06;07;11;12 Кинетика электролюминесценции в пленочных структурах на основе сульфида цинка, легированного марганцем

© Н.Т. Гурин, О.Ю. Сабитов

Ульяновский государственный университет, 432700 Ульяновск, Россия

(Поступило в Редакцию 11 ноября 1997 г. В окончательной редакции 21 августа 1998 г.)

Исследованы теоретические и экспериментальные зависимости постоянных нарастания и спада яркости от длительности фронта и амплитуды импульса электролюминесцентных структур на основе сульфида цинка, легированного марганцем, размещенных на гладких и шероховатых подложках, от длительности фронта и амплитуды линейно нарастающего напряжения возбуждения. С помощью этих зависимостей определен ряд параметров и характеристик процесса электролюминесценции: время жизни возбужденных центров свечения, вероятности возбуждения и релаксации центров свечения в единицу времени, сечение ударного возбуждения центров свечения и их зависимости от длительности фронта и амплитуды линейно нарастающего возбуждающего напряжения. Приведены объяснения различного поведения указанных характеристик для структур на гладких и шероховатых подложках.

Для повышения показателей эффективности пленочных электролюминесцентных (ЭЛ) излучателей (ЭЛИ) (яркости, светоотдачи, внутреннего и внешнего квантовых выходов, энергетического выхода) необходимо знание важнейших параметров, определяющих кинетику электролюминесценции, таких как вероятности возбуждения и перехода в невозбужденное состояние центров свечения, сечение ударного возбуждения этих центров и др. [1]. Как показано в [2], определение большинства из указанных параметров возможно при возбуждении пленочных ЭЛИ линейно нарастающим напряжением. Однако в связи с зависимостью этих параметров от режима возбуждения (формы, амплитуды и временны́х параметров импульсов напряжения) для полного описания кинетики электролюминесценции требуется знание указанных зависимостей. Поэтому целью данной работы является исследование процессов возбуждения и релаксации центров свечения в пленочных ЭЛИ на основе ZnS: Мп при изменении параметров линейно нарастающего напряжения возбуждения для ЭЛ структур, размещенных на обычных гладких стеклянных подложках, и структур с более высокими показателями эффективности электролюминесценции, расположенных на подложках с шероховатой поверхностью [3-5].

Для решения указанной задачи были выполнены экспериментальные исследования металл-диэлектрик-полупроводник-диэлектрик-металл (МДПДМ) и металлдиэлектрик-полупроводник-композиционный жидкий диэлектрик-металл (МДПКМ) структур, где М первый прозрачный электрод на основе SnO₂ толщиной $0.2 \,\mu$ m, нанесенный на стеклянную подложку, и второй непрозначный тонкопленочный электрод на основе Al толщиной $0.15 \,\mu$ m или (для МДПКМ структур) прижимной металлический электрод с микрометрической регулировкой хода с погрешностью $\pm 5 \,\mu$ m; П-ЭЛ слой ZnS:Mn толщиной $0.80-0.85 \,\mu$ m; Д — диэлектрический слой ZrO₂ × Y₂O₃ (13% mass) толщиной $0.2-0.3 \,\mu$ m, К — слой композиционного

диэлектрика (КЖД) толщиной жидкого $15 \,\mu m$, состоящего из смеси кремнийорганической жидкости ПФМС-4 с порошкообразным наполнителем ВаТіО₃ размером зерен 1.5-3.0 µm и концентрацией с наполнителя в диэлектрике ~ 50% объемных. Структуры были нанесены на гладкую подложку, а также на подложку с внутренней шероховатой и внешней гладкой поверхностями. Прозрачный электрод из SnO2 получали методом гидролиза хлорного олова. Слой люминофора наносили вакуумтермическим испарением в квазизамкнутом объеме, непрозрачный электрод вакуумтермическим испарением, тонкопленочные диэлектрические слои получали электронно-лучевым испарением, КЖД наносили в виде пасты. Шероховатые подложки получали химическим травлением гладкой подложки в плавиковой кислоте. Все одинаковые слои исследуемых структур получали в едином технологическом цикле. По результатам измерений с помощью микроскопа МИИ-4 и фотоэлектрического окулярного микрометра ФОМ-2 шероховатые подложки имели на внутренней поверхности равномерно распределенные по поверхности микронеровности с высотой 0.2–0.5 μ m и линейными размерами 0.6–1.0 μ m, с распределением высот и линейных размеров микронеровностей, соответствующих гауссовому. Диаметр непрозрачных электродов был равен 2.5 mm. Поверхностное сопротивление прозрачного электрода на подложках с гладкой внутренней поверхностью составляло 250 Ω/□, с шероховатой поверхностью — $400 \,\Omega/\Box$. Яркость измерялась с помощью яркомералюксметра ЯРМ-3 с погрешностью измерения 8%. Измерение параметров волн яркости при возбуждении ЭЛ структур линейно нарастающим напряжением осуществлялось с помощью фотоэлектрического умножителя ФЭУ-75, сигнал с которого поступал на двухканальный осциллограф С1-114. Режим линейно нарастающего напряжения был реализован с помощью симметричного знакопеременного напряжения трапецеидальной формы с регулируемыми одновременно одинаковыми длительностями фронта и спада импульсов [2,6], подаваемого с генератора Г5-89 с дополнительным усилителем. Погрешность измерения временных параметров при этом составляла ±5%. При измерении спектральных характеристик использовался монохроматор МУМ-2 с разрешением 0.6 nm и погрешностью измерения ±0.5 nm.

