПП) в диапазоне 9 mm с шагом 1.6 µm. Составной коллиматор КД детектора Д₁ формировался из двух тонких пластинок одинаковой толщины, перекрывающих окно перед детектором и образующих в его центре горизонтальную щель высотой 10 µm. Толщина пластинок выбиралась такой, чтобы энергия частиц, прошедших сквозь пластинки в окно детектора, была бы оптимальной для отделения их в спектре от частиц с начальной энергией, попавших в детектор через щель. Вертикальный размер ленты выбранного компонента рассеянного пучка всегда был много меньше высоты окна детектора, и при его смещении в процессе измерения ПУР доля частиц пучка, не попавших в детектор, всегда была пренебрежимо мала. Сумма зарегистрированных детектором частиц (мониторирующее число) использовалась для нормировки результатов измерений в различных точках измеряемого профиля. При низких значениях энергии атомов водорода (менее 1 MeV) нормировка результатов измерений в различных точках профиля велась по количеству частиц, зарегистрированных с помощью дополнительного детектора Д2, на центральную область которого дефлектором ЭД3 направлялся один из зарядовых компонентов пучка.

В третьем использованном методе измерения ПУР, являющимся модификацией первого, сканирующим электрическим дефлектором служили пластины входного коллиматора K_2 для КС. Полированные пластины толщиной 500 μ m с зазором между ними 20 μ m изолированы от корпуса КС и друг от друга и при использовании этого метода соединяются с электронной системой сканирования A (рис. 1) [10]. Этот метод отличается от предыдущего большей оперативностью, но применим только к заряженным начальным компонентам пучка.

Результаты измерений ПУР, представленные в данной работе, выполнены преимущественно путем перемещения детектора $Д_1$ с составным коллиматором. Несколько измерений было проведено в сопоставимых условиях всеми тремя методами и дали эквивалентные результаты. По данным многочисленных измерений угловая расходимость (ПШПВ) пучка в вертикальной плоскости составила $3 \cdot 10^{-6}$ rad, а угловое разрешение (ПШПВ) по аппаратной функции — $5 \cdot 10^{-6}$ rad.

Обработка экспериментальных данных

ПУР, измеренные описанными методами, представлены в виде спектров, т. е. в виде зависимости числа $Y(\beta)$ частиц, попавших в детектор через щель коллиматора КД при заданном значении мониторирующего числа (число отсчетов), от величины β углового смещения коллиматора относительно центра распределения (примеры показаны на рис. 2 и 3). Спектры обрабатывались математически с целью подбора аппроксимирующей их функции и вычисления ее параметров. По большому набору числового материала определено, что для частиц водорода спектр вполне удовлетворительно описывается функцией вида

$$Y(\beta) = Y_1 / \left(1 + \beta^2 / \omega^2\right)^{1/2} + Y_2 / \left(1 + \beta^2 + \omega^2\right)^{3/2}, (1)$$

параметры которой, т.е. Y_1 , Y_2 и ω , определяются путем подгонки к экспериментальным данным по методу наименьших квадратов.

В качестве интегральной угловой характеристики распределений, имеющих форму пика, чаще всего используется полная ширина пика на половине его высоты (ПШПВ) $\beta_{1/2}$. К достоинствам этой характеристики следует отнести наглядность и простоту ее определения. Мы также используем ПШПВ для характеристики ПУР. Однако ПШПВ слабочувствительна к изменениям в периферийной области ПУР, т.е. к изменению формы распределения.

Следует уточнить, как интерпретируются измеряемые углы рассеяния при разных геометриях измерений. При так называемой "точечной" геометрии измерений детектор с бесконечно малыми размерами $\Delta x, \Delta y$, смещаемый вдоль вертикальной оси *y*, регистрирует рассеянные в мишени ионы пучка также с бесконечно малыми поперечными размерами под углом Θ , имеющим горизонтальную и вертикальную составляющие Θ_x и Θ_y соответственно, причем Θ_y равен углу β смещения детектора относительно траектории нерассеянных частиц, а Θ_x равен нулю (если источник и детектор находятся в одной вертикальной плоскости), поэтому $\Theta = \Theta_v = \beta$.

