Интермодуляция в резонаторах сверхвысокой частоты на основе высокотемпературных сверхпроводников

© Е.А. Вопилкин, А.Е. Парафин, А.Н. Резник

Институт физики микроструктур РАН, 603600 Нижний Новгород, Россия

(Поступило в Редакцию 23 июня 1998 г. В окончательной редакции 22 января 1999 г.)

Теоретически исследована генерация комбинационной частоты (интермодуляция) в сверхпроводниковых СВЧ резонаторах, обусловленная нелинейностью ВТСП. Получено общее соотношение, связывающее мощность сигнала интермодуляции с электродинамическими характеристиками резонатора, физическими параметрами ВТСП и интенсивностью волн накачки. На основе имеющихся в литературе данных оценен параметр, характеризующий нелинейность ВТСП. Проанализированы перспективы использования различных типов резонаторов для диагностики нелинейности ВТСП.

Введение

01:05:09

В последние годы заметно возрос интерес к исследованиям нелинейных СВЧ свойств высокотемпературных сверхпроводников (ВТСП). Причины этого интереса связаны, во-первых, с перспективами применения ВТСП в устройствах СВЧ электроники, во-вторых, с задачами контроля качества ВТСП пленок, в-третьих, с фундаментальными проблемами физики сверхпроводников. Одним из физических эффектов, часто используемых в качестве теста на нелинейность, является интермодуляция (ИМ), или генерация¹ комбинационной частоты $2\omega_1 - \omega_2$ при воздействии на ВТСП волн накачки с частотами $\omega_{1,2}$ [1–3]. Тест на ИМ является наиболее чувствительным по амплитуде переменного магнитного поля [2], что позволяет осуществлять диагностику при сравнительно низких СВЧ мощностях. Для исследования ИМ применяются СВЧ резонаторы различных типов: полосковые [1,3] или объемные [2], а нелинейность ВТСП характеризуется зависимостью выводимой мощности на комбинационной частоте P_{IM} от подводимой мощности волн накачки P_{in} , т. е. $P_{IM}(P_{in})$ (обычно $P_{in}^{\omega_1} = P_{in}^{\omega_2} = P_{in}$). При достаточно слабых сигналах $P_{\rm IM} \sim P_{\rm in}^3$. Очевидно, что зависимость $P_{IM}(P_{in})$ определяется в значительной мере не только внутренними свойствами ВТСП, но также и электродинамическими характеристиками использованного резонатора. Указанное обстоятельство затрудняет исследования, если требуется сделать вывод о механизме нелинейности ВТСП или сравнить качество сверхпроводниковых пленок, протестированных с помощью разных резонаторов. В этих целях необходимо развить теорию интермодуляции, которая бы позволила из экспериментально полученной зависимости $P_{\rm IM}(P_{\rm in})$ определить физический параметр ВТСП, ответственный за нелинейные эффекты в СВЧ устройствах и не зависящий от характеристик диагностической системы. От-

¹ С физической точки зрения этот эффект аналогичен генерации 3-й гармоники, которая также наблюдалась в ряде работ, посвященных исследованию нелинейности ВТСП [4,5]. Однако здесь мы для определенности будем говорить только об интермодуляции. метим, что для частного случая полоскового резонатора подобные задачи решались в [6,7]. В данной работе мы рассмотрим задачу с общих позиций безотносительно к конкретному типу резонатора. Будет также проведен сравнительный анализ эффективности различных типов резонаторов для ИМ диагностики ВТСП.

С недавнего времени для исследований ВТСП начали применяться ближнепольные микроскопы (БМ) [8–10] СВЧ диапазона. Примером подобного устройства служит коаксиальный резонатор [10], центральный проводник которого находится в контакте с ВТСП пленкой. Главным свойством БМ является независимость разрешающей способности от длины волны λ . Так, в работе [10] при $\lambda \approx 25$ ст достигнуто разрешение $\sim 1 \,\mu$ т. В работах [8–10] БМ применялись для диагностики линейных СВЧ свойств ВТСП. Здесь мы проанализируем перспективы применения БМ Для исследований нелинейности ВТСП.

Электродинамические характеристики резонаторов

Для дальнейшего анализа нам потребуются некоторые определения и соотношения из теории резонаторов, явлющиеся общими для всех типов устройств. Рассмотрим резонаторы двухполюсник и четырехполюсник, схематически показанные на рис. 1.

а) Резонатор-двухполюсник (рис. 1, a). Подводимое по волноводу излучение возбуждает через элемент связи соответствующую моду резонатора и частично отражается обратно в волновод, а частично поглощается стенками резонатора. Нагруженная добротность резонатора Q_L определяется как

$$Q_L = \frac{Q_C}{(1+\beta)},\tag{1}$$

где Q_C — собственная добротность, связанная с омическими потерями в стенках; β — параметр связи, причем $\beta = 1$ отвечает критической связи.

Рис. 1. Схема измерения ИМ: *а* — резонатор-двухполюсник, *b* — четырехполюсник.