Для определения зависимостей основных параметров электролюминесценции от параметров возбуждающего напряжения рассмотрим кинетику электролюминесценции в пленочных ЭЛИ при возбуждении ЭЛИ линейно нарастающим напряжением.

При прямом ударном возбуждении ионов Mn²⁺ изменение концентрации возбужденных центров свечения описывается следующим уравнением [2]:

$$\frac{dN^*(t)}{dt} = \alpha(t)[N - N^*(t)] - \frac{N^*(t)}{\tau} - \beta N^*(t), \qquad (1)$$

где N — концентрация центров свечения; N*(t) концентрация возбужденных центров свечения; $\alpha(t) = \sigma j(t)/e$ — вероятность перехода центра свечения из основного в возбужденное состояние в единицу времени (σ — сечение ударного возбуждения центра свечения, j(t) — плотность тока проводимости в пленке люминофора, вызывающего его свечение, е заряд электрона); au — постоянная времени релаксации возбужденных центров свечения, обусловленной излучательными переходами в основное состояние; β вероятность безызлучательных переходов этих центров в единицу времени.

При анализе принимаем, что диэлектрики являются однородными и не имеющими диэлектрических потерь, ЭЛ структура симметрична и волны яркости одинаковы в разные полупериоды возбуждающего напряжения.

Решим аналогично [2] уравнение (1) в предположении, что σ не зависит от t. Учитывая, что время жизни возбужденных центров свечения τ^* равно

$$\tau^* = \left(\frac{1}{\tau} + \beta\right)^{-1},\tag{2}$$

и используя выражение для плотности активного тока на линейно нарастающем участке напряжения возбуждения $j(t) = C_{d0}(dV/dt) = C_{d0}(V_m/t_m)$ [2,6], где C_{d0} — удельная емкость диэлектрических слоев ЭЛ структуры; t_m — момент времени, при котором напряжение возбуждения достигает амплитудного значения V_m (момент перехода к плоской вершине трапецеидального импульса), получим зависимости изменения концентрации возбужденных центров на участке нарастания возбуждающего напряжения до максимального V_m

$$N_{H}^{*}(t) = C \exp\left[-\left(\alpha + \frac{1}{\tau^{*}}\right)t\right] + \frac{\alpha N}{\alpha + 1/\tau^{*}} \qquad (3)$$

и на участке, соответствующем плоской вершине и спаду импульса напряжения,

$$N_C^*(t) = C \exp\left(-\frac{t}{\tau^*}\right),\tag{4}$$

где *С* — константы, определяемые начальными условиями.

Подставим полученные решения (3), (4) с учетом начальных условий, учитывающих начало генерации излучения при достижении возбуждающим напряжением порогового значения, в формулу (5). Формула связывает яркость свечения ЭЛИ с концентрацией возбужденных центров свечения при условии монохроматичности излучения и постоянства яркости по всем направлениям (ламбертовский источник)

$$L(t) = \pi \eta_c d_l \frac{N^*(t)}{\tau^*},\tag{5}$$

где η_c — эффективность светового выхода

$$\eta_c = \eta_{\text{ext}} f_\lambda h \nu, \tag{6}$$

 $\eta_{\rm ext}$ — внешний квантовый выход, равный отношению числа фотонов, излучаемых с поверхности, к полному числу фотонов, возникающих в объеме ЭЛ слоя; f_{λ} — видность излучения; $h\nu$ — энергия излучаемых фотонов (h — постоянная Планка); d_l — толщина слоя люминофора.

