05;07;11;12 Фазовые превращения в системе титан-кремний при лазерной обработке в алканах

© А.М. Чапланов, А.Н. Шибко

Институт электроники АН Белоруссии, 220841 Минск, Белоруссия

(Поступило в Редакцию 14 января 1998 г.)

Исследованы фазовые превращения, происходящие в композации титан–кремний при лазерной обработке с $\lambda = 1.06 \,\mu$ m в пентане и гексане. Показана зависимость образования карбида, оксидов и силицидов титана от параметров и условий обработки. Фазовые изменение исследовались по всей толщине пленки, изучалось их влияние на электрофизические параметры контакта титан–кремний.

Одним из наиболее перспективных способов получения омических и выпрямляющих контактов является лазерная обработка материалов прежде всего из-за ее быстродействия и локальности обработки интегральных схем [1,2]. В данной работе исследованы фазовые превращения композиции титан-кремний при лазерной обработке в алканах: пентане и гексане.

Пленка титана толщиной 60 nm наносилась на кремниевую подложку р-типа ориентации (111) методом электронно-лучевого осаждения. Температура подложки составляла 373 К. Пластина кремния перед осаждением пленки химически обрабатывалась по методу, описанному в [3]. Лазерную обработку композиции Ti-Si проводили лазером ЛТН-103 с $\lambda = 1.06 \,\mu$ m. Схема обработки приведена на рис. 1. Облучение проводилось сканирующим лазерным лучом по образцу размером 5×5 mm в течение 3 s, находящемуся в кювете с алканами: пентаном (С5Н12) или гексаном (С6Н14). С помощью сканатора поверхность образца равномерно обрабатывали в течение 5 s. Мощность лазерного воздействия составляла 1.5-7.0 W и контролировалась в процессе обработки измерителем мощности ИМО-2. Фазовые превращения, происходящие в композиции после лазерной обработки, исследовались методами электронографии и электронноспектральным и химическим анализом (ЭСХА).

Проведенные исследования показали, что при лазерной обработке системы Ti–Si происходит изменение фазового состава поверхностного слоя. Наблюдаются рост зерен, сопровождаемый миграцией межзеренных границ, перераспределение дефектов в кристаллической решетке. Образуются и растут зародыши карбида, оксидов и силицидов титана.

После лазерной обработки системы Ti–Si в пентане с мощностью воздействия 1.5 W на электронограммах наблюдаются дифракционные кольца, принадлежащие низшим оксидам титана Ti₂O₃, Ti₃O₅ и карбиду титана TiC (табл. 1). С повышением мощности лазерного воздействия до 4.0 W на электронограммах наряду с кольцами от карбида и оксидов титана появляются дифракционные кольца, относящиеся к силициду татана, обогащенному металлом — Ti₅Si₃. Оксидные фазы на поверхности композиции образуются вследствие взаимо-

действия пленки с кислородом, адсорбированным пленкой при осаждении, а также из окружающей среды. При лазерной обработке системы титан-кремний в пентане происходит гомолитический разрыв углерод-углеродных связей (крекинг) углеродсодержащей жидкости. Лазерное воздействие сообщает молекулам пентана достаточно энергии для крекинга; при этом происходит взаимодействие атомов углерода с пленкой титана, в результате чего образуется карбид титана. Более подробно образование карбидов металлов при лазерном воздействии на тонкие металлические пленки в углеродосодержащих жидкостях описано в работе [4]. Вследствие диффузии в пленку атомов углерода из окружающей среды в приповерхностном слое происходит образование большого количества пор, расположенных как внутри, так и по границам зерен. При лазерной обработке Ti-Si в пентане с мощностью 7.0 W на электронограммах наряду с перечисленными фазами появляются самыев интенсивные рефлексы силицида титана — TiSi. Образование силицидов титана обусловлено диффузией кремния в пленку титана. Высокая концентрация дефектов, границы зерен в металлической пленке значительно облегчают диффузию кремния [1]. Лазерный отжиг стимулирует взаимодиффузию и взаимодействие между титаном и кремнием.

Рис. 1. Схема экспериментальной установки: *1* — лазер ЛТН-103; *2* — измеритель мощности лазерного излучения ИМО-2; *3* — полупрозрачное зеркало; *4* — зеркало, вращающееся вдоль оси *X*; *5* — зеркало, вращающееся вдоль оси *Y*; *6* — фокусирующая линза; *7* — кювета с образцами; *8* — установка ВУП-4.

2

Рис. 2. Электронограммы системы титан-кремний после лазерной обработки в гексане при мощности 1.5 (*a*) и 7.0 W (*b*).