Запасенная в резонаторе энергия электромагнитного поля W выражается через подводимую мощность на резонансной частоте ω соотношением

$$W = \omega^{-1} P_{\rm in} Q_C \frac{4\beta}{(1+\beta)^2}.$$
 (2)

Коэффициенты отражения и поглощения резонатора, определяемые через отраженную и диссипируемую мощность P_r , P_d , соответственно равны

$$\frac{P_r}{P_{\rm in}} = \frac{(1-\beta)^2}{(1+\beta)^2}, \quad \frac{P_d}{P_{\rm in}} = \frac{4\beta}{(1+\beta)^2}.$$
 (3)

Критической связи $\beta = 1$ отвечает безотражательный режим возбуждения резонатора. При этом величина запасенной энергии W для заданной $P_{\rm in}$ максимальна, а вся подводимая мощность поглощается.

Омическая добротность резонатора связана с поверхностным сопротивлением материала стенок R_S

$$Q_C = GR_S^{-1},\tag{4}$$

а максимальное значение амплитуды магнитного поля H_m на стенке — с энергией W

$$H_m = \eta_H \sqrt{\omega W} = \eta_H \frac{2\sqrt{\beta}}{1+\beta} \sqrt{P_{\rm in} Q_C}.$$
 (5)

В формулах (4), (5) G — геометрический фактор, η_H — полевой фактор. Параметры G, η_H определяются пространственной структурой электромагнитного поля в возбуждаемой моде и могут быть выражены через геометрические характеристики каждого конкретного резонатора.

б) Резонатор-четы рехполюсник (рис. 1, b) Для таких резонаторов подаваемое на вход излучение в некоторой пропорции передается в выходной волновод, поглощается в резонаторе и отражается обратно во входной волновод. Основные характеристики резонатора можно получить, используя *S*-параметры [11],

$$S_{11} = 1 - \frac{2\beta_1}{1 + \beta_1 + \beta_2}, \quad S_{12} = \frac{2\sqrt{\beta_1\beta_2}}{1 + \beta_1 + \beta_2},$$
 (6)

где $\beta_{1,2}$ — коэффициенты связи на входе и выходе соответственно.

Рассмотрим резонатор с симметричными входом и выходом $\beta_1 = \beta_2 = (1/2)\beta$. Тогда энергетические коэффициенты отражения, прохождения и поглощения представляются в виде

$$\frac{P_r}{P_{\rm in}} = \frac{1}{(1+\beta)^2} = (1-r_\nu)^2,$$
$$\frac{P_r}{P_{\rm in}} = \frac{\beta^2}{(1+\beta)^2} = r_\nu^2,$$
$$\frac{P_d}{P_{\rm in}} = \frac{2\beta}{(1+\beta)^2} = 2r_\nu(1-r_\nu),$$
(7)

где r_{ν} — коэффициент передачи по полю, использованный в работах [1,12] вместо β .

Выражение для добротности Q_C совпадает с (4), а максимальное поле

$$H_{m} = \eta_{H} \frac{\sqrt{2\beta}}{1+\beta} \sqrt{Q_{C} P_{\text{in}}} = \eta_{H} \sqrt{2r_{\nu}(1-r_{\nu})Q_{C} P_{\text{in}}}.$$
 (8)

Таким образом, для четырехполюсников критической связи ($\beta = 1, r_{\nu} = 1/2$) отвечает максимальная величина H_m , при этом $(1/2)P_{\rm in}$ поглощается в резонаторе, а по $(1/4)P_{\rm in}$ отражается и проходит на выход.

Нелинейный отклик резонатора

Рассмотрим ИМ диагностику ВТСП с помощью резонатора-двухполюсника. Схематически процесс измерений показан на рис. 1, *а*. ВТСП пленка служит одной из проводящих стенок резонатора, и только эта пленка является источником нелинейных волн. Сигналы накачки на частотах $\omega_{1,2}$ имеют одинаковые мощности $P_{\rm in}$. Частоты $\omega_1, \omega_2, 2\omega_1 - \omega_2$ лежат в пределах полосы одной моды резонатора, т.е. $2(\omega_1 - \omega_2)/\omega_1 \ll Q_L^{-1}$. В резонаторе на поверхности ВТСП возбуждаются на каждой частоте $\omega_{1,2}$ магнитное и электрическое поля, тангенциальные компоненты которых равны

$$H_{R}(\mathbf{r}) = H_{R}^{m}\varphi_{R}^{H}(\mathbf{r}),$$
$$E_{R}(\mathbf{r}) = Z_{S}H_{R}(\mathbf{r}) = Z_{S}H_{R}^{m}\varphi_{R}^{H}(\mathbf{r}),$$
(9)

где H_R^m — максимальное значение амплитуды поля H_R ; Z_S — поверхностный импеданс ВТСП; $\varphi_R^H(\mathbf{r})$ — собственная функция соответствующей моды резонатора, нормированная так, что (φ_R^H)_{max} = 1.

