07;12

Методы достижения высокой чувствительности измерений в голографической интерферометрии при перезаписи голограмм некогерентным светом

© А.М. Ляликов

Гродненский государственный университет им. Я. Купалы, 230023 Гродно, Белоруссия

(Поступило в Редакцию 5 октября 1998 г.)

Предложены методы повышения чувствительности измерений при перезаписи голограмм одним пучком некогерентного света. Для достижения высокой чувствительности измерений предлагается в оптических системах перезаписи использовать дополнительно пропускающую дифракционную решетку. Рассмотрены случаи перезаписи голограмм как линейного, так и нелинейного вида. Методы позволяют снять ограничения на количество циклов перезаписи голограмм, достичь максимальной чувствительности измерений. Приведены результаты экспериментальной апробации при визуализации слабых конвенционных потоков воздуха возле нагретого тела.

Введение

При диагностике прозрачных сред большой интерес представляют голографические методы регулирования чувствительности интерференционных измерений. Несмотря на высокую чувствительность интерференционных измерений, часто на практике приходится сталкиваться с задачами диагностики, когда для удовлетворительной обработки интерферограммы количество интерференционных полос или их сдвиг недостаточны. В этом случае обычно используют методы повышения чувствительности измерений [1-3]. Методы повышения чувствительности измерений использовались при исследовании газовых потоков около моделей в аэродинамических трубах и баллистических трассах при низких давлениях, разреженных потоков в ударных трубах, для контроля точных концевых мер и малых отклонений от плоскостности, а также в интерференционной спектроскопии [2-4]. Известные методы повышения чувствительности измерений при оптической обработке голограмм основаны или на восстановлении волнового фронта в высших порядках дифракции [5-7], или на перезаписи голограмм с фильтрацией пространственных частот [8-10]. Последние методы позволяют достичь более высокой чувствительности измерений. Перезапись голограмм может производиться одним [8,9] или двумя пучками [10] света. Если во втором случае [10] перезапись голограмм может осуществляться только в когерентном свете, то при перезаписи одним пучком требования к когерентности источника существенно снижаются и, следовательно, улучшается качество перезаписанных голограмм из-за уменьшения когерентных шумов.

Недостатком метода повышения чувствительности измерений при перезаписи голограмм одним пучком являются рост частоты несущих полос на перезаписанных голограммах, ограничивающий число циклов перезаписи и соответственно возможность достижения высоких значений коэффициента чувствительности измерений. Число циклов перезаписи в некогерентном свете можно увеличить за счет одновременной перезаписи нескольких эталонных голограмм [11]. Сочетание перезаписи голограмм одним пучком некогерентного и двумя пучками когерентного света [12] позволяет полностью снять ограничения на число циклов перезаписи. Оптическая система перезаписи для реализации данной методики очень сложна, а наличие когерентного источника света ухудшает качество конечных интерферограмм из-за когерентных шумов.

В данной работе рассмотрены методы повышения чувствительности измерений при перезаписи голограмм одним пучком некогерентного света. В оптических схемах перезаписи предлагается использовать дополнительно пропускающую дифракционную решетку с периодом полос, согласованным с периодом полос перезаписываемой голограммы определенным образом [13].

Перезапись голограммы линейного вида

На рис. 1 приведена оптическая схема перезаписи голограммы линейного вида одним пучком некогерентного света. Амплитудное пропускание голограммы при выполнении линейных условий записи [4] запишем в виде

$$au_0(x,y) \sim 1 + \cos\left[\frac{2\pi x}{T_0} + \varepsilon(x,y) + \varphi(x,y)\right],$$
 (1)

где T_0 — период несущих полос; $\varepsilon(x, y)$ — изменения фазы, вызванные исследуемым объектом; $\varphi(x, y)$ — искажения фазы, обусловленные аберрациями системы регистрации исходной голограммы.

Система координат *XOY* выбрана в плоскости голограммы так, что ось *OY* параллельна несущим голографическим полосам. Отличительная особенность голограммы линейного вида (1) от нелинейного в том, что при освещении на ней дифрагируют волны только в +1и -1-й порядки дифракции, расположенные симметрично нулевому прямопрошедшему порядку. Предположим,

Рис. 1. Оптическая схема перезаписи голограмм линейного вида: *1* — голограмма; *2* — пропускающая дифракционная решетка; *3*, *5* — объективы; *4* — фильтрующая диафрагма; *6* — плоскость перезаписи голограммы.

