# Управляемые дифракционные оптические элементы с пленкой диоксида ванадия

#### © О.Б. Данилов, А.И. Сидоров

Научно-исследовательский институт лазерной физики, 199034 Санкт-Петербург, Россия

(Поступило в Редакцию 24 августа 1998 г.)

Проведен анализ принципов построения оптических устройств на основе дифракционных структур с пленкой диоксида ванадия для управления излучением среднего ИК диапазона. Описаны методы практической реализации таких устройств для  $\lambda = 10.6 \,\mu\text{m}$  и приведены их расчетные характеристики. Показано, что контраст в дифракционных оптических элементах может достигать 1 : 10<sup>7</sup>, а время включения под действием интенсивного лазерного излучения — десятков наносекунд.

#### Введение

07

Интерес, проявляемый к дифракционным оптическим элементам (ДОЭ), в последние годы вызван в основном перспективностью их использования в системах обработки оптических сигналов и изображений, в том числе в вычислительной оптике. Помимо традиционного применения ДОЭ в качестве спектральных селекторов, к настоящему времени разработано значительное количество типов ДОЭ, позволяющих выполнить многие другие функции: мультиплицирование [1] и формирование [2] пучков, распределение оптических сигналов по каналам обработки [3], формирование волнового фронта [4] и т.д. Оптические характеристики таких устройств могут быть как постоянными, так и управляемыми при использовании в них электрооптических материалов [5,6]. Указанная выше область использования ДОЭ является причиной того, что большинство исследований и разработок ДОЭ проведено для видимого и ближнего ИК диапазонов.

В лазерных оптических системах среднего ИК диапазона также существует целый ряд задач обработки и коммутации оптических сигналов. Примерами могут служить задачи разделения слабых и интенсивных сигналов в лазерных локационных системах, распределения сигналов по фотоприемным устройствам, временной и пространственной селекции сигналов. Одной из важнейших задач является защита фотоприемных устройств от разрушения и "ослепления" интенсивным лазерным излучением.

Многослойные интерференционные системы (МИС) с пленкой VO<sub>2</sub> в качестве управляющего элемента достаточно широко используются для модуляции излучения среднего ИК диапазона. Обратимый фазовый переход полупроводник-металл [7] в моно- или поликристаллической пленке VO<sub>2</sub>, происходящий при изменении температуры, сопровождается существенным изменением ее оптических констант. Это позволяет радикально изменять оптические характеристики интерференционной системы, содержащей пленку VO<sub>2</sub>.

МИС с пленкой VO<sub>2</sub> могут быть изготовлены как пропускающего [8], так и отражающего [9] типов. В дан-

ной работе рассмотрены только отражающие интерференционные системы — VO<sub>2</sub> зеркала́. Это объясняется двумя причинами. Во-первых, VO<sub>2</sub> зеркала́ позволяют реализовать более широкие функциональные возможности ДОЭ. Так, в МИС пропускающего типа может быть получено лишь уменьшение пропускания с ростом температуры (*dA*/*dT* < 0, *A* — коэффициент пропускания). В отражающих МИС в зависимости от типа интерференционной системы могут быть реализованы положительная, отрицательная и знакопеременная величина dR/dT [10], а также модуляция фазы отраженного излучения при малом изменении коэффициента отражения *R* [11]. Во-вторых, зеркальные системы с пленкой VO<sub>2</sub> имеют значительно более высокую лучевую стойкость, чем пропускающие, что позволяет использовать их для управления интенсивным излучением.

В данной работе рассмотрены принципы создания управляемых ДОЭ с пленкой VO<sub>2</sub> для спектрального диапазона  $2.5-12 \,\mu$ m. Основное применение подобных ДОЭ — управление интенсивным импульсным излучением химических, СО и CO<sub>2</sub> лазеров. Поэтому при анализе основное внимание уделялось методам получения максимального контраста при сохранении высокой лучевой стойкости ДОЭ. Основные результаты приведены для  $\lambda = 10.6 \,\mu$ m (длина волны излучения CO<sub>2</sub> лазера).