В формулах (9) без ограничения общности конечных результатов полагаем каждое поле ориентированным вдоль одной из ортогональных координат, а амплитуду H_R считаем действительной. Электромагнитные поля резонатора (9) с частотами $\omega_{1,2}$ возбуждают нелинейный электрический ток интермодуляции с полностью $j_{IM}^e(z, \mathbf{r}) \exp(i(2\omega_1 - \omega_2)t)$, который считаем ориентированным вдоль \mathbf{E}_R . Введем поверхностный электрический ток ИМ, комплексную амплитуду которого определим как $\xi_{IM}^e(\mathbf{r}) = \int_0^t j_{IM}^e(z, \mathbf{r}) dz$, где t — толщина ВТСП. Ток

 $\xi^e_{\rm IM}$ связан с магнитными полями накачек на поверхности ВТСП соотношением

$$\xi_{\mathrm{IM}}^{e}(\mathbf{r}) = \alpha \left[H_{R}^{\omega_{1}}(\mathbf{r}) \right]^{2} \left[H_{R}^{\omega_{2}}(\mathbf{r}) \right]^{*} = \alpha (H_{R}^{m})^{3} \left[\varphi_{R}^{H}(\mathbf{r}) \right]^{3}.$$
(10)

Формула (10) является универсальной (т.е. не зависящей от конкретного механизма нелинейности) для нелинейной хорошо проводящей среды, если эта среда обладает следующими общими свойствами: 1) тензор проводимости диагонален, причем в горизонтальной плоскости среда изотропна; 2) поперечный масштаб изменения поля H_R , определяемый функцией $\varphi_R^H(\mathbf{r})$, намного превосходит соответствующий масштаб вдоль *z* — глубину скин-слоя, в этом случае электрическое и магнитное поля на поверхности ВТСП на всех частотах связаны импедансным граничным условием (9); 3) нелинейность является локальной, т.е. в материальном уравнении среды плотность тока в некоторой точке зависит от поля только в той же точке. С учетом этих условий коэффициент α в (10) определяется только электромагнитными свойствами ВТСП и механизмом нелинейности, который мы в данной работе не конкретизируем. В соответствии с (10) можно определить характеристическое магнитное поле СВЧ по ИМ как $H_c^{\text{IM}} = |\alpha|^{-1/2}$, которому отвечает плотность СВЧ тока $j_c^{\text{IM}} \approx H_c^{\text{IM}}/t$, если лондоновская глубина проникновения элетромагнитного поля в ВТСП $\Lambda \geq t$. В данной работе развивается подход, согласно которому из измерений P_{IM} определяются параметры H_c^{IM} или j_c^{IM} . Эти параметры играют ту же роль, что и критические величины j_c , H_c по постоянному току и полю, т.е. характеризуют физические свойства ВТСП и не зависят от конкретной диагностической системы. Реализация данного подхода позволит сопоставлять нелинейные свойства пленок, протестированных с помощью различных диагностических систем. Измерение параметров H_c^{IM} , j_c^{IM} важно также и для изучения механизмов СВЧ нелинейности.

Будем рассматривать случай слабой нелинейности, когда доминирующую роль при генерации сигнала ИМ играет четырехволновое взаимодействие. В этом случае $\xi_{IM}^e \ll H_R$, а задача о возбуждении нелинейного тока может быть решена по теории возмущений. В таком приближении мощность ИМ сигнала P_{IM} , посылаемого в подводящую линию, рассчитывается на основе линейной теории излучения заданного стороннего тока в резонаторе. С этой целью воспользуемся теоремой взаимности для полей ИМ и волны накачки, а также соответствующих им токов в некотором сечении волновода z = 0 и на поверхности ВТСП $z = L_R$ (см. рис. 1, *a*). Тангенциальные компоненты электрического и магнитного полей накачки при z = 0 выражаются через максимальные амплитуды H_{in} , $E_{in} = Z_V H_{in}$ полей падающей волны как

$$E(\mathbf{r}) = Z_V H_{\rm in}(1+r_0)\varphi_V^E(\mathbf{r}),$$

$$H(\mathbf{r}) = H_{\rm in}(1-r_0)\varphi_V^H(\mathbf{r}),$$
(11)

где Z_V — волновой импеданс волновода, r_0 — коэффициет отражения по полю, $\varphi_V^{E,H}(\mathbf{r})$ — нормированные собственные функции соответствующей моды волновода. Поля (11) считаем ориентированными вдоль одной из ортогональных координат каждое. В соответствии с общим подходом к задачам об излучении [13] полям $E(\mathbf{r})$, $H(\mathbf{r})$ ставятся в соответствие амплитуды сторонних поверхностных токов $\xi_{e,m}$ (индексы e, m отвечают электрическому и магнитному токам) в сечении волновода z = 0

$$\xi_m(\mathbf{r}) = E(\mathbf{r}), \quad \xi_e(\mathbf{r}) = H(\mathbf{r}). \tag{12}$$

Каждой из токов (12) возбуждает соответствующую ему часть полного электрического поля (9) на поверхности ВТСП в резонаторе, т.е.

$$E_R(\mathbf{r}) = E_R^e(\mathbf{r}) + E_R^m(\mathbf{r}). \tag{13}$$

Применяя теорему взаимности, имеем

$$\int_{S_V} \xi_m(\mathbf{r}) H_{\rm IM}(\mathbf{r}) ds = \int_{S_R} \xi_{\rm IM}^e(\mathbf{r}) E_R^m(\mathbf{r}) ds,$$
$$\int_{S_V} \xi_e(\mathbf{r}) E_{\rm IM}(\mathbf{r}) ds = \int_{S_R} \xi_{\rm IM}^e(\mathbf{r}) E_R^e(\mathbf{r}) ds, \qquad (14)$$

где S_V , S_R — площади сечения волновода и ВТСП стенки резонатора соответственно.