В случае используемой нами "ленточной" геометрии $\Delta x \gg \Delta y$ и в детектор попадают частицы с $\Theta_y = \beta$ и всеми возможными значениями Θ_x , поэтому результат измерения следует соотносить с некоторым эффективным углом рассеяния, равным (если вероятность рассеяния σt мала)

$$\Theta^{*}(\beta) = \int (\Theta_{x}^{2} + \beta^{2})^{1/2} \frac{d\sigma(\Theta_{x}, \beta)}{d\Omega} d\Theta_{x} / \int \frac{d\sigma(\Theta_{x}, \beta)}{d\Omega} d\Theta_{x}, \quad (2)$$

где $d\sigma(\Theta_x, \beta)/d\Omega$ — дифференциальное сечение рассеяния, σ — полное сечение, t — толщина мишени.

Это значение Θ^* практически совпадает с углом β лишь при $\beta \gg \Pi Ш \Pi B$, поэтому $\Pi Ш \Pi B$ $\beta_{1/2}$ -распределения, измеренного в ленточной геометрии, оказывается искаженной (завышенной) по сравнению с $\Pi Ш \Pi B$ дифференциального сечения рассеяния.

Статистической характеристикой, учитывающей форму спектра как около центра пика, так и вдали от него, является дисперсия σ^2 (или стандартное отклонение σ)

$$\sigma^{2} = \int Y(\beta)\beta^{2}d\beta \Big/ \int Y(\beta)d\beta$$
(3)

с пределами интегрирования от $-\beta_{\text{max}}/2$ до $+\beta_{\text{max}}/2$.

В измеренном нами диапазоне углов рассеяния ($\leq 100 \,\mu$ rad) функция $Y(\beta)$ вида (1) при $\beta \gg \omega$ медленно уменьшается с ростом угла β как $Y_1 \omega / \beta$, поэтому ее стандартное отклонение $\delta \sim \beta_{\text{max}} / \ln(\beta_{\text{max}})$, т. е. не является инвариантной характеристикой процесса рассеяния. Это обстоятельство заставляет устанавливать β_{max} в известной мере произвольно. Нам представляется удобным использовать критерий $Y(\beta_{\text{max}}/2) \approx Y(0)/10$, усреднив β_{max} по всем спектрам, измеренным при одинаковой энергии, независимо от сорта и толщины мишени. Этот диапазон углов соответствует диапазону, охватываемому экспериментом. Значения β_{max} при измерении ПУР процесса рассеяния (-1.0) приведены в табл. 1. Если $\beta_{\text{max}} \approx 3\beta_{1/2}$, то $\beta_{1/2} \approx 2\delta$.

Из дисперсии измеренного распределения вычитается дисперсия аппаратной функции, в качестве которой мы использовали дисперсию спектра нерассеянных частиц (так называемая аппаратная линия, измеренная на остаточном газе в KC).

С ростом толщины мишени, как показано в следующем разделе, происходит изменение формы спектра, в частности, возрастает относительная доля периферийных областей ПУР ($\beta \ge \Pi \amalg \Pi B$). Для описания этого процесса удобно использовать величину, равную относительной доле "ядра пучка",

$$W_i(t) = S(\langle \beta_{1/2} \rangle) / S(\beta_{\max}), \tag{4}$$

где $S(\beta)$ — площадь спектра в пределах от $-\beta/2$ до $+\beta/2$; t — толщина мишени; величина $\langle \beta_{1/2} \rangle$ равна

Энергия, Mev	Для процесса (-1,0)		Стандартное	$t_{\rm max}, \ 10^{14}/{\rm cm}^2$		
	ПШПВ, μ rad	$\beta_{\max}, \ \mu$ rad	(-1, 0)	(0, 1)	(-1, 1)	
0.6	49.4	286	56.5			19.2
1.15	36.4	117	22.2			32.6
1.67	28.0	101	18.3	91.4*	185.5*	44.2
5.15	20.0	63	11.3	24.5	30.9	110.4
7.0	15.6	65	9.9	19.8	25.9	141.7
10.4	12.6	43	7.0		20.6	195.3
15.0	9.6	30	5.0	20.5*	21.3*	262.7

Таблица 1. Характерные углы рассеяния частиц водорода в мишени СО₂

^{*} измерено при $t \approx t_{\text{max}}$.

