## 01;02;05;10;11 Новый модельный потенциал взаимодействия для описания движения заряженных частиц в веществе

#### © Е.Г. Шейкин

Научно-исследовательское предприятие гиперзвуковых систем, 196066 Санкт-Петербург, Россия

(Поступило в Редакцию 25 декабря 1997 г.)

Предложен новый модельный потенциал взаимодействия в форме экранированного кулоновского потенциала. Получены аналитические выражения для тормозной способности ионов в упругих столкновнеиях. Разработана программа расчета пробегов ионов в аморфном веществе методом Монте-Карло, учитывающая неупругие потери в приближении непрерывного замедления, а упругие в приближении нового модельного потенциала взаимодействия. Проведены расчеты пробегов ионов Си и Rb в мишенях из С и В. Результаты расчетов хорошо согласуются с экспериментом.

#### Введение

При описании движения быстрых заряженных частиц в веществе используются различные модельные потенциалы межатомного взаимодействия. Широкое распространение получили экранированные кулоновские потенциалы [1], записывающиеся в следующем виде:

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \Phi\left(\frac{r}{a}\right),\tag{1}$$

где  $Z_1$  и  $Z_2$  — заряды ядер сталкивающихся атомных частиц, e — заряд электрона, r — расстояние между сталкивающимися атомами, a — длина экранирования,  $\Phi(r/a)$  — функция экранирования.

Обычно  $\Phi(r/a)$  аппроксимируется разложением в виде суммы экспонент [1]

$$\Phi(r/a) = \sum_{i=1}^{n} c_i \exp(-d_i r/a).$$
(1a)

Значения коэффициентов разложения c<sub>i</sub> и d<sub>i</sub> для различных потенциалов представлены в [1,2]. Самым простым потенциалом типа (1) является потенциал Бора, для которого в (1a)  $n = 1, c_1 = 1, d_1 = 1$ . Потенциалы взаимодействия типа (1) активно используются при компьютерном моделировании процессов распыления материалов, отражения ионов от поверхности твердого тела, имплантации ионов и т. д. использованием метода Монте-Карло. Несмотря на относительно простой вид потенциала взаимодействия (1), (1а), вычисление параметов быстрой частицы после упругого рассеяния на атомах мишени требует численного интегрирования [1], что резко увеличивает временные затраты при проведении расчетов с большим числом испытаний. Поэтому представляется целесообразным построение нового модельного потенциала, который, правильно отражая основные закономерности рассеяния, позволил бы получить аналитические выражения для расчета параметров быстрой частицы после упругого рассеяния.

# Построение нового модельного потенциала взаимодействия

В работе [3] представлены результаты сравнения экспериментальных значений пробегов тяжелых ионов низких и средних энергий в В и С с результатами расчетов методом Монте-Карло по программе TRIM. Результаты расчета по программе TRIM, использующей для описания упругого рассеяния ионов так называемый универсальный потенциал взаимодействия, сильно расходятся с экспериментальными. В то же время в цикле работ [4-7] прохождение тяжелых ионов низких и средних энергий в веществе исследовалось в приближении более простого потенциала взаимодействия. Использовалась модифицированная модель твердых шаров, в которой рассеяние ионов рассматривалось в модели твердых шаров, а полное сечение упругого рассеяния предполагалось зависящим от энергии иона и определялось через известные зависимости тормозной способности ионов от энергии. Полученные в [5,6] аналитические выражения хорошо согласуются с экспериментальными результатами работы [3] при низких энергиях ионов, соответствующих значениям приведенной энергии  $\varepsilon < 0.1$  (используются традиционные обозначения). При увеличении энергии в теории наблюдается завышение значений среднеквадратичных отклонений проективных пробегов ионов, что обусловлено применением слишком жесткого потенциала взаимодействия.

Учитывая несомненный успех модифицированной модели твердых шаров при описании прохождения тяжелых ионов низких энергий в веществе, предлагается ввести функцию экранирования в наиболее простой форме, которая аналогично модели твердых шаров обеспечивает конечный радиус взаимодействия сталкивающихся частиц, но при более мягком, чем у твердых шаров, потенциале взаимодействия, переходящим при высоких энергиях ионов к кулоновскому потенциалу. Предлагается следующая функция экранирования:

$$\Phi(r) = \begin{cases} 1 - r/a, & \text{при} \quad r \leq a, \\ 0, & \text{при} \quad r > a, \end{cases}$$
(2)

где *а* — радиус экранирования.

Угол рассеяния налетающего иона при упругом столкновении с атомом мишени в системе центра масс определяется, согласно [1], соотношением

 $\chi = \pi - 2\varphi_0,$ 

(3)

где

$$arphi_0 = \int\limits_{r_{
m min}}^{\infty} rac{
ho\,dr}{r^2\sqrt{1-rac{
ho^2}{r^2}-rac{V(r)}{E_r}}},$$

где  $\rho$  — прицельный параметр;  $r_{\min}$  — расстояние максимального сближения сталкивающихся частиц;  $E_r$  кинетическая энергия в системе центра масс, связанная с энергией иона в лабораторной системе E (при неподвижных атомах мишени) соотношением  $E_r = m_2 E / (m_1 + m_2)$ ,  $m_1$  — масса иона,  $m_2$  — масса атома мишени.