## Принципы построения управляемых ДОЭ с пленкой VO<sub>2</sub>

Управляемые ДОЭ на основе отражающих МИС с пленкой VO<sub>2</sub> представляют собой интерференционную систему, в которой сформирована пространственная структура (рис. 1, *a*) из чередующихся областей с постоянными и зависящими от температуры оптическими параметрами. Областям первого типа соответствуют коэффициент отражения  $R_1$  и фаза отраженного излучения  $\varphi_1$ , областям второго типа —  $R_2(T)$  и  $\varphi_2(T)$  соответственно. На рис. 1, *b*-*d* показаны простейшие ДОЭ подобного типа: дифракционная решетка с постоянным периодом (*b*), одномерная зонная пластинка Френеля (*c*), позволяющая фокусировать излучение в линию, и



**Рис. 1.** *а* — структура управляемого ДОЭ с пленкой VO<sub>2</sub>: *I* — подложка, *2* — МИС, *3* — периодическая структура с пленкой VO<sub>2</sub>; *b*-*d* — различные варианты ДОЭ.

зонная пластинка Френеля с концентрическими зонами (d), позволяющая фокусировать излучение в "точку". На рисунках показан только первый порядок дифракции. Зеркала M1 на рис. 1, c и d служат для пространственного разделения падающего и дифрагированного излучений, при этом центральные зоны Френеля в дифракции не участвуют. Для рассматриваемых конструкций ДОЭ и нормального падения плоской волны интенсивность излучения в дифракционном порядке можно представить в виде

$$I = I_0 K (R_1 + R_2 - 2\sqrt{R_1 R_2} \cos(\varphi_1 - \varphi_2)).$$
(1)

Здесь *I*<sub>0</sub> — интенсивность падающего излучения; *К* — параметр, зависящий от геометрии дифракционной струк-

туры и порядка дифракции. Из приведенного выражения следует, что наибольший контраст в управляемых ДОЭ может быть получен, когда одно из состояний ДОЭ соответствует зеркалу с равномерными коэффициентом отражения и фазой отраженного излучения:  $R_1 = R_2$  и  $\varphi_1 = \varphi_2$ . В этом случае все падающее излучение отражается зеркально, а интенсивность излучения в дифракционных порядках равна нулю. Наибольший практический интерес представляет ситуация, когда коэффициент отражения  $R_1$  равен максимальному коэффициенту отражения  $R_2(T) = R_{2 \text{ max}}$ . Максимальная дифракционная эффективность в дифракционных порядках реализуется при выполнении одного из двух условий — либо  $R_1 \gg R_2$ , либо  $\varphi_1 - \varphi_2 = \pi$  и  $R_1 = R_2$ .

На рис. 2 показаны расчетные температурные зависимости коэффициентов отражения и фазы



**Рис. 2.** Температурные зависимости коэффициента отражения и фазы отраженного излучения для VO<sub>2</sub> зеркал. Сплошные кривые — R(T), штриховые —  $\varphi(T)$ .

Журнал технической физики, 1999, том 69, вып. 11

93

отраженного излучения для трех основных типов VO<sub>2</sub> зеркал, представляющих интерес при создании управляемых ДОЭ. Для зависимостей  $\varphi(T)$ показаны только ветви температурной петли гистерезиса, соответствующие увеличению температуры. Приведенным зависимостям соответствуют следующие конструкции интерференционных систем: *а* — Ge(0.66)--BaF<sub>2</sub>(1.96) -VO<sub>2</sub>(0.3) - ZnS (0.815)-Al (0.1)-подложка; dR/dT > 0,  $R_{\min} = 1\%$ ,  $R_{\max} = 97.5\%$ ; b - Ge(0.66)--ZnS (2.435)-VO<sub>2</sub> (0.25) -ZnS (1.26)-Al (0.1)-подложка; dR/dT < 0,  $R_{\rm max}$  = 98%,  $R_{\rm min}$  = 0.1%; c — Ge (0.66)-ZnS (0.87)-VO<sub>2</sub> (0.25)-ZnS (1.26)-VO<sub>2</sub><sup>\*</sup> (0.25)--ZnS (1,26)-Al (0.1)-подложка; знакопеременная dR/dT.  $R_{\rm max}(30^{\circ}{\rm C}) = 98\%$  $R_{\min}(56^{\circ}C) = 0.4\%$  $R_{\rm max}(70^{\circ}{\rm C}) = 94\%$ . В скобках указаны толщины пленок в микрометрах. Расчет оптических характеристик данных интерференционных систем проводился по формулам Френеля рекуррентным методом. При расчете использовались температурные зависимости показателей поглощения стехиометрической преломления И пленки VO<sub>2</sub> [11]. Конструкция (с) содержит две пленки VO<sub>2</sub>, одна из которых (VO<sub>2</sub><sup>\*</sup>) имеет фазовый переход, сдвинутый в область меньших температур (T = 30-50°C) благодаря введению легирующей добавки [7,12].