В результате получим закон изменения мгновенной яркости от времени при нарастании возбуждающего напряжения от порогового значения V_n , соответствующего времени t_n , при котором начинается свечение тонкопленочных ЭЛИ ($L_H(t_n) = 1 \text{ cd/m}^2$), до времени (t_m) достижения амплитудного значения напряжения V_m

$$L_H(t) = \frac{\eta_c d_l N}{\tau^*} \frac{\alpha}{\alpha + 1/\tau^*} \left[1 - \exp\left[-\left(\alpha + \frac{1}{\tau^*}\right)(t - t_n) \right] \right].$$
(7)

Выражение (7), справедливое для области низких частот следования импульсов возбуждающего напряжения, когда спад яркости за полпериода происходит практически до нуля, т. е. $(4-5)\tau^* \leq T/2$ (T — период следования импульсов напряжения возбуждения), позволяет определить величину постоянной нарастания яркости

$$\tau_g = \left(\alpha + \frac{1}{\tau^*}\right)^{-1}.\tag{8}$$

Аналогично, учитывая в качестве начальных условий идентичность амплитуды волны яркости при нарастании и спаде $L_H(t_m) = L_C(t_m) = L_m$ при $t = t_m$, определим выражение $L_C(t)$ для спада яркости со временем

$$L_{C}(t) = \frac{\eta_{c} d_{l} N}{\tau^{*}} \frac{\alpha}{\alpha + 1/\tau^{*}} \left[1 - \exp\left[-\left(\alpha + \frac{1}{\tau^{*}}\right) (t_{m} - t_{n}) \right] \right]$$
$$\times \exp\left(-\frac{t - t_{m}}{\tau^{*}} \right) = L_{m} \exp\left(-\frac{t - t_{m}}{\tau^{*}} \right). \tag{9}$$

С помощью выражений (7)–(9) можно найти величину τ^* .

В общем случае вероятность перехода центра свечения из основного в возбужденное состояние α сечение ударного возбуждения центра σ и время жизни центров свечения τ^* могут зависеть от времени нарастания t_m и

амплитуды напряжения возбуждения V_m . Тогда постоянная нарастания яркости τ_g , обратная ей величина $1/\tau_g$ и α могут быть определены в виде

$$\tau_g(t_m, V_m) = \left(\alpha(t_m, V_m) + 1/\tau^*(t_m, V_m)\right)^{-1}, \quad (10)$$

$$\frac{1}{\tau_g(t_m, V_m)} = \alpha(t_m, V_m) + \frac{1}{\tau^*(t_m, V_m)},$$
 (11)

$$\alpha(t_m, V_m) = \frac{\sigma(t_m, V_m)C_{d0}V_m}{et_m} = \alpha(t_m, V_m)t_m^{-1}, \qquad (12)$$

откуда выражение для определения сечения ударного возбуждения имеет вид

$$\sigma(t_m, V_m) = \left(\frac{1}{\tau_g(t_m, V_m)} - \frac{1}{\tau^*(t_m, V_m)}\right) \frac{et_m}{C_{d0}V_m}.$$
 (13)

В соответствии с (11), (12) при $\sigma \sim 10^{-16} \text{ cm}^2$, $C_{d0} \sim 3 \cdot 10^{-8} \text{ F/cm}^2$, $V_m \sim 200 \text{ V}$ величина $a(V_m) \approx 4 \cdot 10^{-3}$ и при $t_m \geq \tau^*$ величина $\alpha(t_m, V_m) \ll 1/\tau^*(t_m, V_m)$. Тогда зависимость $1/\tau_g(t_m, V_m)$ сводится к зависимости $1/\tau^*(t_m, V_m)$

$$\frac{1}{\tau_g(t_m, V_m)} \approx \frac{1}{\tau^*(t_m, V_m)}, \quad \tau_g(t_m, V_m) \approx \tau^*(t_m, V_m).$$
(14)

Методическая погрешность при этом не превышает 0.5%.

Выражения (10)-(14) позволяют найти из экспериментальных зависимостей $\tau_g(t_m, V_m)$ и $1/\tau_g(t_m, V_m)$ ряд параметров и характеристик, определяющих кинетику электролюминесценции в пленочных ЭЛИ. У всех указанных выше структур при исследовании волн яркости свечения этих структур на знакопеременном симметричном трапецеидальном напряжении с длительностями фронта и спада импульсов $t_m = 20 \, \mu s$ и частотой их следования 400 Hz на участке насыщения вольт-яркостных характеристик (ВЯХ) фронт нарастания яркости до максимального значения в пределах погрешности измерений был в соответствии с формулой (7) экспоненциальным с постоянной времени нарастания τ_g . У МДПДМ структуры на подложке с гладкой внутренней поверхностью спад волны яркости после достижения амплитудного значения напряжения V_m был также в соответствии с формулой (9) экспоненциальным с постоянной времени 650 µs. У МДПКМ структуры на гладкой подложке и у всех ЭЛ структур на подложках с внутренней шероховатой поверхностью спад волны яркости имел два экспоненциальных участка: "быстрый" с постоянной времени спада $\tau_{c1} = 200-260\,\mu\text{s}$ и "медленный" с $\tau_2 = 460$ (МДПДМ структура), 400 (МДПКМ структура на гладкой подложке), 300 µs (МДПКМ структура на шероховатой подложке).