Последовательность фазовых превращений отражает кинетику взаимодиффузии в системе Ti–Si с увеличением мощности лазерного воздействия, в результате которого происходит перераспределение атомов титана, углерода, кислорода, кремния, изменение границы раздела титан– кремний. Изменение фазового состава поверхностного слоя системы Ti–Si в зависимости от условий обработки можно представить следующей схемой:

$$\begin{split} Ti{-}Si & \stackrel{1.5 \text{ W}}{\longrightarrow} Ti_3O_5, Ti_2O_3, TiC & \stackrel{4.0 \text{ W}}{\longrightarrow} Ti_3O_5, TiC, Ti_5Si_3 \\ & \stackrel{7.0 \text{ W}}{\longrightarrow} Ti_3O_5, TiC, TiSi, Ti_5Si_3. \end{split}$$

При обработке системы Ti-Si в гексане с мощностью лазерного воздействия 1.5 W на электронограммах наблюдаются рефлексы: TiC, Ti₃O₅, Ti₂O₃ (табл. 2, рис. 2, *a*). Наряду с данными фазами при увеличении мощности лазерного облучения образуются и растут зародыши фазы — Ті₅Si₃. При обработке системы в гексане с мощностью 7.0 W на электронограмме присутствуют рефлексы фаз: Ti₃O₅, TiC, Ti₅Si₃, TiSi (табл. 2). Анализ результатов, приведенных в табл. 1 и 2, показывает, что существенных различий в фазовых составах при обработке в пентане или гексане нет. Однако при обработке системы в гексане на электронограмме присутствует большее количество дифракционных колец, относящихся к карбиду титана, что свидетельствует об увеличении содержания карбида титана. Поэтому далее по тексту будут обсуждаться результаты, получаемые при обработке системы в гексане.

Для исследования фазовых превращений, происходящих в системе Ti–Si после лазерной обработки в алканах по всей толщине пленки титана, проводилось стравливание 20 nm толщины пленки. При лазерном воздействии мощностью 1.5 W на Ti–Si в гексане на глубине 20 nm от поверхности наряду с фазами, образовавшимися на поверхности системы, на электронограмме наблюдаются рефлексы силицида титана — TiSi. Рефлексы TiSi относятся к самым интенсивным. Это свидетельствует о том, что уже при мощности обработки 1.5 W на границе раздела титан–кремний происходит образование силицида

Таблица 1. Изменение фазового состава системы Ti-Si при лазерной обработке в пентане

E. W

d A	,		
<i>u</i> , 11	1.5	4.0	7.0
4.28	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
3.54	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
3.14	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
2.71	Ti ₂ O ₃	-	_
2.57	Ti ₂ O ₃	_	-
2.51	TiC	TiC	TiC
2.44	_	_	TiSi
2.20	-	Ti ₅ Si ₃	Ti ₅ Si ₃
2.19	_	_	TiSi
2.18	TiC	TiC	TiC
2.11	-	Ti ₅ Si ₃	Ti ₅ Si ₃
2.10	Ti ₃ O ₅	_	-
1.96	-	-	TiSi
1.70	Ti ₂ O ₃	_	-
1.54	TiC	TiC	TiC
1.51	—	Ti ₅ Si ₃	—
1.31	TiC	TiC	TiC

Примечание. *d* — межплоскостные расстояния, *E* — мощность лазерного воздействия.

Таблица 2. Изменение фазового состава системы Ti-Si при лазерной обработке в гексане

dÅ	E, W		
и, л	1.5	4.0	7.0
4.28	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
3.54	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
3.14	Ti ₃ O ₅	Ti ₃ O ₅	Ti ₃ O ₅
2.71	Ti_2O_3	_	_
2.57	Ti ₂ O ₃	-	_
2.51	TiC	TiC	TiC
2.44	-	-	TiSi
2.20	_	Ti ₅ Si ₃	Ti ₅ Si ₃
2.19	_	_	TiSi
2.18	TiC	TiC	TiC
2.11	_	Ti ₅ Si ₃	Ti ₅ Si ₃
2.10	Ti ₃ O ₅	_	_
1.96	_	_	TiSi
1.54	TiC	TiC	TiC
1.51	—	Ti ₅ Si ₃	—
1.31	TiC	TiC	TiC
0.97	TiC	TiC	TiC