Выше было показано, что максимальный контраст достигается при условии  $R_1 = R_{2 \max}$  и  $\varphi_1 = \varphi_2$ . Поэтому важным является вопрос, насколько в реальной интерференционной системе можно приблизить величины  $\Delta R = R_1 - R_{2\max}$  и  $\Delta \varphi = \varphi_1 - \varphi_2$  к нулю при условии R<sub>1</sub> = const. Одной из возможностей формирования областей с постоянным коэффициентом отражения является введение в МИС тонкой металлической пленки. Однако анализ показывает, что при этом можно минимизировать только один параметр — либо  $\Delta R$ , либо  $\Delta \varphi$ . Одновременная минимизация  $\Delta R$  и  $\Delta \varphi$  достигается при введении в МИС как минимум двух дополнительных слоев. В качестве примера рассмотрим конструкцию (а), в которой области с постоянным коэффициентом отражения сформированы двумя тонкими металлическими пленками, расположенными по обе стороны пленки VO<sub>2</sub>: Ge(0.642)-BaF<sub>2</sub>(1.96)- $Ti(0.0044) - VO_2(0.3) - Au(0.015) - ZnS(0.815) - Al(0.1).$ В данной конструкции пленка Au обеспечивает высокий коэффициент отражения системы до начала фазового перехода в пленке VO<sub>2</sub>. Пленка Ті служит в основном для выравнивания фазы отраженного излучения для областей с постоянными и переменными оптическими характеристиками после окончания фазового перехода. Дополнительное согласование фаз обеспечивается небольшим уменьшением толщины пленки Ge. Для ДОЭ, в которой использована приведенная выше конструкция,  $\Delta R(70^{\circ}\text{C}) = 4 \cdot 10^{-5} \%$  и  $\Delta \varphi(70^{\circ}\text{C}) = 5.5 \cdot 10^{-4}$  rad. Коэффициент отражения  $R_1$  в течение фазового перехода в пленке VO<sub>2</sub> изменяется приблизительно на 1%, что практически не влияет на оптические характеристики ДОЭ. Аналогичный результат может быть получен и для конструкций VO<sub>2</sub> зеркал (b) и (c).



**Рис. 3.** То же, что на рис. 2, для фазового ДОЭ:  $1 - \varphi(T)$  для областей ДОЭ с  $\varphi_2$ ,  $2 - \varphi(T)$  для областей ДОЭ с  $\varphi_1$ , 3 - R(T) для областей ДОЭ с  $R_1$  и  $R_2$ .

Из рис. 2 видно, что сильное изменение фазы отраженного излучения происходит вблизи минимума коэффициента отражения. Так как для рассматриваемых конструкций VO<sub>2</sub> зеркал  $R_{min} \ll R_{max}$ , то ДОЭ на их основе по своим свойстам приближаются к чисто амлитудным, а их дифракционная эффективность не превышает нескольких процентов. Дифракционная эффективность может быть повышена до 10% при использовании комбинации ДОЭ с эталоном Фабри–Перо за счет выбора "резонансного" угла падения излучени на ДОЭ [13,14].