Подставив в (3) потенциал (1) с функцией экранирования в форме (2), после несложных математических преобразований получим следующее выражение для косинуса угла рассеяния в системе центра масс:

$$\cos \chi = 1 - \frac{2(1-t)(\tilde{\rho}/a)^2}{4t + 4t(\tilde{\rho}/a) + (\tilde{\rho}/a)^2},$$
(4)

где  $t = (\rho/a)^2$ ,  $\tilde{\rho} = Z_1 Z_2 e^2 / E_r$ .

Полученное выражение (4) позволяет определить в явном виде тормозную способность ионов при упругом торможении  $S_n$  и страгглинг энергетических потерь в упругих столкновениях  $\Omega^2$ . Согласно [8], эти функции определяются следующими соотношениями:

$$S_n = \int_0^{T_{\text{max}}} T \, d\sigma, \qquad \Omega^2 = \int_0^{T_{\text{max}}} T^2 d\sigma$$

где T — энергия, передаваемая атому мишени при столкновении с ионом;  $T_{\text{max}} = 4m_1m_2E/(m_1 + m_2)^2$  — максимальная передаваемая энергия;  $d\sigma$  — дифференциальное сечение рассеяния.

Учитывая, что  $T = T_{\max} \sin^2(\chi/2)$ , а  $d\sigma = 2\pi \rho d\rho$ , получаем

$$S_n = T_{\max} \pi a^2 f(X), \qquad \Omega^2 = T_{\max}^2 \pi a^2 F(X),$$
  
где  $f(X) = X[(1+X)\ln(1+1/X) - 1],$   
 $F(X) = X^2 \Big[ 1 + (1+X)(1/X - 2\ln(1+1/X)) \Big],$   
 $X = \frac{(\tilde{\rho}/a)^2}{4(1+\tilde{\rho}/a)}.$  (5)

Перейдем к безразмерным переменным, традиционно используемым при исследовании движения быстрых частиц в веществе, согласно [8]

$$\varepsilon = E \frac{m_2 a_{TF}}{Z_1 Z_2 e^2 (m_1 + m_2)},$$
  

$$s_n(\varepsilon) = \frac{m_1 + m_2}{m_1} \frac{1}{4\pi a_{TF} Z_1 Z_2 e^2} S_n(E),$$
  

$$\omega(\varepsilon) = \frac{1}{\pi} \left(\frac{m_1 + m_2}{4Z_1 Z_2 e^2 m_1}\right)^2 \Omega^2(E),$$

 $a_{TF} = 0.8853 a_0 / (Z_1^{2/3} + Z_2^{2/3})^{1/2}$  — длина экранирования в приближении Томаса–Ферми,  $a_0$  — боровский радиус.

Из (5) получаем выражения для тормозной способности ионов  $s_n(\varepsilon)$  и страгглинга энергетических потерь  $\omega(\varepsilon)$  в следующем виде:

$$s_n(\varepsilon) = \left(\frac{a}{a_{TF}}\right)^2 \varepsilon f\left(\tilde{X}(\varepsilon)\right),$$
  

$$\omega(\varepsilon) = \left(\frac{a}{a_{TF}}\right)^2 \varepsilon^2 F\left(\tilde{X}(\varepsilon)\right),$$
  

$$\tilde{X}(\varepsilon) = \frac{1}{4} \frac{(a_{TF}/a)^2}{\varepsilon^2 + (a_{TF}/a)\varepsilon}.$$
(6)

При  $\varepsilon \to \infty$  из (6) следует  $s_n \to \ln \varepsilon/2\varepsilon$ ,  $\omega \to 1/4$ , что совпадает с асимптотическим поведением функций  $s_n$  и  $\omega$  для кулоновского потенциала межатомного взаимодействия. При  $\varepsilon \to 0$   $s_n \to (a/a_{TF})^2 \varepsilon/2$ ,  $\omega \to (a/a_{TF})^2 \varepsilon^2/3$ , что соответствует модели твердых шаров [4].

В экспериментах при низких энергиях наблюдается примерно корневая зависимость тормозной способности ионов от энергии [8], что отличается от зависимости  $s_n(\varepsilon)$  из (6). Для того чтобы приблизить формулы (6) к реальности, предлагается считать длину экранирования а зависящей от энергии иона. Тем самым функция экранирования в потенциале взаимодействия (1) предполагается зависящей не только от расстояния между сталкивающимися частицами, но и от энергии иона. Если учесть, что при движении иона в веществе его зарядовое состояние (которое во многом и определяет функцию экранирования) зависит от энергии иона [8,9], то такое предположение выглядит вполне разумным. Для того чтобы обеспечить  $s_n \to \sqrt{\varepsilon}$  при  $\varepsilon \to 0$ , введем в формулы (6) зависимость длины экранирования от энергии в виде

$$a = a_{TF} \varepsilon^{-1/4} / \beta, \tag{7}$$

где параметр  $\beta$  можно рассматривать как подгоночный параметр.