что в оптическую систему перезаписи (рис. 1) к исходной голограмме *I* вплотную помещена пропускающая дифракционная решетка *2* с ориентацией полос параллельно несущим полосам голограммы. Пропускание такой решетки

$$\tau(x, y) = \sum_{n = -\infty}^{+\infty} c_n \exp\left[\frac{i2\pi nx}{T}\right],$$
 (2)

где c_n — коэффициенты; n = 0, 1, 2, ...; T — период полос.

При освещении по нормали совмещенных голограммы и дифракционной решетки распределение комплексных амплитуд дифрагированных волн A(x, y) прямопропорционально произведению $\tau_0(x, y)\tau(x, y)$. С учетом (1), (2) распределение комплексных амплитуд волн на выходе совмещенных голограммы и дифракционной решетки можно представить в более наглядном виде

$$A(x, y) \sim \left\{ \frac{c_0}{2} \exp\left[i(2\pi\nu_0 x + \varepsilon(x, y) + \varphi(x, y))\right] + \frac{c_0}{2} \exp\left[-i(2\pi\nu_0 x + \varepsilon(x, y) + \varphi(x, y))\right] \right\} + \left\{ \sum_{n=-\infty}^{+\infty} c_n \exp(i2\pi n\nu x) \right\} + \left\{ \sum_{n=1}^{+\infty} \frac{c_n}{2} \exp\left[i(2\pi(\nu_0 - n\nu)x + \varepsilon(x, y) + \varphi(x, y))\right] + \sum_{n=1}^{+\infty} \frac{c_n}{2} \exp\left[-i(2\pi(\nu_0 + n\nu)x + \varepsilon(x, y) + \varphi(x, y))\right] + \sum_{n=1}^{+\infty} \frac{c_n}{2} \exp\left[i(2\pi(\nu_0 + n\nu)x + \varepsilon(x, y) + \varphi(x, y))\right] + \sum_{n=1}^{+\infty} \frac{c_n}{2} \exp\left[-i(2\pi(\nu_0 + n\nu)x + \varepsilon(x, y) + \varphi(x, y))\right] \right\},$$
(3)

где ν_0 и ν — пространственные частоты дифрагированных волн, связанные с периодами несущих полос голограммы и дифракционной решетки как $\nu_0 = 1/T_0$ и $\nu = 1/T$.

На рис. 2 представлены дифракционные спектры голограммы линейного вида (a), дифракционной решетки (b)и совмещенных голограммы и дифракционной решетки (с), наблюдаемые в задней фокальной плоскости объектива 3 (рис. 1) на фильтрующей диафрагме 4. На рис. 2 отмечены значения пространственных частот дифрагированных волн, а нулевые порядки, соответствующие прямопрошелшим волнам. оставлены неотмеченными. Дифракционные спектры, приведенные на рис. 2, а-с, соответствуют случаю соотношения периодов несущих полос голограммы и дифракционной решетки $T_0 = 3/2T$ как наиболее благоприятному для реализации методики перезаписи. В дифракционном спектре совмещенных исходной голограммы и дифракционной решетки (рис. 2, c) присутствуют компоненты дифрагированных волн исключительно на голограмме (первая скобка в (3)) и на дифракционной решетке (вторая фигурная скобка в (3)), а также компоненты, испытавшие двойную дифракцию (последняя фигурная скобка в (3)). Для волн, испытавших двойную дифракцию, первые две суммы описывают дифрагированные волны с разностными пространственными частотами $\Delta \nu_n = \pm (\nu_0 - n\nu)$, а две другие суммы — с суммарными пространственными частотами $\pm(\nu_0+n\nu)$. Особый интерес для перезаписи исходной голограммы представляют дифрагированные волны с разностными пространственными частотами $\pm \Delta \nu_1$. Комплексные амплитуды этих волн

$$A_1(x,y) \sim c_1 \exp\{i[2\pi(\nu_0 - \nu)x + \varepsilon(x,y) + \varphi(x,y)]\},\$$
$$A_1^*(x,y) \sim c_1 \exp\{-i[2\pi(\nu_0 - \nu)x + \varepsilon(x,y) + \varphi(x,y)]\}.$$
 (4)

Эти волны выделяются фильтрующей диафрагмой 4 (рис. 1) с помощью двух отверстий и в плоскости 6, оптически сопряженной объективом 5 с исходной голограммой 1, образуют интерференционную картину.