Просуммируем (14), принимая во внимание следующие соотношения:

$$H_{\rm IM}(\mathbf{r}) = H_{\rm IM}^m \varphi_V^H(\mathbf{r}),$$

$$_{\rm IM}(\mathbf{r}) = E_{\rm IM}^m \varphi_V^E(\mathbf{r}) = Z_V H_{\rm IM}^m \varphi_V^E(\mathbf{r}).$$
(15)

После суммирования с учетом (9)-(13) получим

E

$$\alpha Z_{S}(H_{R}^{m})^{4} \int_{S_{R}} \left[\varphi_{R}^{H}(\mathbf{r})\right]^{4} ds = 2Z_{V}H_{\mathrm{in}}H_{\mathrm{IM}}^{m}$$
$$\times \int_{S_{V}} \varphi_{V}^{E}(\mathbf{r})\varphi_{V}^{H}(\mathbf{r})ds. \quad (16)$$

Введем следующие характеристики волновода и резонатора:

$$S_V^{ef} = \int\limits_{S_V} \varphi_V^E(\mathbf{r}) \varphi_V^H(\mathbf{r}) ds \tag{17}$$

эффективная площадь сечения волновода,

$$S_{R}^{ef} = \int_{S_{R}} \left[\varphi_{R}^{H}(\mathbf{r}) \right]^{2} ds$$
 (18)

— эффективная площадь ВТСП стенки резонатора,

$$\gamma = [S_R^{ef}]^{-1} \int\limits_{S_R} [\varphi_R^H(\mathbf{r})]^4 ds \tag{19}$$

 коэффициент возбуждения соответствующей моды резонатора нелинейным током.

Тип резонатора, возбуждаемая мода	S_R^{ef}	G	η_{H}	γ
Цилиндрический, <i>TE</i> ₀₁₁	$\pi R^2 rac{J_0^2(A_{01})}{(J_1^m)^2}$	$\frac{\omega\mu_0 L}{2} \frac{1 + \left(\frac{A_{01}L}{\pi R}\right)^2}{1 + \frac{L}{R} \left(\frac{A_{01}L}{\pi R}\right)^2}$	$\sqrt{\frac{4\left[1+\left(\frac{A_{01}L}{\pi R}\right)^2\right]^{-1}}{\omega\mu_0 L S_R^{e_f}}}$	0.252
Коаксиальный, ТЕМ	$2\pi\rho^2\ln(R/\rho)$	$\omega\mu_0\rho\ln(R/\rho)$	$\sqrt{rac{4}{\omega\mu_0 L S_R^{ef}}}$	$\frac{1}{2\ln(R/\rho)}$
Полосковый, ТЕМ	$\frac{\zeta Lw}{\pi d}(1+u)$	$\frac{\omega\mu_0 d}{2(1+u)}$	$\sqrt{rac{1+u}{\pi^2\omega\mu_0 dS^{ef}_{_R}}}$	$\frac{3d}{4\pi w} \frac{1 + \frac{2\pi^2 \zeta w}{d^2} (1+u)}{(1+u)}$

За счет того что пространственная структура тока (10) не совпадает с собственной функцией моды $\varphi_R^H(\mathbf{r})$, коэффициент $\gamma < 1$. Выразим в (16) поля H_{IM}^m , H_{in} через соответствующие мощности

$$P_{\rm in} = (1/2) S_V^{ef} Z_V H_{\rm in}^2, \quad P_{\rm IM} = (1/2) S_V^{ef} Z_V |H_{\rm IM}|^2.$$
 (20)

Тогда, принимая во внимание связь поля H_R^m с подводимой мощностью P_{in} (5), из (16) найдем мощность сигнала ИМ, излучаемую из резонатора в волновод,

$$P_{\rm IM} = (2H_c^{\rm IM})^{-4} \gamma^2 (S_R^{ef})^2 |Z_S|^2 \eta_H^8 \left(\frac{2\sqrt{\beta}}{1+\beta}\right)^8 Q_C^4 P_{\rm in}^3.$$
(21)

Аналогичным образом может быть исследован и резонатор-четырехполюсник (рис. 1, *b*). В этом случае выражение для P_{IM} в окончательном виде совпадает с (21) с точностью до замены $2\sqrt{\beta}/(1+\beta) \rightarrow \sqrt{2\beta}/(1+\beta) = \sqrt{2r_{\nu}(1-r_{\nu})}$.

Итак, полученное соотношение (21) решает поставленную задачу — выразить мощность P_{IM} через параметры резонатора γ , S_R^{ef} , η_H , β , Q_C и характеристики собственно ВТСП пленки $|Z_S|$, H_c^{IM} . Формула (21) позволяет по измеренной величине P_{IM} определить параметры H_c^{IM} или j_c^{IM} , которые характеризуют нелинейность ВТСП безотносительно к конкретной диагностической системе. Этот подход целесообразно использовать при тестировании качества ВТСП пленок и при изучении механизма нелинейности, с которым непосредственно связаны величины параметров H_c^{IM} , j_c^{IM} , а также их температурные и частотные зависимости. Заметим, что в настоящее время еще не сложилось единого мнения относительно этого механизма (см., например, [14]). Из формулы (21) следует первый очевидный вывод, что измерения ИМ выгоднее производить при критическом параметре связи $\beta = 1$, так как в этом случае $P_{\rm IM}$ максимальна, причем для резонатора-четырехполюсника P_{IM} оказывается при прочих равных условиях в 2⁴ раза меньше, чем для двухполюсника.