Вид экспериментальных зависимостей $\tau_g(t_m)$, измеренных при изменении t_m в диапазоне 1–300 μ s и частоте следования этих импульсов 400 Hz (рис. 1), свидетельствует о существенном возрастании τ_g с ростом t_m , особенно для МДПДМ структуры на гладкой подложке.

Участки насыщения зависимости $\tau_g(t_m)$ при больших t_m $(300 \,\mu s)$ в соответствии с (14) позволяют определить значения времени жизни возбужденных центров свечения τ^* . Для МДПДМ структуры на гладкой подложке (рис. 1, *a*) τ^* на участке роста ВЯХ ($V_m = 90$ V) равна 0.9 ms, на участке насыщения ВЯХ ($V_m = 140 \,\mathrm{V}$) — 0.84 ms. Обратные велиины $(1/\tau^*)$ определяют вероятность переходов центров свечения из возбужденного в невозбужденное состояние в единицу времени и равны 1110 и $1190 \,\mathrm{s}^{-1}$ на участках роста и насыщения ВЯХ соответственно. При этом методическая погрешность определения τ^* и $1/\tau^*$ с учетом приведенных значений t_m и τ^* на превышает 1.5%. При переходе к шероховатой подложке значения au_g уменьшаются и участок насыщения зависимости $\tau_g(t_m)$ сдвигается в сторону больших t_m , что может быть обусловлено как уменьшением τ^* , так и ростом α , например, из-за увеличения эффективной удельной емкости диэлектрических слоев C_{d0}, а также возрастания σ . Подобное поведение наблюдается и для МДПКМ структуры на гладкой и шероховатой подложках (рис. 1, b), причем использование последней также приводит к дополнительному уменьшению τ_g . При этом для МДПДМ структуры на подложке с шероховатой внутренней поерхностью (рис. 1, a) на участке роста ВЯХ $\tau^* = 0.57 \,\mathrm{ms} \, 1/\tau^* \approx 1750 \,\mathrm{s}^{-1}$, на участке насыщения ВЯХ $au^* = 0.51 \,\mathrm{ms} \, 1/ au^* \approx 1960 \,\mathrm{s}^{-1};$ для МДПКМ структуры (рис. 1, b) на гладкой подложке на участке роста ВЯХ $au^* = 0.56\,{
m ms}\,\,1/ au^* pprox\,1790\,{
m s}^{-1}$, на участке насыщения ВЯХ $\tau^* = 0.53 \,\mathrm{ms} \, 1/\tau^* \approx 1890 \,\mathrm{s}^{-1};$ на шероховатой подложке на участке роста ВЯХ $\tau^* = 0.38 \,\mathrm{ms} \, 1/\tau^* \approx 2630 \,\mathrm{s}^{-1}$, на участке насыщения ВЯХ $\tau^* = 0.35 \,\mathrm{ms} \, 1/\tau^* \approx 2860 \,\mathrm{s}^{-1}$. Измерения, выполненные с помощью прибора Е7-14, свидетельствуют о том, что емкость МДПДМ и МДПКМ структур на шероховатых подложках возрастает на 20-30% по сравнению со структурами на гладких подложках. Это подтверждает роль повышения значений C_{d0} в возрастании α .

Как следует из приведенных выше данных и рис. 1, при больших значениях t_m , когда выполняется соотношение (14), время жизни возбужденных центров свечения τ^* всех структур зависит от напряжения V_m и не зависит от t_m . Поэтому и общее уменьшение значений τ^* ЭЛ структур на шероховатой подложке по сравнению со структурами на гладких подложках (рис. 1) наиболее вероятно может быть объяснено возрастанием электрического поля в ЭЛ слое в местах микронеровностей подложки [3–5]. Меньшие значения τ^* для МДПКМ структуры на гладкой подложке по сравнению с МДПДМ структурой на такой же подложке объясняются наличием неоднородного электрического поля в такой МДПКМ структуре из-за неоднородного распределения диэлектрической проницаемости слоя КЖД [7,8].