	E, W		
<i>d</i> , Å	1.5	4.0	7.0
4.28	Ti ₃ O ₅	Ti ₃ O ₅	_
3.54	Ti ₃ O ₅	Ti ₃ O ₅	_
3.14	Ti ₃ O ₅	Ti ₃ O ₅	_
2.68	TiSi	TiSi	TiSi
2.57	_	_	Ti_2O_3
2.51	TiC	TiC	TiC
2.44	TiSi	TiSi	TiSi
2.34	_	TiSi	_
2.29	_	TiSi ₂	TiSi ₂
2.20	Ti ₅ Si ₃	_	_
2.19	_	TiSi	TiSi
2.18	TiC	TiC	TiC
2.11	Ti ₅ Si ₃	_	_
2.08	_	TiSi ₂	TiSi ₂
1.82	_	_	TiSi ₂
1.70	_	_	Ti_2O_3
1.54	TiC	TiC	TiC
1.48	_	_	Ti_2O_3
1.44	TiSi	TiSi	TiSi
1.40	Ti ₅ Si ₃	—	_
1.39	-	TiSi ₂	TiSi ₂
1.31	TiC	TiC	TiC

Таблица 3. Изменение фазового состава системы Ti-Si в гексане после стравливания пленки по толщине на 20 nm

титана. С увеличением мощности обработки до 4.0 W наблюдается рост силицида титана TiSi и зарождение TiSi₂, обогащенного кремнием модификации C-54 (табл. 3). Дисилицид титана с решеткой C-54 описан в работе [5]. При мощности лазерного воздействия 7.0 W на электронограммах в одинаковой пропорции присутствуют рефлексы фаз TiSi и TiSi₂ (рис. 2, *b*). Наряду с силицидами на глубине 20 nm от поверхности присутствуют оксиды и карбид титана. Это обусловлено диффузией атомов углерода в пленку титана и присутствием кислорода, адсорбированного пленкой при осаждении, и его диффузией в пленку вследствие деградации прослойки SiO₂, находящейся на поверхности кремния.

Анализ результатов, приведенных в табл. 4, показывает, что фазовый состав системы после лазерной обработки в алканах с мощностью 1.5-7.0 W на глубине 40 nm от поверхности состоит в основном из силицида и дисилицида титана. На электронограмме от обработанных образцов присутствуют также отдельные рефлексы Si и SiO₂ (tridymite). Сравнение результатов табл. 3 и 4 показывает, что на глубине 40 nm от поверхности отсутствуют оксиды титана и карбид титана. Это обусловлено глубиной диффузии атомов углерода из окружающей среды. Количество кислорода, диффундирующего из прослойки SiO₂ в пленку титана, незначительно и недостаточно для образования оксидов титана. Присутствие силицидов свидетельствует о диффузии атомов кремния через SiO₂ в титан. Для исследования границы раздела системы после лазерной обработки в алканах с образцов после обработки снималось 50 и 60 nm поверхностного слоя. Результаты исследований представлены в табл. 5. Наряду с рефлексами от дисилицида титана с решеткой С-54 на электронограммах присутствуют рефлексы от SiO₂ (tridymite) и кремния. Таким образом, послойное стра-

Таблица 4. Изменение фазового состава системы Ti–Si после стравливания 40 nm

d Å	E, W		
<i>u</i> , 11	1.5	4.0	7.0
4.26	SiO ₂	SiO ₂	SiO ₂
4.08	SiO ₂	SiO ₂	SiO ₂
3.12	Si	Si	Si
2.68	TiSi	TiSi	_
2.44	TiSi	TiSi	_
2.34	TiSi	TiSi	_
2.29	TiSi ₂	TiSi ₂	TiSi ₂
2.19	TiSi ₂	TiSi ₂	TiSi ₂
2.13	_	-	TiSi ₂
2.08	TiSi ₂	TiSi ₂	TiSi ₂
1.96	TiSi	TiSi	_
1.90	Si	Si	Si
1.82	TiSi ₂	TiSi ₂	TiSi ₂
1.63	Si	Si	Si
1.49	TiSi ₂	TiSi ₂	TiSi ₂
1.44	TiSi	-	_
1.39	-	-	TiSi ₂
1.35	—	—	Si
1.31	TiSi ₂	TiSi ₂	TiSi ₂
1.24	TiSi ₂	TiSi ₂	TiSi ₂

Таблица 5. Изменение фазового состава системы Ti–Si E = 7.0 W после стравливания 50 (*A*) и 60 nm (*B*)