Рис. 2. Дифракционные спектры.

Амплитудное пропускание перезаписанной голограммы при выполнении линейных условий

$$\tau_1(x, y) \sim 1 + \cos\left[\frac{2\pi x}{T_1} + 2\varepsilon(x, y) + 2\varphi(x, y) + \psi(x, y)\right], \quad (5)$$

где $T_1 = 1/|2(\nu_0 - \nu)|, \ \psi(x, y)$ — аберрации системы перезаписи.

Если выполнено условие соотношения периодов несущих полос исходной голограммы и дифракционной решетки $T_0 = (3/2)T$, что будет соответствовать соотношению пространственных частот $\nu = (3/2)\nu_0$, то период несущих полос перезаписанной голограммы $T_1 = T_0$, т. е. равен периоду полос исходной голограммы. Из (5) видно, что изменения фазы, вызванные исследуемым объектом, а также аберрации системы регистрации исходной голограммы увеличены в два раза.

На втором цикле перезаписи вместо исходной голограммы в схему перезаписи (рис. 1) устанавливается перезаписанная голограмма, и весь процесс повторяется. После N циклов перезаписи, где $N = 1, 2, 3, \ldots$, амплитудное пропускание перезаписанной голограммы

$$\tau_N(x, y) \sim 1 + \cos\left[\frac{2\pi x}{T_0} + 2^N \varepsilon(x, y) + 2^N \varphi(x, y) + \psi_N(x, y)\right], \quad (6)$$

где $\psi_N(x, y)$ — аберрации системы перезаписи, накопленные за N циклов.

Из (6) и (1) видно, что изменения фазы исследуемым объектом увеличины в 2^N раза, а период несущих полос голограммы остался прежним.

Для компенсации аберраций системы регистрации голограммы, которые также увеличины в 2^N раза в сравнении с аберрациями исходной голограммы, а также системы перезаписи, которые накоплены за N циклов перезаписи, может быть использована эталонная голограмма [9]. Такая голограмма регистрируется без исследуемого объекта с таким же периодом несущих полос, как и исходная (1). Амплитудное пропускание эталонной голограммы

$$\tau'(x, y) \sim 1 + \cos\left[\frac{2\pi x}{T_0} + \varphi(x, y)\right].$$
 (7)

После *N* циклов перезаписи по вышеописанной методике амплитудное пропускание конечной эталонной голограммы

$$\tau'_N(x, y) \sim 1 + \cos\left[\frac{2\pi x}{T_0} + 2\varphi^N(x, y) + \psi_N(x, y)\right].$$
 (8)

Из (8) и (6) видно, что искажения фаз, вызванные аберрациями системы регистрации и перезаписи для конечных голограмм одинаковы, что позволяет на этапе получения интерферограммы эти аберрации полностью исключить [9].

Следует отметить, что для реализации вышеописанной методики повышения чувствительности измерений исходные и промежуточные голограммы должны регистрироваться в линейных условиях, исключающих появление высших порядков дифракции, которые сильно усложняют вид дифракционного спектра. Для конечных перезаписанных голограмм (6) и (8) условие линейной регистрации необязательно, так как получение голографической интерферограммы может производиться по любой методике [2–4]. На рис. 2, *d* приведен дифракционный спектр конечной перезаписанной четыре раза (N = 4) голограммы. Конечная голограмма, перезаписанная на последнем этапе, регистрировалась уже в нелинейных условиях, о чем свидетельствует появление высших порядков с пространственными частотами, кратными ν_N . Сравнивая части *a* и *d* на рис. 2, видим, что периоды несущих полос исходной голограммы (*a*) и перезаписанной *N* раз (*d*) практически равны.