Другой возможностью повышения дифракционной эффективности ДОЭ является использование VO<sub>2</sub> зеркал, обеспечивающих фазовую модуляцию излучения при малом изменении коэффициента отражения [11]. Ha рис. З приведены фазовые и амплитудные характеристики такого VO<sub>2</sub> зеркала, имеющего следующую конструкцию МИС: BaF<sub>2</sub>(4.522)-VO<sub>2</sub>(0.25)-Al(0.1)-подложка (на рисунке показаны ветви петли температурного гистерезиса, соответствующие увеличению температуры). Данная МИС представляет собой интерферометр Жиро-Турнуа [15], в котором пленка VO<sub>2</sub> играет роль управляющего элемента. Области с  $R_1$  и  $\varphi_1$  в такой системе могут быть получены путем изменения толщины пленки BaF<sub>2</sub>. Так, при уменьшении толщины пленки BaF<sub>2</sub> до 4.51  $\mu$ m реализуется зависимость  $\varphi(T)$ , показанная на рис. 3 кривой 2. Зависимость R(T) при этом совпадает с зависимостью R(T) для приведенной выше конструкции с точностью 0.1%. Фазовый ДОЭ, построенный по рассмотренному принципу, имеет следующие характеристики:  $\Delta \varphi$ (55°C)  $\approx \pi$ ,  $\Delta \varphi$ (70°C) = 0.015 rad.

Управление ДОЭ может осуществляться электронным лучом [16], тонкопленочным нагревателем [17], расположенным между МИС и подложкой, либо интенсивным лазерным излучением. Наибольший практический интерес представляют два последних метода управления, так как в отличие от электронно-лучевого метода они позволяют осуществлять нагрев достаточно большой площади поверхности ДОЭ. Экспериментальные и расчетные результаты [18] показывают, что при управлении VO<sub>2</sub> зеркалом тонкопленочным нагревателем минимальное время включения зеркала ограничивается электрической прочностью МИС и составляет  $1-5\,\mu$ s. Минимальное время включения VO<sub>2</sub> зеркал излучением [18] ограничивается лучевой стойкостью зеркал. Для VO<sub>2</sub> зеркал с dR/dT > 0 порог разрушения составляет  $2-5 \,\text{MW}/\text{cm}^2$  для импульса излучения короче  $1\,\mu$ s. При интенсивности излучения  $\sim 1 \,\text{MW}/\text{cm}^2$  время включения VO<sub>2</sub> зеркал составляет 10-100 пѕ в зависимости от типа VO<sub>2</sub> зеркала, толщины МИС и материала подложки.

Время выключения VO<sub>2</sub> зеркал определяется скоростью отвода тепла из МИС в подложку за счет теплопроводности и для металлических подложек может составлять  $10-50 \,\mu s$ . Так как включение и выключение ДОЭ на основе VO<sub>2</sub> зеркал происходит за счет теплового механизма, то их применение для управления интенсивным излучением ограничивается импульсным и импульсно-периодическим режимами.

## Статические характеристики ДОЭ с пленкой VO<sub>2</sub>

Анализ модуляционных характеристик амплитудных ДОЭ проводился для  $\Delta R = 10^{-3}\%$  и  $\Delta \varphi = 5 \cdot 10^{-4}$  гад. На рис. 4 показаны температурные зависимости интенсивности излучения *I* в дифракционном порядке, нор-



**Рис. 4.** Статические характеристики ДОЭ на основе VO<sub>2</sub> зеркал. *а*: 1 - МИС с dR/dT > 0, 2 - dR/dT < 0; *b*: 1 -знакопеременная  $dR/dT, 2 - d\varphi/dT < 0$ .

мированной на  $I_{\text{max}}$  — максимальную интенсивность излучения в данном дифракционном порядке. Видно, что в ДОЭ на основе VO<sub>2</sub> зеркала с dR/dT > 0 (температурная зависимость коэффициента отражения данного зеркала на рис. 2, *a*) с увеличением температуры происходит уменьшение интенсивности излучения в дифракционных порядках (рис. 4, *a*, кривая *I*) и при достижении минимальных величин  $\Delta R$  и  $\Delta \varphi$  становится равной  $4 \cdot 10^{-7} I_{\text{max}}$ .