Разделение возможных механизмов уменьшения постоянной нарастания яркости τ_g при переходе от гладких к шероховатым подложкам легче выполнить согласно (11), (12) по экспериментальным зависимостям $1/\tau_{\mu}(1/t_m)$. Эти зависимости $1/\tau_g(1/t_m)$ (рис. 2) в полном соответствии с (11), (12) линейны для МДПДМ

Рис. 1. Зависимость τ_g от t_m : a — для МДПДМ структуры; b — для МДПКМ структуры; l, 3 — на участке роста ВЯХ; 2, 4 — на участке насыщения ВЯХ; l, 2 — на гладкой подложке; 3, 4 — на шероховатой подложке.

структуры на гладкой подложке во всем диапазоне изменения $t_m \leq 300 \,\mu$ s, для МДПКМ структуры на гладкой подложке — при $t_m \leq 50 \,\mu$ s, на шероховатой подожке — при $t_m \leq 100 \,\mu$ s. При этом для МДПДМ структуры наклон зависимости $1/\tau_g(1/t_m)$ при увеличении напряжения V_m в ~ 1.55 раза возрастает в ~ 1.4 раза, что с учетом

погрешностей измерений V_m и τ_g подтверждает справедливость выражений (11), (12) для этой структуры. Для МДПКМ структур на гладкой и шероховатой подложках при увеличении V_m в ~ 1.47 раза наклон линейных участков зависимостей $1/\tau_g(1/t_m)$ возрастает только в ~ 1.1 раза. Такое отклонение указанных зависимостей

Рис. 2. Зависимость $1/\tau_g$ от $1/t_m$: *a* — для МДПДМ структуры; *b* — для МДПКМ структуры; *l*, *2* — на шероховатой подложке; *3*, *4* — на гладкой подложке; *l*, *3* — на участке насыщения ВЯХ; *2*, *4* — на участке роста ВЯХ.

от расчетных формул (11), (12) вызвано существованием зависимости $C_{d0}(V_m)$, обусловленной уменьшением диэлектрической проницаемости наполнителя КЖД титаната бария с увеличением V_m . В частности, при возрастании V_m с 1 до 60 V экспериментально определенная с помощью прибора E7-14 удельная емкость слоя КЖД снижалась в ~ 2.5 раза, вызывая соответствующее уменьшение результирующей величины C_{d0} МДПКМ

Рис. 3. Зависимость τ_g от V_m : a — для МДПДМ структуры; b — для МДПКМ структуры; 1, 2, 4 — на гладкой подложке; 3, 5, 6 — на шероховатой подложке; $t_m = 300$ (1, 3); 20 (2,5); $1 \mu s$ (4, 6).

структуры. Приведенные выше данные указывают на независимость τ^* и $1/\tau^*$ для данных структур в указанном диапазоне изменения t_m . Для МДПДМ структуры на шероховатой подложке в диапазоне изменения $t_m \leq 300 \, \mu$ s на участке роста ВЯХ зависимость $1/\tau_g(1/t_m)$ имеет вид $1/\tau_g \sim (1/t_m)^2$, а на участке насыщения ВЯХ — $1/\tau_g \sim (1/t_m)^3$. Такой вид зависимостей $1/\tau_g(1/t_m)$ свидетельствует о зависимостях σ от t_m или τ^* от t_m для этой структуры в указаном диапазоне изменений t_m .

Для МДПКМ структуры в области больших значений t_m (на гладкой подложке при $t_m \ge 50 \,\mu$ s, на шероховатой подожке $t_m > 100 \,\mu$ s) зависимость $1/\tau_g(1/t_m)$ (рис. 2) ослабевает, что обусловлено, по-видимому, прежде всего появлением упомянутых ранее двух участков спада яркости с уменьшенными значениями постоянных спада

 τ_{c1} и τ_{c2} , которые могут быть вызваны релаксацией наряду с одиночными парных центров свечения Mn²⁺ [9] с временем жизни τ_{c1} , появление которых может быть вызвано неоднородным электрическим полем в ЭЛ слое. Аналогичное влияние могут оказывать эти центры и на вид зависимостей $1/\tau_g(1/t_m)$ для МДПДМ структуры на шероховатой подложке (рис. 2).