Таблица 2. Характерные углы рассеяния ионов H^- с потерей электрона в различных мишенях

Энергия,	Стандартное отклонение для мише					цени, μ	rad	
MeV	H ₂	Не	O ₂	CO_2	Ar	Kr	Xe	
0.6		57.6*		56.5*				
1.15		21.9	23.1*	22.2				
1.67	18.1	19.7	18.9	18.3	19.1	17.9	19.1	
5.15				11.3				
7.0				9.9				
10.4	7.1	7.0	7.2	7.0	7.2			
15.0	5.1			5.0				
	ПШПВ для мишени, μ rad							
		П	ШПВ дл	ія мише	ни, μ ra	d		
	H ₂	П He	ШПВ дл О ₂	ия мише СО ₂	ни, µra Ar	d Kr	Xe	
0.6	H ₂	П Не 57.2	ШПВ дл О ₂	ия мише СО ₂ 49.4	ни, µra Ar	d Kr	Xe	
0.6	H ₂	П Не 57.2 33.8	ШПВ дл О ₂ 35.6	ия мише CO ₂ 49.4 36.4	ни, µra Ar	d Kr	Xe	
0.6 1.15 1.67	H ₂ 27.6	П Не 57.2 33.8 29.8	ШПВ дл О ₂ 35.6 28.0	ия мише CO ₂ 49.4 36.4 28.0	ни, µra Ar 29.4	d Kr 27.4	Xe 28.4	
0.6 1.15 1.67 5.15	H ₂ 27.6	П. Не 57.2 33.8 29.8	ШПВ дл О ₂ 35.6 28.0	ия мише CO ₂ 49.4 36.4 28.0 19.8	ни, µra Ar 29.4	d Kr 27.4	Xe 28.4	
0.6 1.15 1.67 5.15 7.0	H ₂ 27.6	П Не 57.2 33.8 29.8	ШПВ дл О ₂ 35.6 28.0	ия мише CO ₂ 49.4 36.4 28.0 19.8 15.6	ни, µra Ar 29.4	d Kr 27.4	Xe 28.4	
0.6 1.15 1.67 5.15 7.0 10.4	H ₂ 27.6	П Не 57.2 33.8 29.8 13.8	ШПВ дл О ₂ 35.6 28.0 13.4	ия мише CO ₂ 49.4 36.4 28.0 19.8 15.6 12.6	ни, µга Аг 29.4 14.2	d Kr 27.4	Xe 28.4	

^{*} измерено при $t \approx t_{\text{max}}$.

значению $\beta_{1/2}$, усредненному, как и в случае β_{\max} , по всем спектрам, относящимся к одной энергии пучка; i — заряд частиц.

Обработанные экспериментальные значения характерных углов рассеяния сведены в табл. 1 и 2. Указанные в них значения получены путем экстраполяции данных к "нулевой" толщине мишени; в ряде случаев измерения проведены только при толщине мишени, близкой к $t_{\rm max}$ (см. следующий раздел). По нашим оценкам, при этом стандартное отклонение возрастает на 15–20% по сравнению с t = 0.

Экспериментальные результаты, обсуждение

На рис. 2 показаны типичные ПУР пучка исходных ионов H^- , атомов водорода и протонов, образовавшихся в процессах отрыва одного и двух электронов в CO_2 мишени. Толщина мишени близка режиму однократных столкновений в процессах типа (-1, 0) и (-1, 1). Измерения ПУР выполнены для постоянного числа частиц, принимаемых детектором в каждой точке показанных профилей. Результаты на рис. 2–5 получены при рассеянии ионов H^- с энергией частиц 10.4 MeV.

На рис. 3 приведены примеры ПУР атомов водорода, образовавшихся при потере электрона ионами H⁻ в CO₂ мишени различной толщины. В качестве масштаба толщины мишени удобно использовать величину t_{max} определяемую отдельно для каждой мишени и для каждо-го значения энергии. В процессе нейтрализации ионов H⁻ относительная доля $\Phi_0(t)$ атомов водорода достигает максимума при $t = t_{\text{max}}$ и затем плавно убывает [8]. Значения t_{max} для CO₂ мишени приведены в табл. 1, для других мишеней — в [8].

Рис. 2. ПУР частиц водорода с энергией 10.4 MeV при рассеянии ионов H⁻ без изменения заряда (1⁻, 1⁻), с потерей одного электрона (1⁻, 0) и двух электронов (1⁻, 1): *I* — (1⁻, 1⁻), остаточный газ, монитор 10⁴ отсчетов; *2* — (1⁻, 0) СО₂ — мишень, $t/T_{\text{max}} = 0.09$, монитор 10⁴; *3* — (1⁻, 1), СО₂ — мишень, $t/T_{\text{max}} = 0.003$, монитор 3 · 10⁴.