Перезапись голограммы нелинейного вида

Если исходная голограмма зарегистрирована в нелинейных условиях, то ее амплитудное пропускание [4]

$$\tau(x, y) \sim \left\{ 1 + \cos\left[\frac{2\pi x}{T_0} + \varepsilon(x, y) + \varphi(x, y)\right] \right\}^{-\gamma/2}, \quad (9)$$

где γ — коэффициент контрастности фотоэмульсии.

Для голограммы линейного вида (1) $\gamma = -2$. При освещении такой голограммы кроме ±1-х порядков дифракции в спектре присутствуют и высшие. Если голограмму нелинейного вида поместить в схему перезаписи (рис. 1), то дифракционный спектр совмещенных голограммы и дифракционной решетки в задней фокальной плоскости объектива 3 на диафрагме 4 будет иметь еще более сложную картину, чем для случая линейной голограммы. Усложнение картины спектра связано с появлением дополнительных дифракционных компонент двойной дифракции, за счет высших порядков нелинейной голограммы. Появление дополнительных компонент двойной дифракции, как с разностными $\pm (m\nu_0 - n\nu)$, где m = 2, 3, ..., так и суммарными $\pm (m\nu_0 + n\nu)$ пространственными частотами настолько усложняет картину дифракционного спектра, что практически исключает правильную идентификацию нужных для перезаписи порядков дифракции.

На рис. 3 приведена оптическая схема перезаписи голограмм нелинейного вида одним пучком некогерентного света. Данная схема перезаписи отличается от

Рис. 3. Оптическая схема перезаписи голограмм нелинейного вида: 1 — пропускающая дифракционная решетка; 2, 4, 6, 8 — объективы; 3, 7 — фильтрующие диафрагмы; 5 — голограмма; 9 — плоскость перезаписи голограммы.

Журнал технической физики, 1999, том 69, вып. 12

предыдущей (рис. 1) наличием системы 2, 4 оптического сопряжения дифракционной решетки 1 и голограммы 5. Такая система позволяет дополнительно провести фильтрацию пространственных частот в задней фокальной плоскости объектива 2 и тем самым упростить дифракционный спектр волн, испытавших двойную дифракцию.

В данной схеме перезаписи голограмм (рис. 3) предлагается с помощью дифракционной решетки 1 и системы оптической фильтрации 2–4 сформировать два пучка света, освещающих исходную голограмму 5 так, чтобы при выделении нужных волн в плоскости фильтрации 7 перезаписывалась голограмма 9 с таким же периодом несущих полос, как и исходная 5.

Предположим, что полосы дифракционной решетки *1* ориентированы в плоскости *X OY* под некоторыми углами к осям *OX* и *OY*. В этом случае ее амплитудное пропускание можно представить как

$$\tau(x,y) = \sum_{n=-\infty}^{+\infty} c_n \exp\left[i2\pi n\left(\frac{x}{T_x} + \frac{y}{T_y}\right)\right],\tag{10}$$

где T_x и T_y — расстояния между несущими полосами дифракционной решетки, измеряемые вдоль осей OX и OY соответственно.

Так как исходная голограмма (9) нелинейного вида, то рассмотрим более общий случай перезаписи голограммы в $\pm l$ -х порядках дифракции.

Если увеличение системы оптического сопряжения 2, 4 равно единице, а фильтрующей диафрагмой 3 выделяются ± 1 -е порядки дифракции, то распределение комплексных амплитуд освещающих голограмму 5 волн в плоскости исходной голограммы можно представить в виде

$$B(x, y) \sim c_1 \exp\{i2\pi(\nu_x x + \nu_y y)\},\$$

$$B^*(x, y) \sim c_1 \exp\{-i2\pi(\nu_x x + \nu_y y)\},\$$
(11)

где пространственыне частоты $\nu_x = 1/T_x$ и $\nu_y = 1/T_y$.

