01;06 Электрические поля дипольных структур

© М.Ю. Волокобинский, А.С. Ястребов

Санкт-Петербургский государственный университет телекоммуникаций им. М.А. Бонч-Бруевича, 191186 Санкт-Петербург, Россия

(Поступило в Редакцию 30 июня 1998 г.)

Выполнен анализ распределения напряженности электрического поля структур, образуемых в диэлектрической среде точечными и нитевидными диполями. Предположены формулы расчета и приведены результаты вычислений.

Структуры и субструктуры, придающие приборам и устройствам новые качества, используются в электротехнике и электронике для экранирования и управления потоками носителей заряда. Они применяются в электроакустических преобразователях телефонной аппаратуры, тиристорах, биполярных и полевых транзисторах, в устройствах регулировки высоких напряжений и сильных токов [1–4].

Как следует из работ [5,6], в которых рассматривается преобразование в периодическом электрическом поле энергии потока заряженных частиц в энергию электромагнитного излучения, имеются перспективы использования субструктур в преобразователях энергии.

Проводящие нитевидные и шаровидные включения малого радиуса являются элементами субструктур. В электрическом поле на проводящих включениях наводятся дипольные моменты. В связи с этим рассмотрим закономерности распределения электрического поля решеток шаровидных включений и сеток нитевидных диполей.

Выполним расчет напряженности электрического поля E_0 , действующего на диполь, помещенный в центре решетки, и *z*-компоненты электрического поля $E_z(z)$ на оси *z* в зависимости от расстояния до плоскости (*x*, *y*), в которой расположены диполи в узлах квадратной решетки, для трех случаев: 1) ось *z* проходит через центральный узел решетки, как показано на рисунке, *a* и *b*, $E_z(z) = E_1$; 2) начало координат смещено на полпериода d/2 по оси *x*, $E_z(z) = E_2$; 3) начало координат смещено на полпериода по осям *x* и *y*, $E_z(z) = E_3$.

Вид плоской дипольной решетки: *a* — сверху (в плане), *b* — в плоскости решетки (сбоку).

Предполагается, что диполи ориентированы вдоль оси z и имеют одинаковую величину дипольного момента μ .

Поле E_0 , действующее на центральный диполь, является суммой полей всех остальных диполей, в которую вносит вклад поле элементарного диполя $E_{\mu z}$, находящегося от центра решетки на расстоянии $\rho = (x^2 + y^2)^{0.5}$ в точке с координатами x = md и y = nd; m и n — целые числа, d — период решетки [7]

$$E_{\mu z} = -\frac{\mu}{4\pi\varepsilon} \frac{1}{\rho^3} = -\lambda (m^2 + n^2)^{-1.5}, \qquad (1)$$

где $\lambda = \mu/(4\pi\varepsilon d^3)$, ε — абсолютная диэлектрическая проницаемость.

Поле E_0 равно

1

$$E_{0} = \lambda \left\{ -2 \left[\sum_{m=1}^{M} m^{-3} + \sum_{n=1}^{N} n^{-3} + 2 \sum_{m=1}^{M} \sum_{n=1}^{N} (m^{2} + n^{2})^{-1,5} \right] \right\} = \lambda R_{0}, \qquad (2)$$

где R_0 — выражение в фигурных скобках; верхние пределы суммирования M и N связаны с числом узлов решетки M_x и N_y по осям x и y: $M = (M_x - 1)/2$, $N = (N_y - 1)/2$.

В случае одинакового числа узлов по осям $M_x = N_y$ (2) упрощается

$$R_0 = -4 \left[\sum_{m=1}^M m^{-3} + \sum_{m=1}^M \sum_{n=1}^N (m^2 + n^2)^{-1,5} \right].$$
 (3)

При составлении (3) учтено, что диполи, расположенные в каждом из четырех квадрантов, вносят одинаковый вклад.

Создаваемая на оси z в точке z = kd элементарным диполем с координатами x = md и y = nd *z*-компонента напряженности электрического поля равна [7]

$$E_z = \lambda \frac{2k^2 - (m^2 + n^2)}{(k^2 + m^2 + n^2)^{5/2}}.$$
(4)

Суммируя поля всех диполей, получим *z*-компоненты напряженности электрического поля $E_1 = \lambda R_1$,

 $E_2 = \lambda R_2$ и $E_3 = \lambda R_3$, выразив их через коэффициенты R_1, R_2 и R_3 , определяющиеся формулами

$$R_{1} = \frac{2}{k^{3}} + 4 \sum_{m=1}^{M} \frac{2k^{2} - m^{2}}{(k^{2} + m^{2})^{5/2}} + 4 \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{2k^{2} - (m^{2} + n^{2})}{(k^{2} + m^{2} + n^{2})^{5/2}},$$
 (5)