Журнал технической физики, 2000, том 70, вып. 2

Рис. 3. ПУР атомов H^0 , образованных при рассеянии ионов H^- с энергией 10.4 MeV в CO₂ — мишени толщиной t/T_{max} : I = 0.09, 2 = 0.4, 3 = 0.9; монитор 10⁴ отсчетов.

На рис. 4 и 5 показана зависимость угловых характеристик $\delta(t)$ — стандартного отклонения и $W_i(t)$ доли ядра пучка от толщины различных мишеней. Погрешность определения значений этих характеристик равна 5 ... 7%. Анализ данных приводит к выводу, что при одной и той же энергии налетающих частиц углы однократного рассеяния (в пределе $t \rightarrow 0$) в пределах точности измерений для всех исследованных мишеней одинаковы, поэтому в табл. 1 приведены данные только для одной мишени (CO₂). В области толщин $t \leq t_{max}$ наблюдаются линейный рост $\delta(t)$ со скоростью, примерно одинаковой для всех мишеней, кроме H₂, и аналогичное уменьшение $W_i(t)$.

Отмеченное поведение ПУР является следствием того, что сечения процессов рассеяния без изменения заряда (-1, -1) и (0, 0), сопутствующих нейтрализации ионов H⁻, сопоставимы по величине с сечением отрыва электрона (-1, 0) [6], а характерные углы (ПШПВ $\Theta_{1/2}$) этих процессов, например для H, H₂ и He мишеней в области энергии $E = 0.5 \dots 15$ MeV, находятся в известном [4,6,7] соотношении

$$\Theta_{1/2}^{(0,0)} \gg \Theta_{1/2}^{(-1,1)} > \Theta_{1/2}^{(-1,0)}.$$
 (5)

По мере увеличения t возрастает доля атомов водорода, испытавших рассеяние не только в процессе перехода (-1, 0), но и в некоторой последовательности соударений (-1, -1), (-1, 0), (0, 0) и, как следствие, отклонившихся на большие углы. Результирующее ПУР атомов водорода представляет собой изменяющуюся от t суперпозицию нескольких распределений с различными комбинациями процессов рассеяния без изменения заряда, дополняющих основной переход с отрывом электрона,

$$(-1,0); (-1,-1) + (-1,0); (-1,0) + (0,0); (-1,-1) + (-1,0) + (0,0).$$
(6)

При этом с увеличением t по мере роста доли Φ_0 атомов водорода вклад комбинаций с рассеянием (0,0) на стадии атома существенно возрастает, что приводит к формированию своеобразного пьедестала в наблюдаемом ПУР. Дальнейшее увеличение $t > t_{max}$ дает постепенное уменьшение узкоугловой части ПУР за счет роста кратности процесса рассеяния (0, 0), а угловой размер ПУР увеличивается.

Изменение сорта частиц нейтрализующей мишени приводит не только к получению различной доли Φ_0^{max} атомов водорода в пучке [8], но и к изменению формы ПУР. Переход к более тяжелой мишени сопровождается увеличением отношения сечений $\sigma(0,0)/\sigma(-1,0)$ и соответствующим увеличением доли пьедестала в наблюдаемом ПУР при $t = t_{\text{max}}$; Для водородной мишени этот пьедестал минимален, что находит отражение в меньших, чем в других мишенях, значениях характерных углов рассеяния.

Из приведенных в табл. 1 и на рис. 6 данных для рассеяния ионов H⁻ в CO₂ с потерей электрона видно, что и для ПШПВ $\beta_{1/2}$, и для стандартного отклонения δ , если их экстраполировать на нулевую толщину мишени,

Рис. 4. Стационарное отклонение ПУР атомов H^0 , образованных при рассеянии ионов H^- с энергией 10.4 MeV в $I - H_2$, $2 - O_2$ и $3 - CO_2$ мишенях в зависимости от толщины мишени; линии — результат аппроксимации линейной функцией с определением коэффициентов по месту наименыших квадратов.

Рис. 5. Относительная доля центральной части ПУР (см. (4)) атомов H^0 , образованных при рассеянии ионов H^- с энергией 10.4 MeV в $I - H_2$, $2 - O_2$ и $3 - CO_2$ мишенях в зависимости от толщины мишени. Линии — результаты аппроксимации линейной функцией с определением коэффициентов по методу наименьших квадратов.