Поскольку для МДПДМ структуры на гладкой подложке и МДПКМ структуры на гладкой и шероховатой подложках формулы (11), (12) справедливы в указанных выше диапазонах изменения t_m , то в этих диапазонах экспериментальные зависимости $1/\tau_g(1/t_m)$ для этих структур (рис. 2) являются одновременно зависимостями вероятности возбуждения центров свечения в единицу времени α от $1/t_m$ с учетом того, что значения α по оси ординат в этом случае получаются путем уменьшения соответствующих значений $1/\tau_g$ на постоянные величины $1/\tau^*$, приведенные выше для данных структур.

Таким образом, общей тенденцией для МДПДМ и МДПКМ структур при переходе от гладкой к шероховатой подложке является увеличение $1/\tau_g$ и возрастание наклона линейных участков зависимостей $1/\tau_g(1/t_m)$ как на участках роста, так и насыщения ВЯХ. Это может быть объяснено ростом $\alpha(V_m)$ и, возможно, ростом $1/\tau^*(V_m)$ в неоднородном электрическом поле.

Как следует из (12), для МДПДМ структуры на гладкой подложке рост α при увеличении V_m возможен как за счет собственно Vm, так и из-за возрастания $\sigma(V_m)$. Для установления причин увеличения $\alpha(V_m)$ были экспериментально исследованы зависимости τ_g от V_m для МДПДМ и МДПКМ структур. В соответствии с (11), (12) значение τ_g уменьшается с ростом V_m (рис. 3), причем при больших t_m (300 μ s) эти зависимости для структур на гладких и шероховатых подложках практически линейны. Учитывая, что при этом выполняется соотношение (14), эти зависимости фактически являются зависимостями времени жизни возбужденных центров свечения Mn^{2+} au^* от V_m для всех ЭЛ структур, а зависимости обратной величины $1/\tau_{g}$ от V_{m} (рис. 4) при $t_{m} = 300 \, \mu s$ представляют собой зависимости вероятностей перехода в невозбужденное состояние центров свечения $1/\tau^*$ от V_m для соответствующих структур. Учет соотношений (13), (14) позволяет определить функцию $\sigma(V_m)$ для МДПДМ структуры на гладкой подложке, используя зависимость $au_g(V_m) \approx au^*(V_m)$ при $t_m = 300\,\mu$ s, реальное значение $c_{d0} = 3 \cdot 10^4 \, \mathrm{pF/cm^2}$ и вычитая из экспериментальной зависимости $1/\tau_g(V_m)$, измеренной при $t_m = 1 \, \mu s$ экспериментальную зависимость $1/\tau_g(V_m)$, измеренную при $t_m = 300 \,\mu$ s. При этом, как указывалось выше, методическая погрешность определения $\sigma(V_m)$ не превышает 1.5%. Полученная таким образом зависимость $\sigma(V_m)$ (рис. 5) аппроксимируется функцией $\sigma \approx D(\exp kV_m)/V_m$, где $D \approx 7.22 \cdot 10^{-15} \,\mathrm{V} \cdot \mathrm{cm}^2, \ k \approx 0.015 \,\mathrm{V}^{-1}.$ Такой вид функции отличается от данных [1], где приводится зависимость вида $\sigma \sim \exp(-E_m^{-2})$, где E_m — электрическое поле в ЭЛ слое. При условии справедливости

Рис. 4. Зависимость $1/\tau_g$ от V_m : a — для МДПДМ структуры; b — для МДПКМ структуры; 1, 2, 4 — на шероховатой подложке; 3, 5, 6 — на гладкой подложке; $t_m = 1$ (1, 3); 20 (2, 5); 300 μ s (4, 6).

использования выражения (13) для МДПДМ структур на шероховатой подложке, в пользу чего свидетельствует линейный характер экспериментальной зависимости $1/\tau_g(V_m)$ при $t_m = 300 \ \mu s$ (рис. 4), и независимости емкости C_{d0} от напряжения V_m , можно оценить аналогичную зависимость $\sigma(V_m)$ для этой структуры (рис. 5), которая также аппроксимируется функцией $\sigma \approx D(\exp kV_m)/V_m$, где $D \approx 5.54 \cdot 10^{-15} \text{ V} \cdot \text{cm}^2$, $k \approx 0.022 \text{ V}^{-1}$. В целом значения сечения ударного возбуждения центров свечения $\text{Mn}^{2+} \sigma$ для МДПДМ структуры на шероховатой подложке в 1.6–2.3 раза выше соответствующих значений для МДПДМ структуры на гладкой подложке при одинаковых значениях напряжения. Для МДПКМ структуры оценить зависимость $\sigma(V_m)$ оказывается сложнее из-за наличия ранее упомянутой зависимости $C_{d0}(V_m)$. В отличие от $\sigma(V_m)$ зависимость $\alpha(V_m)$ может быть определена в соответствии с (11) для МДПДМ и МДПКМ структур как на гладкой, так и на шероховатой подложках, так как выражение (11) в наиболее общем виде учитывает вероятности возбуждения, излучательной и безызлучательной релаксации центров свечения в единицу времени. Так как при $t_m = 300 \, \mu s$ $1/\tau_g(V_m) \approx 1/\tau^*(V_m)$, то разница зависимостей $1/\tau_g(V_m)$ при $t_m = 1$ 300 μs (рис. 4), согласно (12), дает зависимость $\alpha(V_m)$.