где первое слагаемое учитывает вклад центрального диполя, второе — диполей, расположенных на осях *x* и *y*, и третье — диполей в квадрантах;

$$R_{2} = 2 \sum_{m=1}^{M} \frac{2k^{2} - (m - 0.5)^{2}}{[k^{2} + (m - 0.5)^{2}]^{5/2}} + 4 \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{2k^{2} - [(m - 0.5)^{2} + n^{2}]}{[k^{2} + (m - 0.5)^{2} + n^{2}]^{5/2}}, \quad (6)$$

причем первое слагаемое связано с диполями, расположенными на оси, второе — с диполями в квадрантах;

$$R_3 = 4 \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{2k^2 - \left[(m-0.5)^2 + (n-0.5)^2\right]}{\left[k^2 + (m-0.5)^2 + (n-0.5)^2\right]^{5/2}}$$
(7)

определяется диполями, находящимися в квадрантах.

Выражения (5)-(7) записаны при условии, что ось *z* проходит через центр прямоугольной решетки; в (5)число узлов по осям *x* и *y* нечетно; в (6) число узлов по оси *x* четно, по оси *y* нечетно; в (7) по обеим осям оно четно.

При расчете поля сетки, образованной нитевидными диполями, вытянутыми вдоль оси y и находящимися в плоскости (x, y), можно воспользоваться выражением для электрического потенциала нитевидного диполя [8]

$$\varphi = \frac{\mu}{2\pi\varepsilon} \frac{z}{z^2 + x^2},\tag{8}$$

где $\mu = q\delta$, δ — расстояние между нитями; q — заряд, приходящийся на единицу длины диполя, состоящего из двух параллельных нитей, несущих заряды противоположного знака; ось z проходит через нити и направлена от отрицательной к положительной нити перпендикулярно оси у.

Из (8) вытекают выражения для составляющих напряженности электрического поля, создаваемого нитевидным диполем, вдоль осей x, y и z,

$$E_x = rac{\mu}{2\piarepsilon}rac{2xz}{(z^2+x^2)^2}, \qquad E_y = 0,$$
 $E_z = rac{\mu}{2\piarepsilon}rac{z^2-x^2}{(z^2+x^2)^2}.$

Введем обозначение $\psi = \mu/(2\pi\varepsilon d^2)$, где d — расстояние между нитевидными диполями, и запишем выражения для напряженности электрических полей $E_4 = \psi R_4$, $E_5 = \psi R_5$ и $E_6 = \psi R_6$. Поле E_4 , действующее на центральную дипольную нить со стороны всех остальных нитевидных диполей, определяется через коэффициент

$$R_4 = -2\sum_{m=1}^M m^{-2}.$$

 E_5 в точке z = kd на оси z, проходящей через центральную нить сетки, состоящей из 2M + 1 нитевидных диполей, представляется через R_5 , а E_6 на оси z, расположенной на равном расстоянии между двумя центральными диполями сетки, содержащей 2M нитей, — через R_6

$$R_5 = k^{-2} + 2\sum_{m=1}^{M} \frac{k^2 - m^2}{(k^2 + m^2)^2},$$
$$R_6 = 2\sum_{m=1}^{M} \frac{k^2 - (m - 0.5)^2}{[k^2 + (m - 0.5)^2]^2}.$$

Результаты расчета R_1 , R_2 , R_3 , R_5 , R_6 в случае малых расстояний от решетки ($k \le 5$, M = N = 50) приведены в табл. 1. На большом удалении ($k \ge 10$) коэффициенты R_1 , R_2 и R_3 практически одинаковы; R_5 примерно равно R_6 , поэтому в табл. 2 приведены значения R_3 и R_6 .

Выполним анализ данных табл. 1. На расстоянии от решетки, не превышающем одного ее периода d, электрическое поле резко неоднородно, и составляющая E_z изменяет знак при перемещении вдоль осей x и y, причем напряженность суммарного поля в несколько раз меньше величины напряженности поля, создаваемого одним из ближайших диполей. При удалении от решетки на расстояние примерно от 2d до 5d электрическое поле близко к однородному и слабо зависит от координат. При