В ДОЭ на основе VO<sub>2</sub> зеркала с dR/dT < 0 (рис. 2, b) с увеличением температуры по мере уменьшения  $R_2$ происходит рост интенсивности излучения в дифракционных порядках (рис. 4, a, кривая 2). В случае использования в ДОЭ интерференционной системы со знакопеременной величиной dR/dT (рис. 2, c) интенсивность излучения в дифракционных порядках достигает максимума в интервале температур 50–55°С, после чего происходит уменьшение интенсивности до начального уровня (рис. 4, b, кривая 1). Для ДОЭ на основе фазового VO<sub>2</sub> зеркала (рис. 3) увеличение температуры до 70°С приводит к уменьшению интенсивности излучения в дифракционных порядках до ~  $5 \cdot 10^{-5}I_{max}$ (рис. 4, b, кривая 2).

Таким образом, в управляемых ДОЭ на основе VO<sub>2</sub> зеркал могут быть реализованы функции включения, выключения излучения в дифракционных порядках и комбинация этих двух функций в одном ДОЭ. Для амплитудных ДОЭ величина dI/dT имеет противоположный знак по сравнению с dR/dT VO<sub>2</sub> зеркала. Для рассмотренного фазового ДОЭ знак dI/dT совпадает со знаком  $d\varphi/dT$  и dR/dT фазового VO<sub>2</sub> зеркала.

## Динамические характеристики ДОЭ с пленкой VO<sub>2</sub>

Динамика включения ДОЭ под действием импульсного источника тепла определяется его мощностью и типом, теплофизическими параметрами ДОЭ и начальной температурой пленки VO<sub>2</sub> ( $T_0$  на рис. 2, a). Наибольший практический интерес представляет переключение ДОЭ под действием интенсивного импульсного излучения, так как при этом может быть обеспечено минимальное время включения.

Рассматриваемые в данной работе  $VO_2$  зеркала́ имеют нулевое пропускание (благодаря металлической пленке с высоким отражением, входящей в состав МИС). Поэтому удельная мощность тепловыделения в МИС при нагреве излучением может быть представлена в виде

$$P = I_0(1 - R). (2)$$

ДОЭ на основе VO<sub>2</sub> зеркал содержит области, коэффициент отражения которых зависит от температуры. Это приводит к тому, что при нагреве ДОЭ излучением в температурном интервале фазового перехода в пленке VO<sub>2</sub> удельная мощность тепловыделения в данных областях также имеет температурную зависимость — P(T) = f(R(T)). Динамику включения ДОЭ под действием импульса излучения можно рассматривать на основе приближения тепловой модели тонкой пластины (МИС), находящейся в идеальном тепловом контакте с полуограниченным телом (подложка). Для времени нагрева t < 500 пs и периода дифракционной структуры, характерной для среднего ИК-диапазона, растеканием тепла вдоль поверхности ДОЭ за счет теплопроводности можно пренебречь. Тогда изменение температуры МИС в точке  $z \leq h$  (h — толщина МИС) при нагреве импульсом излучения за время  $\Delta t$  может быть представлено в виде [19]

$$\Delta T(z) = \frac{1}{\sqrt{\pi}\eta_1} \Biggl\{ \sum_{n=0}^{\infty} M^{n+1} \int_0^{\Delta t} \frac{P(T)}{\sqrt{\Delta t - \tau}} \\ \times \exp\left[ -\frac{(2nh+h-z)^2}{4a_1(\Delta t - \tau)} \right] d\tau + \sum_{n=0}^{\infty} M^n \\ \times \int_0^{\Delta t} \frac{P(T)}{\sqrt{\Delta t - \tau}} \exp\left[ -\frac{(2nh+h+z)^2}{4a_1(\Delta t - \tau)} \right] d\tau \Biggr\},$$
$$M = \frac{1-K}{1+K}, \qquad K = \frac{\eta_1}{\eta_2}.$$
(3)

Здесь индексы 1 и 2 относятся к пластине и полуограниченному телу соответственно,  $\eta = \sqrt{cdk}$ , c — теплоемкость, d — удельный вес, k — теплопроводность, a — температуропроводность. Моделирование динамики включения ДОЭ проводилось для следующих условий: dR/dT > 0, подложка ДОЭ — Ge, импульс излучения прямоугольной формы с равномерным распределением интенсивности и  $I_0 = 1 \text{ MW/cm}^2$ ,  $T_0 = 55^{\circ}$ С. При расчетах использовались усредненные по толщине теплофизические параметры МИС.