Параметры резонаторов

Приведем выражения для параметров, вошедших в формулу (21), для нескольких типов резонаторов, наиболее часто используемых в практике диагностики ВТСП. Полученные соотношения сведены в табл 1. Рассматривались следующие резонаторы и возбуждаемые в них моды:

а) Цилиндрический резонатор, мода TE_{011} . Резонаторы этого типа, а также близкие по структурам полей диэлектрические резонаторы применялись в работах [2,15–17]. Пространственная структура магнитного поля в цилиндрических координатах имеет вид

$$H_r(r,z) = H_m \frac{J_1(\chi r)}{J_1^m} \cos\left(\frac{\pi z}{L}\right), \qquad (22)$$

$$H_z(r,z) = \frac{A_{01}L}{\pi R} H_m \frac{J_0(\chi r)}{J_1^m} \sin\left(\frac{\pi z}{L}\right), \qquad (23)$$

где $J_{0,1}(x)$ — функции Бесселя нулевого и первого порядков; J_1^m — максимальное значение функции $J_1(x)$; L, R — высота и радиус основания цилиндра; $\chi = A_{01}/R$; $A_{01} \approx 3.832$ — корень уравнения $J_1(x) = 0$.

При выводе выражения для геометрического фактора G в табл. 1 мы полагали, что резонатор выполнен из нормального металла, за исключением одной торцевой стенки, в качестве которой служит ВТСП пленка, имеющая пренебрежимые омические потери.

б) Коаксиальный резонатор, мода *TEM*. Эти резонаторы используются в ближнепольных микроскопах [9,10] для диагностики линейных СВЧ свойств ВТСП. Поскольку подобные системы представляются весьма перспективными и для исследований нелинейности ВТСП, включим их в рассмотрение. Считаем, что резонатор выполнен по типу [10]. ВТСП пленка является торцевой стенкой резонатора и находится в проводящем контакте с тонким центральным проводником коаксиала, выполненным из нормального металла (контакт может быть омическим, емкостным или индуктивным). Магнитное поле имеет структуру

$$H_{\alpha}(r,z) = H_m\left(\frac{\rho}{r}\right)\cos\left(\frac{\pi}{L}z\right)$$
(24)

при $\rho \leq r \leq R$, где ρ , R — радиусы внутренней и внешней проводящих поверхностей коаксиала, L — его длина. В приведенных в табл. 1 соотношениях предполагалось, что $\rho \ll R$. Тогда потери в резонаторе определяются только поглощением в нормально-металлическом центральном проводнике.

в) Полосковый резонатор, *ТЕМ*-мода. Рассмотрим резонатор, аналогичный по конструкции исследованному в [1,12,18], который представляет собой полуволновой отрезок симметричной полосковой линии с проводящими поверхностями (узким центральным полоском и широкими экранами) из ВТСП. Структура магнитного поля резонатора в прямоугольной системе координат, начало которой находится в центре полоска, представляется в виде

$$\mathbf{H}(x, y, z) = \left[H_x(x, y)\mathbf{x}^0 + H_y(x, y)\mathbf{y}^0\right]\cos\left(\frac{\pi}{L}z\right), \quad (25)$$

где *L* — длина отрезка линии вдоль продольной координаты *z*.

Основные трудности при расчете поперечной структуры поля $H_{x,y}(x, y)$ в таком резонаторе связаны с резким нарастанием поля на краях полоска (краевой эффект), для строгого учета которого приходится применять довольно сложные численные алгоритмы [18]. В данной работе мы ограничимся приближенными оценками характеристик резонатора. Будем считать, что ширина w и толщина d линии находятся в соотношении $d \ll w$, а при расчете краевого эффекта используем приближение, предложенное в работе [19]. В этом приближении поперечную структуру поля на поверхности полоска можно представить в виде [20]

$$H_y(x, y=0)=0,$$

$$H_{x}(x, y = 0) = \begin{cases} H_{m}\varphi_{H}(x), & 0 \le |x| \le w/2 - \zeta, \\ H_{m}\varphi_{H}(w/2 - \zeta), & w/2 - \zeta < |x| \le w/2, \end{cases}$$
(26)

где $\zeta = 2\Lambda^2/t$, Λ — лондоновская глубина проникновения поля в ВТСП, t — толщина сверхпроводящего полоска,

$$\varphi_H(x) = \sqrt{\frac{1 - \exp(-2\pi\zeta/d)}{1 - \exp(-2\pi(w/2 - |x|)/d)}}.$$
 (27)