Распределение комплексных амплитуд дифрагированных волн на исходной голограмме 5

$$A(x, y) = [B(x, y) + B^*(x, y)]\tau_0(x, y).$$
(12)

Особый интерес представляют волны, дифрагированные на исходной голограмме в $\pm l$ -е порядки дифракции,

$$A_{l}(x, y) \sim c_{1} \exp\left\{i\left[2\pi\left((l\nu_{0}+\nu_{x})x+\nu_{y}y\right)\right.\right.$$
$$\left.\left.\left.+l\varepsilon(x, y)+l\varphi(x, y)\right]\right\},$$
$$A_{l}^{*}(x, y) \sim c_{1} \exp\left\{-i\left[2\pi\left((l\nu_{0}+\nu_{x})x-\nu_{y}y\right)\right.\right.$$
$$\left.\left.\left.\left.+l\varepsilon(x, y)+l\varphi(x, y)\right]\right\}\right\}.$$
(13)

Журнал технической физики, 1999, том 69, вып. 12

Очевидно, что если выполнено условие

$$\nu_x = -l\nu_0, \qquad \nu_y = \frac{1}{2}\nu_0, \qquad (14)$$

то амплитудное пропускание голограммы, перезаписанной в плоскости 9 при выполнении волн $A_l(x, y)$ и $A_l^*(x, y)$,

$$\tau_1(x, y) \sim \left\{ 1 + \cos\left[\frac{2\pi y}{T_0} + l\varepsilon(x, y) + l\varphi(x, y) + \psi_l(x, y)\right] \right\}^{\gamma/2}, \quad (15)$$

где $\psi_l(x, y)$ — аберрации системы перезаписи.

Из (15) видно, что ориентация несущих полос перезаписанной голограммы поменялась на 90° по отношению к несущим полосам исходной голограммы (9), однако период полос при этом не изменился.

На рис. 4 представлены дифракционные спектры, наблюдаемые в задней фокальной плоскости объектива 6 (рис. 3) на фильтрующей диафрагме 7, при перезаписи исходной голограммы в ± 1 -х (рис. 4, *a*) и ± 2 -х (рис. 4, *b*) порядках дифракции. На рис. 4 прямоугольником отмечены волны $A_1(x, y)$, $A_1^*(x, y)$ при l = 1 (*a*) и $A_2(x, y)$, $A_2^*(x, y)$ при l = 2 (*b*), которые выделяются фильтрующей диафрагмой 7 (рис. 3).

Для компенсации аберраций систем регистрации и перезаписи может быть использована эталонанная голограмма, перезаписанная такое же число раз, что и исходная.

Рис. 4. Дифракционные спектры, наблюдаемые на фильтрующей диафрагме 7 (рис. 3) при перезаписи голограммы в ± 1 -х (*a*) и ± 2 -х (*b*) порядках дифракции.

Экспериментальная апробация

Вышерассмотренные методы повышения чувствительности при перезаписи голограмм одним пучком некогерентного света были применены для визуализации слабых конвекционных потоков воздуха вблизи нагретого тела. Исходная голограмма регистрировалась в голографическом интерферометре на базе теневого прибора ИАБ-451 [14]. Период несущих полос голограммы $T_0 = 0.04$ mm. Эталонная голограмма регистрировалась без изменения схемы при отсутствии конвекционных потоков.

На рис. 5, *a*, *b* приведены восстановленные интерферограммы, полученные при совмещении исходной и эталонной голограмм, с настройкой на бесконечно широкую (*a*) и конечные (*b*) полосы. Для настройки на конечные полосы голограммы разворачивались относительно друг друга на небольшой угол [15]. При настройке на бесконечно широкую полосу в поле интерферограммы наблюдалась практически равномерная освещенность как светлого (*a*), так и темного поля. Наличие сигнала (искривление интерференционной полосы) обнаруживалось только при настройке на конечные полосы за счет разворота голограмм. Однако при относительном развороте голограмм возможно внесение в интерферограмму аберраций, соизмеримых с величиной полезного сигнала.

Для повышения чувствительности измерений при визуализации слабых конвекционных потоков воздуха был использован метод повышения чувствительности измерений с использованием голограммы линейного вида. Исходная и эталонная голограммы перезаписывались по

Рис. 5. Интерферограммы, восстановленные при совмещении исходной и эталонной голограмм (a, b) и перезаписанных исходной и эталонной голограмм с повышением чувствительности в 32 раза (c).