**Рис. 5.** Динамические характеристики ДОЭ на основе VO<sub>2</sub> зеркала. dR/dT < 0,  $I_0 = 1$  MW/cm<sup>2</sup> (1) и на основе зонной пластинки Френеля и dR/dT < 0 (в качестве зеркала M1) (2).



**Рис. 6.** Пространственное распределение излучения в дифракционном порядке для одномерных ДОЭ. a - MUC с dR/dT < 0 при t = 260 (1), 500 (2), 730 ns (3); b - MUC со знакопеременной dR/dT при t = 50 (1), 100 (2), 150 ns (3).

Временная зависимость интенсивности излучения в дифракционном порядке ДОЭ при управлении импульсом излучения показана на рис. 5 (кривая 1). Видно, что уменьшение интенсивности до уровня  $10^{-5}I_{max}$  происходит приблизительно за 25 ns, после чего происходит снижение скорости изменения интенсивности. Это связано с тем, что ДОЭ к данному моменту времени уже находится в состоянии, соответствующем зеркалу с высоким коэффициентом отражения, вследствие чего уменьшается доля энергии излучения, поглощенная зеркалом и идущая на его нагрев. Полностью процесс включения завершается при t = 50 ns. Уменьшение температуры Т<sub>0</sub> приводит к появлению задержки включения ДОЭ. Так, при T<sub>0</sub> = 45°C процесс включения ДОЭ начинается через 15 ns после начала воздействия импульса излучения.

Для ДОЭ на основе зонной пластинки Френеля (рис. 1, *d*) может быть получено дополнительное повышение контраста за счет использования в качестве зеркала *M*1 VO<sub>2</sub> зеркала с dR/dT < 0. Это иллюстрирует кривая 2 на рис. 5 для случая, когда зеркало *M*1 расположено в плоскости, соответствующей сужению пучка после отражения от зонной пластинки в  $\sqrt{2}$  раз. Включение зеркала *M*1 при t = 11 пѕ происходит лавинообразно за счет увеличения скорости включения при уменьшении его коэффициента отражения. Минимальная интенсивность излучения, достигаемая на выходе данной

оптической системы, составляет ~  $5 \cdot 10^{-10} I_{\text{max}}$ . Очевидно, что при использовании в качестве зеркала M1 ДОЭ на основе VO<sub>2</sub> зеркала с dR/dT > 0 может быть получена еще бо́льшая величина контраста.

Представляет интерес рассмотрение динамики включения ДОЭ с одномерной периодической структурой (рис. 1, *b* и *c*) для случая, когда в пленке VO<sub>2</sub> задан начальный градиент температуры вдоль штрихов, т.е.  $dT_0/dx \neq 0$  (ось x параллельна штрихам структуры). Это приводит к тому, что области ДОЭ с меньшей температурой Т<sub>0</sub> включаются позже областей, имеющих более высокую температуру. На рис. 6, а приведены пространственные распределения интенсивности излучения в дифракционном порядке ДОЭ на основе VO<sub>2</sub> зеркала с dR/dT < 0 для следующих условий:  $dT_0/dx = -5$  K/cm,  $T_0(x = 0) = 55^{\circ}$ С,  $I_0 = 0.1 \,$ MW/сm<sup>2</sup>, подложка ДОЭ — медь. В начальный момент времени в дифракционном порядке имеет место равномерное распределение интенсивности с  $I_0 = 5 \cdot 10^{-7} I_{\text{max}}$ . С ростом t вблизи x = 0 возникает область с интенсивностью  $I_{\text{max}}$ , которая далее расширяется в сторону x > 0. Таким образом, в данных условиях может быть реализована функция — "открывающаяся заслонка". Скорость перемещения волны включения для рассмотренных условий составляет  $\sim 30 \,\mathrm{mm}$  /  $\mu$ s.