Зависимости $\alpha(V_m)$ (рис. 6), полученные таким способом из экспериментальных данных (рис. 4), существенно различаются для МДПДМ и МДПКМ структур. Для МДПДМ структуры на гладкой и шероховатой подложках эти зависимости аппроксимируются функцией $\alpha \approx \alpha_0 \exp kV_m$, где $\alpha_0 \approx 1353 \,\mathrm{s}^{-1}$, $k \approx 0.015 \,\mathrm{V}^{-1}$ — для структуры на гладкой подложке; $\alpha_0 \approx 1108 \,\mathrm{s}^{-1}$, $k \approx 0.022 \,\mathrm{V}^{-1}$ — для структуры на шероховатой подлож-ке. Для МДПКМ структуры зависимость $\alpha(V_m)$ линейна

Рис. 5. Зависимость σ от V_m : a — для МДПДМ структуры; b — для МДПКМ; I — на шероховатой подложке; 2 — на гладкой.

Рис. 6. Зависимость α от V_m : *1*, 2 — для МДПДМ структуры; *3*, 4 — для МДПКМ структуры; *1*, 3 — на шероховатой подложке; *2*, 4 — на гладкой.

 $\alpha = k(V_m - V_n) + \alpha_1$. При этом для структуры на гладкой подложке $k \approx 130 \, V^{-1} s^{-1}$, $\alpha_1 \approx 7 \cdot 10^3 \, s^{-1}$; для структуры на шероховатой подложке $k \approx 870 \, V^{-1} s^{-1}$, $\alpha_1 \approx 6 \cdot 10^3 \, s^{-1}$. Ослабление зависимостей $\alpha(V_m)$ для МДПКМ структуры по сравнению с МДПДМ структурой может быть объяснено упомянутым выше уменьшением удельной емкости слоя КЖД с увеличением V_m , компенсирующим возрастание $\sigma(V_m)$. Достигнутые максимальные значения α выше в случае МДПКМ структур по сравнению с МДПДМ структур по сравнению с МДПДМ структурами, что объясняется более высокими значениями напряженности неоднородного электрического поля в локальных участках ЭЛИ на основе МДПКМ структуры.

Следует отметить, что зависимости τ_g , $1/\tau_g$, τ^* , $1/\tau^*$, σ , α от V_m при различных t_m , а также зависимости $1/\tau_g$ от $1/t_m$ при соответствующих значениях V_m являются одновременно зависимостями от скорости нарастания напряжения V_m/t_m и также могут быть использованы при описании кинетики электролюминесценции и для оптимизации режима возбуждения ЭЛИ.

Заключение

Выполненные экспериментальные исследования волн яркости в МДПДМ и МДПКМ структурах на гладкой и шероховатой подложках при напряжениях возбуждения, соответствующих участкам насыщения ВЯХ, свидетельствуют об экспоненциальной форме фронта нарастания волны яркости у всех исследованных структур. Спад волны яркости для МДПДМ структуры на гладкой подложке также имеет экспоненциальную форму. Наблюдается появление двух участков спада яркости с разными постоянными спада у МДПДМ структуры на шероховатой подложке; у МДПКМ структуры два участка спада имеются при использовании как гладкой, так и шероховатой подложек. Эти результаты могут быть объяснены наличием неоднородного электрического поля в МДПДМ структуре на шероховатой подложке и с МДПКМ структуре на обоих типах подложек и образованием парных центров свечения Mn²⁺ наряду с одиночными.

Для ЭЛ структур на основе ZnS с ударным возбуждением одиночных центров свечения Mn^{2+} получены теоретические зависимости постоянных нарастания и спада яркости от длительности фронта и амплитуды импульса линейно нарастающего напряжения возбуждения V_m , которые подтверждаются видом экспериментальных зависимостей $\tau_g(V_m, t_m)$. Полученные зависимости позволяют определить ряд параметров, характеризующих процесс электролюминесценции: время жизни возбуждения и релаксации возбужденных центров свечения в единицу времени, сечение ударного возбуждения центров свечения и их зависимости от V_m, t_m .