<i>d</i> , Å	Α	В
4.26	SiO ₂	SiO ₂
4.08	SiO_2	SiO ₂
3.80	SiO ₂	SiO ₂
3.61	_	SiO ₂
3.23	_	SiO ₂
3.12	Si	Si
2.96	SiO ₂	SiO ₂
2.48	SiO ₂	SiO ₂
2.29	TiSi ₂	TiSi ₂
2.19	TiSi ₂	TiSi ₂
2.13	TiSi ₂	—
2.08	TiSi ₂	_
2.07	—	SiO ₂
1.93	—	SiO ₂
1.90	Si	Si
1.63	Si	Si
1.24	Si	Si
1.10	-	Si
1.04	-	Si
0.92	-	Si

Рис. 3. Схема распределения фазового состава системыв титан-кремний по глубине: *а* — исходный образец (без обработки), *b* — после лазерной обработки с мощностью 7.0 W в алканах.

вливание поверхностного слоя позволило проследить изменения фазового состава системы Ti–Si при лазерном отжиге. Фазовый состав меняется следующим образом: Ti/SiO₂/Si к Ti_xO_y–TiC–Ti_nSi_m/TiSi₂–SiO₂/Si в зависимости от расстояния от поверхности. Обращает внимание, что происходит кристаллизация SiO₂ на границе раздела металл-полупроводник, причем происходит ее перемещение в глубь кремния.

Таким образом, при лазерном облучении системы титан-кремний в алканах происходит взаимодействие поверхностного слоя титана с углеродом, что приводит к образованию и росту на поверхности пленки карбида титана, сопровождающееся также окислением титана. В результате диффузии кремния через пленку SiO₂, а также за счет ее деградации происходит образование на границе раздела титан-двуокись кремния силицидов. Вследствие этого приповерхностный слой имеет сложный фазовый состав. Распределение фаз по глубине этого слоя можно представить рис. 3.

Результаты, полученные методом электронографии, коррелируют с результатами, полученными методом ЭСХА.

Изменение фазового состава системы Ti-Si, ее границы раздела влечет изменение электрофизических параметров контакта. Исследование вольт-амперных характеристик проводилось по методу, описанному в работе [6], что позволило определить величину барьера Шоттки, напряжение пробоя, коэффициент идеальности. Проведенные исследования показали, что электрофизические параметры контакта Ti-Si, обработанного в пентане и гексане, в пределах погрешности эксперимента идентичны. Высота барьера Шоттки при обработке увеличивается от 0.55 eV у исходного образца до 0.56 eV при отжиге в алканах, напряжение пробоя соответственно изменяется от 0.5 до 0.8 V. Увеличение высоты барьера Шоттки связано с реактивной диффузией кремния при лазерной обработке и последующим образованием силицида и дисилицида титана. Незначительное изменение значения высоты барьера обусловлено наличием TiSi2 и подробно объяснено в [1]. Также на величину барьера оказывает влияние изменение плотности поверхностных состояний на полупроводнике при лазерной обработке. К увеличению напряжения пробоя приводят перераспределение кислорода, диффузии углерода как в приповерхностный слой, так и в глубину композиции. Влияние примесей в контактах, оказывающих влияние на характеристики полупроводниковых приборов, описано в работе [7].

Таким образом, обрабатывая систему Ti–Si лазерным излучением с $\lambda = 1.06 \,\mu$ m в алканах, можно получать контакт с определенным фазовым составом. Обработка в алканах стимулирует образование оксидов, карбида и силицидов титана в зависимости от мощности лазерного излучения и толщины пленки титана. Подвергая композицию лазерной обработке в пентане и гексане можно получать выпрямляющий контакт с определенными электрофизическими характеристиками.

Список литературы

- [1] Мьюрарка Ш. Силициды для СБИС. М.: Мир, 1986. 176 с.
- [2] Рыкалин Н.Н., Углов А.А., Кокора А.Н. Лазерная обработка материалов. М.: Машиностроение, 1975. 296 с.
- [3] Технология тонких пленок. Справочник / Под ред. Л. Майселла, М. Глэнга. Т. 1. М.: Сов. радио, 1977. 664 с.
- [4] Chaplanov A.M., Shibko A.N. // Phys. St. Sol. (a). 1990.Vol. 120. N 1. P. K37–K40.
- [5] Яценко О.Б., Твердохлебова А.Я., Садычев Э.А. // Неорган. материалы. 1992. Т. 28. № 3. С. 536–540.
- [6] Родерик Э.Х. Контакты металл-полупроводник. М.: Радио и связь, 1982. 208 с.
- [7] Стриха В.М., Бузанева Е.В., Радзиевский И.А. Полупроводниковые приборы с барьером Шоттки. М.: Сов. радио, 1974. 248 с.