На рис. 6, *b* показано изменение интенсивности в дифракционном порядке ДОЭ на основе VO<sub>2</sub> зеркала со знакопеременной величиной dR/dT. Моделирование проводилось для тех же условий, что и в предыдущем случае, но  $I_0 = 1.5 \text{ MW}/\text{cm}^2$ . Из рисунка видно, что в данном случае в дифракционном порядке реализуется узкая область с высокой интенсивностью, которая со временем смещается в сторону бо́льших *x*. Сжатие пространственного распределения интенсивности вблизи максимума связано с высокой скоростью изменения коэффициента отражения при его значениях, близких к  $R_{\min}$ . Рассмотренному случаю соответствует реализация функции "движущаяся щель". Скорость движения "щели" составляет ~ 160 mm/µs.

### Заключение

Представленные результаты показывают, что при использовании в дифракционных оптических элементах управляемых отражающих интерференционных систем с пленкой VO<sub>2</sub> могут быть реализованы переключающие оптические устройства для среднего ИК диапазона, обладающие высоким контрастом, быстродействием и широкими функциональными возможностями. Основное применение таких устройств — управление интенсивными лазерными пучками в импульсных и импульснопериодических лазерных оптических системах: разделение слабых и интенсивных сигналов, временная селекция, пространственная развертка излучения, а также защита фотоприемных устройств от воздействия интенсивного излучения.

#### Список литературы

- Mendlovic D., Zalevsky Z., Shabtay G. et al. // Appl. Opt. 1996. Vol. 35. N 35. P. 6875–6880.
- [2] Dresel T., Beyerlein M., Schwinder J. // Appl. Opt. 1996.
  Vol. 35. N 35. P. 6865–6874.
- Brenner K.-H., Sauer F. // Appl. Opt. 1988. Vol. 27. N 20. P. 4251–4254.
- [4] Piestun R., Shamir J. // Opt. Lett. 1994. Vol. 19. N 11. P. 771–773.
- [5] Tatebayashy T., Yamamoto T., Sato H. // Appl. Opt. 1992.
  Vol. 31. N 15. P. 2770–2775.
- [6] Song Q.W., Wang X.-M., Bussjager R. // Appl. Opt. 1996. Vol. 35. N 35. P. 7031–7036.
- [7] Бугаев А.А., Захарченя Б.П., Чудновский Ф.А. Фазовый переход металл-полупроводник и его применение. Л.: Наука, 1979. 183 с.
- [8] Jerominek H., Picard F., Vincent D. // Opt. Eng. 1993. Vol. 32. N 9. P. 2092–2097.
- [9] Welch A.B., Burzlaff B., Cunningham W. // Proc. SPIE. 1981. Vol. 300. P. 153–162.
- [10] Коновалова О.П., Сидоров А.И., Шаганов И.И. Оптический журнал. 1998. Т. 65. № 4. С. 20-23.
- [11] Коновалова О.П., Сидоров А.И., Шаганов И.И. Оптический журнал. 1998. Т. 65. № 4. С. 24–27.
- [12] Tazawa M., Jin P., Tanemura S. // Appl. Opt. 1998. Vol. 37.
  N 10. P. 1858–1861.
- [13] Collins S.A., Caulfield H.J. // J. Opt. Soc. Am. A. 1989. Vol. 6. N 9. P. 1568–1577.
- [14] Krawczak J., Dean R., Torok E.J. et al. // Opt. Lett. 1990. Vol. 15. N 22. P. 1264–1266.
- [15] Gires F., Tournois P. // C. R. Acad. Sci. 1964. Vol. 258. P. 6112–6115.
- [16] Chivian J.S., Scott M.W., Case W.E. et al. // IEEE J. of Quant. Electron. 1985. Vol. QE-21. N 4. P. 383–388.
- [17] Данилов О.Б., Коновалова О.П., Сидоров А.И. и др. // Приборы и техника эксперимента. 1995. № 4. С. 121–124.
- [18] Danilov O.B., Danilov V.V., Sidorov A.I. et al. // Conf. Photonics West. California, January 1998.
- [19] Григорьев Б.А. Импульсный нагрев излучениями. М.: Наука, 1974. Т. 2. 727 с.