Интермодуляция в ВТСП резонаторах

Прежде всего оценим величину параметра H_c^{IM} в (21) на основе опубликованных экспериментальных данных. В частности, в [2,15] использовался диэлектрический резонатор-четырехполюсник на моде TE_{011} в диапазоне 19 GHz с параметрами $\eta_H = 11.6 A/(m\sqrt{W}), Q_C = 2 \cdot 10^6$ при температуре $T \approx 4 \,\mathrm{K}, \ S_R^{ef} \approx 5.3 \cdot 10^{-6} \,\mathrm{m}^2.$ На одном из участков приведенной в [2] зависимости $P_{\rm IM}(P_{\rm in})$, где $P_{\rm IM} \sim P_{\rm in}^3$, для $P_{\rm in} \approx 3 \cdot 10^{-2} \, {\rm W}$ получено $P_{\rm IM} \approx 1.2 \cdot 10^{-9} \, {\rm W}$, при этом магнитное поле в резонаторе достигало величины $H_m \approx 5.6 \cdot 10^2 \, \mathrm{A/m}$, из чего можно, используя (5), получить оценку $\beta \approx r_{\nu} \approx 0.02$. Заметим еще, что $|Z_S|$ ВТСП в диапазоне температур от жидкого гелия до азота и для интересующего нас диапазона частот $f = \omega/2\pi < 50\,\mathrm{GHz}$ определяется своей мнимой частью, которую можно оценить как $|Z_{\rm S}| pprox \mu_0 \omega \Lambda(T) pprox 1.5 \cdot 10^{-2} \, \Omega$. Полагая в (21) $\gamma = 0.252$ (табл. 1), получим характеристическое магнитное поле $H_c^{\rm IM} \approx 1.6 \cdot 10^4 \, {
m A/m}$. Такому полю отвечает плотность тока $j_c^{\text{IM}} = H_c^{\text{IM}}/t \approx 10^7 \,\text{A/cm}^2$ при толщине ВТСП пленки $t \approx 1.6 \cdot 10^{-7}$ m. Обращает на себя внимание хорошее соответствие сделанной оценки *i* величине критической плотности постоянного тока *i* для качественных ВТСП пленок. Вероятно, такое совпадение может свидетельствовать об общности механизмов резистивности и СВЧ нелинейности ВТСП.

Полученная оценка параметра H_c^{IM} использована для расчета ожидаемых в резонаторах разных типов зависимостей $P_{\text{IM}}(P_{\text{in}})$, которые в соответствии с (21) представим в виде

$$P_{\rm IM} = P_{\rm in}^3 / P_c^2.$$

Здесь мощность

$$P_c = \left[(2H_c^{\rm IM})^{-2} \gamma S_R^{ef} | Z_S | \eta_H^4 \left(\frac{2\sqrt{\beta}}{1+\beta} \right)^4 Q_C^2 \right]^{-1}$$
(28)

представляет собой характерную для каждой конкретной системы критическую величину $P_{\rm in}$, при которой достигается равенство $P_{\rm IM} = P_{\rm in} = P_c$. Данное равенство, естественно, надо рассматривать как условие, поскольку зависимость (21) получена при $P_{\rm IM} \ll P_{\rm in}$. Результаты расчетов показаны на рис. 2, где для сравнения

Рис. 2. Зависимости $P_{IM}(P_{in})$ для ВТСП резонаторов (1) следующих типов: 1 — полосковый; 2 — диэлектрический из работ [2,5]; 3 — коаксиальный; 4 — цилиндрический. Штриховая линия — зависимость $P_r = 10^{-2}P_{in}$.

Журнал технической физики, 2000, том 70, вып. 2

79

Таблица 2. Параметры резонаторов, использованные в расчетах

Резонатор	Полосковый	Цилиндрический	Коаксиальный
S_R^{ef} , m ²	$5.3\cdot10^{-9}$	$1.3 \cdot 10^{-3}$	$2.9\cdot 10^{-7}$
<i>G</i> , Ω	2.8	$7.1 \cdot 10^2$	36
Q_C	$2.8 \cdot 10^{3}$	$7.1 \cdot 10^4$	$3.6 \cdot 10^{3}$
γ	$7.6 \cdot 10^{-2}$	0.25	0.11
$\eta_H, A/(m\sqrt{W})$	$1.8 \cdot 10^{3}$	1.2	$1.1 \cdot 10^{2}$
β	1	1	1
P_c , W	1.8	$1.9 \cdot 10^4$	$1.1 \cdot 10^{3}$

(кривая 2) приведена соответствующая зависимость из работы [2]. Все расчеты выполнены в диапазоне частот f = 10 GHz, для которого поверхностное сопротивление меди $R_S^{\text{Cu}} \approx 10^{-2} \Omega$, ВТСП — $R_S^{SC} \approx 10^{-3} \Omega$ (R_S^{Cu} использовалось для расчета добротности Q_C цилиндрического и коаксиального резонаторов, а R_S^{SC} — полоскового), $|Z_S| \approx 1.6 \cdot 10^{-2} \Omega$ (T = 77 K). Во всех случаях принято критическое значение параметра связи $\beta = 1$. Цилиндрический и коаксиальный резонаторы полагались двухполюсниками, а полосковый — четырехполюсником. Значения P_c для рассматривавшихся резонаторов вместе с параметрами, определяющими P_c согласно (28), приведены в табл. 2. Кратко охарактеризуем каждую из систем с точки зрения ее эффективности для диагностики нелинейных свойств ВТСП.

Для полоскового резонатора расчеты выполнены при следующих значениях параметров: $d = 10^{-4} \, \mathrm{m}$, $w = 3 \cdot 10^{-4} \text{ m}, L = 10^{-2} \text{ m}, t = \Lambda = 2 \cdot 10^{-7} \text{ m},$ диэлектрическая проницаемость заполнения $\varepsilon = 10$. Как видно из рис. 2 (кривая 1) и табл. 2, в полосковых резонаторах реализуются наименьшие величины Р_с из всех рассмотренных здесь систем, т. е. при одинаковых Pin в этих резонаторах генерируются наибольшие мощности сигнала ИМ. Это связано с отмеченным выше краевым эффектом. Усиление поля на краях полосков резко снижает эффективную поверхность S_R^{ef} и повышает полевой фактор η_H (табл. 2). Сделанный вывод подтверждается результатами экспериментальных исследований [1,3], где ИМ наблюдалась уже при $P_{\rm in} \sim 10^{-8} - 10^{-5}$ W. Тем не менее полосковые резонаторы нельзя признать оптимальными системами для диагностики нелинейности ВТСП. Недостатком здесь является то, что объектом исследования служит изделие из ВТСП, в котором первичная пленка подвергается обработке. Кроме того, диагностируются только небольшие участки на краях пленок, где происходит локальное усиление поля. Эти участки жестко привязаны к конструкции конкретного резонатора, к тому же именно вблизи краев следует ожидать наибольшего воздействия на свойства ВТСП при структурировании.