Таблица 1. Значения коэффициентов, входящих в выражения для расчета напряженности электрического поля при малых *k*

k	R_1	R_2	R_3	R_5	R_6
0.0		-23.24644	-16.40418		-9.82960
0.1	1991.303	-20.45643	-15.37890	96.81367	-8.91620
0.2	241.93217	-14.23478	-12.74208	21.99407	-6.76874
0.3	66.91961	-8.23017	-9.46759	8.37208	-4.47807
0.4	25.14579	-4.16417	-6.42897	3.82603	-2.69656
0.5	10.95109	-1.90894	-4.06327	1.90320	-1.52761
0.6	5.17967	-0.79583	-2.42357	0.99320	-0.83959
0.7	2.58776	-0.28304	-1.37325	0.53731	-0.43383
0.8	1.35425	-0.05637	-0.73576	0.30206	-0.21568
0.9	0.74610	0.04130	-0.36291	0.17875	-0.09724
1.0	0.43942	0.08373	-0.15037	0.11359	-0.03347
1.2	0.20121	0.10735	0.03440	0.06058	0.01901
1.4	0.13668	0.11159	0.09002	0.04555	0.03400
1.6	0.11882	0.11228	0.10634	0.04126	0.03826
1.8	0.11379	0.11237	0.11104	0.04004	0.03946
2.0	0.11235	0.11235	0.11236	0.03968	0.03979
3.0	0.11152	0.11207	0.11262	0.03946	0.03985
5.0	0.11065	0.11119	0.11173	0.03922	0.03960

Примечание. $k = 0, R_0 = -8.921609, R_4 = -3.250265.$

Таблица 2. Значения коэффициентов, входящих в выражения для расчета напряженности электрического поля при больших *k*

k	R_3	R_6	
10	$1.0771 \cdot 10^{-1}$	$3.8460 \cdot 10^{-2}$	
20	$9.3849 \cdot 10^{-2}$	$3.4482 \cdot 10^{-2}$	
50	$4.6189 \cdot 10^{-2}$	$2.0000 \cdot 10^{-2}$	
100	$1.1306 \cdot 10^{-2}$	$8.0001 \cdot 10^{-3}$	
200	$2.2184 \cdot 10^{-3}$	$2.3530 \cdot 10^{-3}$	
500	$1.5686 \cdot 10^{-4}$	$3.9604 \cdot 10^{-4}$	
1000	$1.9900 \cdot 10^{-5}$	$9.9751 \cdot 10^{-5}$	
2000	$2.4969 \cdot 10^{-6}$	$2.4984 \cdot 10^{-5}$	
3000	$7.4033 \cdot 10^{-7}$	$1.1108 \cdot 10^{-5}$	
4000	$3.1240 \cdot 10^{-7}$	$6.2490 \cdot 10^{-6}$	
5000	$1.5997 \cdot 10^{-7}$	$3.9996 \cdot 10^{-6}$	
1000	$1.9999 \cdot 10^{-8}$	$9.9997 \cdot 10^{-7}$	

возрастании *z* в пределах от 20*d* до 100*d* напряженность E_z над решеткой точечных диполей убывает примерно как $1/z^2$, а над сеткой нитевидных диполей — как 1/z. На достаточно большом удалении от решетки ($k \ge 1000$), превышающем ее размеры в 10 и более раз, напряженность поля над центром решетки практически равна напряженности поля над элементарным диполем, умноженной на число диполей, образующих решетку. Таким образом, можно судить о различии в закономерностях распределения электрического поля над отдельными диполями и сетками и иметь их в виду при расчете приборов и устройств с субструктурами, например при расчете сил, действующих со стороны дипольной решетки на электрические заряды и поляризующиеся частицы.

Список литературы

- *Зи С.* Физика полупроводниковых приборов. Пер. с англ. М.: Мир, 1984. Кн. 1, 2. 456 с. Sze S.M. Physics of Semiconductor Devices. New York, 1981.
- [2] Елихер А. Физика силовых биполярных и полевых транзисторов. Пер. с англ. / Под ред. И.В. Грехова. Л.: Энергоатомиздат, 1986. 248 с. Blicher A. Field-effect Bipolar Power Transistor Physics. New York: Academic Press, 1981.
- [3] Kaufhold J., Jastrebov A., Volokobinsky M. // Jahresbericht 1995 der Deutsche Telekom FH Dieburg. 1995. S. 103–113.
- [4] Волокобинский М.Ю., Комаров И.Н., Решетников В.И. и др. // Петербургский журнал электроники. 1996. № 2. С. 19–20.
- [5] Буц В.А. // Радиотехника. 1997. № 9. С. 9–12.
- [6] Оцуки Е.-Х. Взаимодействие заряженных частиц с твердыми телами. Пер с англ. / Под ред. М.А. Кумахова. М.: Мир, 1985. 280 с.
- [7] Хиппель А.Р. Диэлектрики и волны. Пер с англ. / Под ред. Н.Т. Дроздова. М.: ИЛ, 1960. 438 с. Von Hippel A.R. Dielectrics and Waves. New York, 1954.
- [8] Говорков В.А. Электрические и магнитные поля. М.; Л.: ГЭИ, 1960. 463 с.