В частности, постоянная нарастания яркости существенно возрастает с увеличением длительности фронта импульса напряжения возбуждения и слабо уменьшается с ростом его амплитуды. Время жизни возбужденных центров свечения и вероятность перехода центров свечения в невозбужденное состояние в единицу времени не зависят от t_m для МДПДМ структуры на гладкой подложке во всем исследованном диапазоне изменения t_m (1–300 μ s), для МДПКМ структуры на гладкой подложке при $t_m \approx 1-50 \,\mu$ s, на шероховатой подложке — при $t_m \approx 1-100 \,\mu$ s.

Сечения ударного возбуждения центров свечения для МДПДМ структур возрастают с увеличением V_m в соответствии с зависимостью $\sigma \approx D(\exp kV_m)/V_m$ как для структуры на гладкой подложке, так и для структуры на шероховатой подложке, но с различными значениями коэффициентов D и k. При этом значения σ для структуры на шероховатой подложке больше в 1.6-2.3 раза значений σ для структуры на гладкой подложке при одинаковых напряжениях. Для всех исследованных ЭЛ структур время жизни возбужденных центров свечения слабо уменьшается по практически линейному закону; вероятность перехода центров свечения в невозбужденное состояние в единицу времени слабо возрастает с увеличением V_m также практически линейно, причем при переходе к структурам на шероховатых подложках эти зависимости усиливаются. Вероятности возбуждения центров свечения в единицу времени α для МДПДМ структур зависят от амплитуды импульса возбуждения V_m по экспоненциальному закону, а для МДПКМ структур — по линейному, причем ослабление указанной зависимости в последнем случае обусловлено уменьшением удельной емкости слоя композиционного жидкого диэлектрика с ростом приложенного напряжения. При переходе от гладких к шероховатым подложкам значения α существенно возрастают, что объясняется появлением (для МДПДМ структуры на шероховатой подложке) и усилением (для МДПКМ структуры на шероховатой подложке) неоднородного электрического поля. Из приведенных выше результатов следует, что возрастание эффективности (яркости, светоотдачи и т.д.) электролюминесценции в МДПДМ и МДПКМ структурах при переходе от гладких подложек к подложкам с внутренней шероховатой поверхностью помимо оптических эффектов, обусловливающих увеличение выхода излучения из структуры [4], связано с возрастанием вероятности возбуждения центров свечения в единицу времени α . Последнее объясняется как ростом сечения ударного возбуждения этих центров σ , так и вызывающим этот рост усилением электрического поля в ЭЛ слое в локальных участках, соответствующих микронеровностям поверхности подложки. При этом вероятность перехода центров свечения из возбужденного в невозбужденное состояние в единицу времени $1/\tau^*$ также возрастает, но значительно слабее, чем α .

Полученные результаты могут быть использованы для управления параметрами пленочных ЭЛ структур и оптимизации режимов возбуждения, а предложенная методика определения параметров и характеристик предпробойной электролюминесценции может быть использована при исследовании аналогичных структур на основе других электролюминесцентных материалов.

Список литературы

- [1] Электролюминесцентные источники света / Под ред. И.К. Верещагина. М.: Энергоатомиздат, 1990. 168 с.
- [2] Гурин Н.Т., Сабитов О.Ю. // ЖТФ. 1999. Т. 69. Вып. 2. С. 58–63.
- [3] Гурин Н.Т., Сабитов О.Ю., Бригаднов И.Ю. // Письма в ЖТФ. 1997. Т. 23. Вып. 15. С. 7–12.
- [4] Гурин Н.Т., Сабитов О.Ю. // ЖПС. 1997. Т. 64. Вып. 4. С. 507–512.
- [5] *Гурин Н.Т., Сабитов О.Ю. //* Письма в ЖТФ. 1997. Т. 23. Вып. 20. С. 1–7.
- [6] Гурин Н.Т., Сабитов О.Ю. // ЖТФ. 1999. Т. 69. Вып. 2. С. 64–69.
- [7] Бригаднов И.Ю., Гурин Н.Т. // Письма в ЖТФ. 1990. Т. 16.
 Вып. 23. С. 71–74.
- [8] Бригаднов И.Ю., Гурин Н.Т., Рябинов Е.Б. // ЖПС. 1993.
 Т. 59. № 1-2. С. 175-181.
- [9] Vlasenko N.A., Kopytko Yu.V., Pekar V.S. // Phys. Stat. Sol. Vol. 81. N 10. P. 661–667.