схеме, приведенной на рис. 1. В качестве источника света использовался гелий-неоновый лазер. Пространственная когерентность лазерного излучения нарушалась вращающимся рассеивателем. Последний находился в расфокусированной плоскости короткофокусной положительной линзы телескопической системы, формирующей коллимированный пучок. Диаметр сфокусированного на рассеивателе пятна 1-2 mm. Пропускающие дифракционные решетки изготавливались на фотоэмульсии ФГ-690 интерференционным способом. При опробовании разработанной методики использовались как амплитудные, так и фазовые решетки. Последние изготавливались при отбеливании амплитудных дифракционных решеток. Применение фазовых дифракционных решеток в схемах перезаписи голограмм позволяло значительно повысить светосилу оптических схем и тем самым уменышить время экспозиции при перезаписи голограмм. Однако фазовые дифракционные решетки, полученные при отбеливании, содержали значительно больше шумов из-за рассеивания света, чем амплитудные, что не могло не сказываться на качестве перезаписанных голограмм.

На рис. 5, с приведена восстановленная интерференционная картина с настройкой на бесконечно широкую полосу, полученная при оптической обработке перезаписанных четыре раза (N = 4) исходной и эталонной голограмм. Голограммы перезаписывались по схеме, приведенной на рис. 1. Следует отметить, что чувствительность перезаписанных голограмм была повышена в 16 раз, а интерферограммы восстанавливались в оптическом анализаторе совмещенных голограмм [4], что позволило дополнительно повысить чувствительность измерений в конечной восстановленной интерферограмме еще в два раза. Таким образом, чувствительность измерений при расшифровке конечной интерферограммы (рис. 5, c) была повышена в 32 раза в сравнении с чувствительностью интерферограммы (рис. 5, *a*, *b*). Следует отметить, что, несмотря на значительное повышение чувствительности измерений, в конечной интерферограмме довольно хорошее качество полос, позволяющее считывать номер полосы с погрешностью не хуже 25%.

Работа выполнена при поддержке Министерства образования Республики Беларусь.

Список литературы

- [1] Вест Ч. Голографическая интерферометрия. М.: Мир, 1982. 504 с.
- [2] Зейликович И.С., Спорник Н.М. Голографическая диагностика прозрачных сред. Минск: Университетское изд-во, 1988. 208 с.
- [3] Зейликович И.С., Ляликов А.М. // УФН. 1991. Т. 161. № 1. С. 143–164.
- [4] Бекетова А.К., Белозеров А.Ф., Березкин А.Н. и др. Голографическая интерферометрия фазовых объектов. Л.: Наука, 1979. 232 с.
- [5] Bryngdahl O., Lohmann A.W. // J. Opt. Soc. Amer. 1968. Vol. 58. N 1. P. 141–142.

- [6] Мустафин К.С., Селезнев В.А., Штырков Е.И. // А.с. СССР. № 272602. БИ. 1970. № 19.
- [7] Matsumotto K., Takashima M. // J. Opt. Soc. Amer. 1970. Vol. 60. N 1. P. 30–33.
- [8] Швидер Ж. // Материалы III Всесоюзн. школы по голографии. Л., 1972. С. 247–254.
- [9] Зейликович И.С. // Опт. и спектр. 1980. Т. 49. Вып. 2. С. 396–398.
- [10] Зейликович И.С., Пулькин С.А. // Опт. и спектр. 1982. Т. 53. Вып. 4. С. 588–589.
- [11] Зейликович И.С., Ляликов А.М. // ОМП. 1987. № 9. С. 31–33.
- [12] Зейликович И.С., Ляликов А.М., Сигов В.В. // А.с. СССР. № 1368624. БИ. 1988. № 3.
- [13] Ляликов А.М. // Письма в ЖТФ. 1998. Т. 24. Вып. 12. С. 72–75.
- [14] Спорник Н.М. // ОМП. 1973. № 2. С. 77-78.
- [15] Спорник Н.М., Белозеров А.Ф., Бывальцев А.И. // А.с. СССР. № 396540. БИ. 1973. № 36.