Рис. 6. Энергетическая зависимость полной ширины спектра на полувысоте (ПШПВ) и стандартного отклонения (δ) ПУР, экстраполированных на нулевую толщину мишени СО₂. Кружками обведены значения δ , измененные при $t \approx t_{max}$. Линии — расчет по (7).

наблюдается одинаковая энергетическая зависимость

$$\beta_{1/2} = C_{\beta} E^{-0.5}, \quad \delta = C_{\delta} E^{-0.5},$$
(7)

где $C_{\beta} = 40 \pm 2 \,(\mu \text{rad}), C_{\delta} = 24 \pm 4 \,(\mu \text{rad}),$ энергия *E* выражена в MeV.

В табл. 1 сравниваются характерные углы ($\beta_{1/2}$ и δ) для различных процессов рассеяния с потерей 1 или 2 электронов. В силу экспериментальных трудностей формирования пучков нужной зарядности некоторые измерения выполнены лишь при одном значении толщины мишени и должны рассматриваться как оценочные. По сравнению со стандартным отклонением ПУР потери одного электрона ионами H⁻ стандартное отклонение ПУР потери двух электронов увеличивается приблизительно в 3 раза, а потери электрона атомами H⁰ — в 2 раза. Значения констант C_{δ} из (7) для процессов (0,1) и (-1, 1) равны 54 и 68 µгаd соответственно, констант C_{β} для этих же процессов — 100 и 120 µгаd (при расчете не учитывались значения при E = 1.67 и 15 MeV, измененные лишь в области $t \approx t_{max}$).

В табл. 2 сравниваются характерные углы ($\beta_{1/2}$ и δ) спектров рассеяния ионов H⁻ с потерей электрона в различных мишенях, приведенные к нулевой толщине мишени. Из приведенных в ней данных следует, что в пределах точности измерений значения этих углов не зависят от типа исследованных мишеней при одной и той же энергии ионов.

Заключение

1. В пределах погрешности эксперимента найденные в данной работе для одного и того же значения энергии *E* характерные углы δ и $\beta_{1/2}$ для процессов (-1, 0), (-1, 1), (0,1) в условиях однократного рассеяния (приведенные к "нулевой" толщине) не зависят от типа мишени из числа использованных, что подтверждает аналогичный вывод работ [4,8] для процесса (-1, 0). Полученные данные по углам для процессов (-1, 1) и (0,1) подтверждают сделанный вывод и для этих процессов. Измеренные углы для всех процессов зависят от энергии как $E^{-1/2}$.

2. Из всех исследованных нами мишеней водородная нейтрализующая мишень является предпочтительной с точки зрения уменьшения угловых размеров нейтрального пучка водорода (за счет меньшей доли дополнительного рассеяния типа (0, 0), что особенно важно в области толщины мишени $t \approx t_{max}$).

Список литературы

- Todd A.M.M., Bryhwiler D.L., Reusch M.F. // Proc. of 1st Intern. Workshop "Beam Dynamics and Optimization". St. Petersburg, 1994. P. 169–178.
- Дьячков Б.А., Зиненко В.И., Казанцев Г.В. // ЖТФ. 1977.
 Т. 47. Вып. 2. С. 416–420.
- [3] Ильин Р.Н., Сахаров В.И., Серенков И.Т. // ЖТФ. 1989.
 Т. 59. Вып. 3. С. 124–127.
- [4] Lee Y.T., Chen J.C.Y. // Phys. Rev. A. 1979. Vol. 19. N 2. P. 526–533.
- [5] Johnstone J.A. // Nucl. Instrum Meth. Phys. Res. B. 1990. Vol. 52. N 1. P. 1–8.
- [6] Радченко В.И. // ЖЭТФ. 1993. Т. 103. Вып. 1. С. 40-49.
- [7] Радченко В.И. // ЖЭТФ. 1994. Т. 105. Вып. 4. С. 834-852.
- [8] Радченко В.И., Ведьманов Г.Д. // ЖЭТФ. 1995. Т. 107. Вып. 1. С. 3–19.
- [9] Радченко В.И., Ведьманов Г.Д. // ЖЭТФ. 1995. Т. 107. Вып. 4. С. 1204–1220.
- [10] Ведьманов Г.Д., Козлов В.П., Кудрявцев В.Н. и др. // ПТЭ. 1989. № 2. С. 47–50.
- [11] Ведьманов Г.Д., Лазарев Ю.Г., Хохлов К.О., Вольхин Г.И. // ПТЭ. 1997. № 3. С. 119–123.