Рассматривая цилиндрический резонатор, обратим прежде всего внимание на существование оптимального отношения $L/R = \nu$, при котором P_{IM} максимальна.

В соответствии с (21) и соотношениями из табл. 1 $P_{\text{IM}} \sim \Psi^4(\nu)$, rge $\Psi(\nu) = \nu / \left[\sqrt{1 + k^2 \nu^2} (1 + k^2 \nu^3) \right]$, $k = A_{01}/\pi \approx 1.22$. Функция $\Psi(\nu)$ имеет максимум при $\nu \approx 0.6$. Расчеты (кривая 4 на рис. 2) выполнены для такого оптимального резонатора без диэлектрического заполнения с размерами $L = 1.8 \cdot 10^{-2}$ m, $R = 3 \cdot 10^{-2}$ m. Из результатов расчетов на рис. 2 следует, что измерение P_{IM} в цилиндрическом резонаторе из нормального металла требует больших СВЧ мощностей Pin. Примем во внимание, что даже для согласованного резонатора $(\beta \approx 1)$, как правило, не удается полностью избавиться от отражения волн накачки $P_r^{\omega_{1,2}}$. Отметим также, что высокая добротность резонатора $Q_L > 10^4$ (табл. 2) накладывает требования на взаимное расположение частот ω_1 , ω_2 , $2\omega_1 - \omega_2$, которые должны находиться в узкой полосе $\Delta \omega < 10^{-5} \omega_{1,2}$. Указанное условие делает практически невозможной фильтрацию отраженных сигналов $P_r^{\omega_{1,2}}$ без подавления полезного сигнала P_{IM} . В таких условиях чувствительность измерительных приборов по Р_{ІМ} ограничена некоторым фиксированным уровнем относительно Pr, который для современных устройств составляет $\sim -70 \, \mathrm{dB}$ [1,2]. Полагая $P_r = 10^{-2} P_{\mathrm{in}}$ и пользуясь результатами расчетов на рис. 2, приходим к выводу, что исследования ИМ с помощью цилиндрических резонаторов возможны при $P_{\rm in} > 1$ W. Кроме высоких мощностей подобные резонаторы требуют больших размеров ВТСП пленок, диаметр которых составляет для рассматриваемого устройства ~ 6 ст. Уменьшение диаметра за счет увеличения L/R приведет к нарушению условия оптимальности и, следовательно, к росту Рс. Например, при диаметре $\sim 4\,\mathrm{cm}$ мощность P_c возрастает более чем в 50 раз. Диагностические возможности подобных резонаторов могут быть улучшены за счет ряда модернизаций, использованных в [2,15]. В этом устройстве применено диэлектрическое заполнение, что привело к снижению S_R^{ef} и повышению η_H . Кроме того, добротность резонатора была увеличена на 2 · 10⁶ за счет использования оболочки из низкотемпературного сверхпроводника и охлаждения системы до гелиевых температур. Указанные модернизации позволили снизить критическую мощность до $P_c \sim 1.4 \cdot 10^2$ W (рис. 2, кривая 2), но значительно увеличили стоимость устройства и сложность его эксплуатации.

Интересные перспективы для диагностики нелинейности ВТСП имеют коаксиальные резонаторы, используемые по принципу ближнепольного СВЧ микроскопа [9,10]. Подобные устройства обладают высокой разрешающей способностью, поскольку S_R^{ef} определяется главным образом диаметром центрального проводника ρ (табл. 1), который может быть сделан достаточно малым вплоть до микронных размеров. При этом система свободна от перечисленных выше недостатков полосковых резонаторов. Важное следствие формулы (21) и приведенных в табл. 1 характеристик заключается в том, что мощность $P_{\rm IM}$, излучаемая коаксиальным резонатором, не зависит от его геометрических параметров

 ρ , R, если $\rho \ll R$. Расчеты на рис. 2 (кривая 3) и в табл. 2 выполнены для $\rho = 10^{-4} \,\mathrm{m}, \ R/\rho = 10^2,$ $L = 1.5 \cdot 10^{-2}$ m. Видно, что по величине P_c коаксиальный резонатор занимает промежуточное положение между полосковым и цилиндрическим. Преимуществом этой системы по сравнению с цилиндрическим резонатором является то, что большие величины P_{IM} достигаются при более чем на порядок меньших добротностях. Данное обстоятельство позволяет изменить схему регистрации $P_{\rm IM}$ за счет использования фильтров на частоты накачки, поскольку при $Q_L < 10^3$ появляется возможность расширить частотную полосу системы до $\Delta \omega > 10^{-4} \omega_{1.2}$. После фильтрации отраженных сигналов $P_r^{\omega_{1,2}}$ для измерения ИМ может быть использован чувствительный приемник, для которого обнаружение сигнала на уровне $P_{IM} \ge 10^{-13} \, \mathrm{W}$ не является рекордным. В соответствии с расчетами на рис. 2 это позволит проводить измерения при $P_{\rm in} > 5 \,\mathrm{mW}$.

Выводы

В данной работе выполнен теоретический анализ интермодуляции в СВЧ резонаторах, применяемых для диагностики нелинейных электромагнитных свойств ВТСП. В качестве характеристики нелинейности ВТСП предлагается использовать характеристическое поле H^{IM} или плотность тока j_c^{IM} , которые определяются только физическими свойствами ВТСП и не зависят от электродинамических параметров резонатора. Полученное общее выражение для мощности P_{IM} позволяет из измерений ИМ с помощью резонатора произвольного типа определить величины H_c^{IM} , j_c^{IM} . Используя опубликованные экспериментальные данные, получили оценку $j_c^{\rm IM} \sim 10^7 \, {\rm A/cm^2}$ ВТСП пленки, которая оказалась близкой к величине критической плотности постоянного тока *j*_c, что может свидетельствовать об общности природы нелинейных и резистивных свойств ВТСП. На основе развитой теории ИМ выполнен сравнительный анализ эффективности различных СВЧ систем, применяемых в настоящее время для диагностики ВТСП полосковых, объемных и коаксиальных резонаторов. Представляется, что наилучшие перспективы для исследований ИМ имеют коаксиальные резонаторы, используемые по принципу ближнепольного микроскопа. Можно надеяться, что применение таких систем позволит с высокой чувствительностью осуществлять локальную диагностику нелинейности ВТСП пленок.

Авторы признательны С.А. Павлову за полезные обсуждения постановок рассмотренных здесь задач и полученных результатов.

Работа выполнена при финансовой поддержке научнотехнической программы "Актуальные проблемы физики конденсированных сред. Сверхпроводимость", проект № 96129 и Российского фонда фундаментальных исследований, проект № 96-02-16997.

Список литературы

- Oates D.E., Anderson A.C., Sheen D.M., Ali S.M. // IEEE Trans. Microwave Theory Tech. 1991. Vol. 39. P. 1522–1529.
- [2] Diete W., Getta M., Hein M. et al. // IEEE Trans Appl. Supercond. 1997. Vol. 7. N 2. P. 1236–1239.
- [3] Willemsen B.A., Dahm T., Scalapino D.J. // Appl. Phys. Lett. 1997. Vol. 71. N 26. P. 3898–3900.
- [4] Wilker C., Shen Z.-Y., Pang P. et al. // IEEE Trans. Appl. Supercond. 1995. Vol. 5. N 2. P. 1665–1670.
- [5] Боровицкая Е.С., Генкин В.М., Левиев Г.И. // ЖЭТФ. 1996. Т. 10. Вып. 3 (9). С. 1081–1094.
- [6] Vendik O.G., Vendik I.B., Samoilova T.B. // IEEE Trans. Microwave Theory Tech. 1997. Vol. 45. N 2. P. 173–178.
- [7] Dahm T., Scalapino D.J. // J. Appl. Phys. 1997. Vol. 81. N 4.
 P. 2002–2009.
- [8] Golosovsky M., Davidov D. // Appl. Phys. Lett. 1996. Vol. 68.
 N 11. P. 1579–1581.
- [9] Anlage S.M., Vlahacos C.P., Dutta S., Wellstood F.C. // IEEE Trans. Appl. Supercond. 1997. Vol. 7. N 2. P. 3686–3689.
- [10] Takeushi I., Wei T., Duewer F. et al. // Appl. Phys. Lett. 1997. Vol. 71. N 14. P. 2026–2028.
- [11] Вольман В.И. Справочник по расчету и конструированию СВЧ полосковых устройств. М.: Радио и связь, 1982. 328 с.
- [12] Oates D.E., Anderson A.C., Mankiewich P.M. // J. Supercond. 1990. Vol. 3. P. 251–259.
- [13] *Никольский В.В.* Электродинамика и распространение радиоволн. М.: Наука, 1973. 608 с.
- [14] Hein M, Diete W, Getta M. et. al. // IEEE Trans. Appl. Supercond. 1997. Vol. 7. N 2. P. 1264–1267.
- [15] Cooke D.W., Gray E.R., Arendt P.N. // J. Supercond. 1990. Vol. 3. N 3. P. 261–267.
- [16] Diete W., Aschermann B., Chaloupka H. et al. // Appl. Superconductivity / Ed. D. Dew-Hughes. Vol. 148. Bristol: IOP Publishing, 1995. P. 1107–1110.
- [17] Shen Z.-Y., Wilker C., Pang P. // IEEE Trans. Microwave Theory Tech. 1992. Vol. 40. P. 2424–2432.
- [18] Sheen D.M., Ali S.M., Oates D.E. et al. // IEEE Trans. Appl. Supercond. 1991. Vol. 1. P. 108–115.
- [19] Вендик О.Г., Попов А.Ю. // ЖТФ. 1993. Т. 63. Вып. 7. С. 1–8.
- [20] Гайкович К.П., Резник А.Н. // ЖТФ. 1998. Т. 68. Вып. 8. С. 78–86.