При такой зависимости длины экранирования от энергии тормозная способность и страгглинг принимают следующий вид:

$$s_n(\varepsilon) = \frac{\sqrt{\varepsilon}}{\beta^2} f\left(\tilde{X}(\varepsilon)\right),$$
$$\omega(\varepsilon) = \frac{\varepsilon^{3/2}}{\beta^2} F\left(\tilde{X}(\varepsilon)\right),$$
$$\tilde{X}(\varepsilon) = \frac{\beta^2}{4(\varepsilon^{3/2} + \beta\varepsilon^{3/4})}.$$
(8)

На рис. 1 и 2 приводится сравнение тормозных способностей ионов и страгглинга энергетических потерь, рассчитанных по формулам (8), с соответствующими функциями для потенциалов Мольера и Кг–С, приведенными в работе [8]. При значениях  $\beta = 0.54$  тормозная способность ионов, полученная в данной работе, практически



**Рис. 1.** Тормозные способности ионов для различных потенциалов взаимодействия: сплошная кривая — потенциал Kr–C, штрихпунктир — потенциал Мольера, пунктир — расчет по формуле (8) при  $\beta = 0.54$ , штриховая — при  $\beta = 0.6$ .



**Рис. 2.** Страгтлинг энергетических потерь для различных потенциалов взаимодействия: сплошная кривая — потенциал Кг–С, штрихпунктир — потенциал Мольера, пунктир — расчет по формуле (8) при  $\beta = 0.54$ , штриховая — при  $\beta = 0.7$ .

совпадает с тормозной способностью для потенциала Кг–С при энергиях иона в диапазоне  $10^{-3} \le \varepsilon \le 0.1$ . При  $\beta = 0.6$  эти тормозные способности практически совпадают в диапазоне энергий  $\varepsilon > 0.1$ . Страгглинг энергетических потерь, полученный в данной работе, при  $\beta = 0.54$  превышает страгглинг для потенциалов Мольера и Кг–С. При  $\beta = 0.7$  рассчитанный по (8) страгглинг близок к страгглингу для потенциала Кг–С.

## Численное моделирование пробегов ионов в веществе с использованием нового модельного потенциала

Нами разработана программа моделирования пробегов ионов в веществе методом Монте-Карло, использующая описанный выше модельный потенциал взаимодей-

программе. Рассматривается поток ионов с начальной энергией Е<sub>0</sub>, падающий ортогонально на поверхность твердого тела, расположенную при значении пространственной координаты *x* = 0. Тело занимает бесконечное полупространство x > 0. Ионы, двигаясь в веществе, испытывают упругие столкновения с атомами мишени, в процессе которых случайным образом изменяются энергия ионов и направление их движения. Предполагается, что при движении между последовательными актами упругих столкновений ион теряет энергию в неупругих столкновениях, которые рассматриваются в приближении непрерывного замедления. Движение иона прослеживается до тех пор, пока его энергия не станет меньше некоторой пороговой величины E<sub>th</sub>. Аналогично [5] пороговая энергия определяется через энергию смещения атома мишени  $E_d$ . Расчет прекращается также и в случае выхода иона за границу тела (x < 0). При остановке иона в веществе определяется координата, при которой произошла остановка и формируется массив пространственного распределения имплантированных в вещество ионов. Число испытаний (число прослеженных траекторий ионов) выбирается достаточно большим, чтобы обеспечить статистическую достоверность полученных результатов.

ствия. Перечислим приближения, использованные в этой

При моделировании различных процессов методом Монте-Карло случайные величины обычно выражают через случайную, равномерно распределенную на промежутке от 0 до 1 величину  $\xi$ . При моделировании пробегов ионов в веществе в качестве случайных величин рассматриваем длину пробега иона между последовательными упругими столкновениями, прицельный параметр и азимутальный угол рассеяния. Плотность вероятности того, что энергия иона изменится от энергии  $\varepsilon$  до энергии  $\varepsilon'$  за счет процессов неупругого торможения при его движении между двумя последовательными актами упругих столкновений, определяется, согласно [7], следующим соотношением:

$$p(\varepsilon, \varepsilon') = \frac{1}{Q} \frac{\sigma(\varepsilon)}{\pi a_{TF}^2 s_e(\varepsilon)} \\ \times \exp\left[-\int_{\varepsilon'}^{\varepsilon} \frac{1}{Q} \frac{\sigma(\varepsilon')}{\pi a_{TF}^2 s_e(\varepsilon')} d\varepsilon'\right], \qquad (9)$$

где  $Q = 4m_1m_2/(m_1 + m_2)^2$ ;  $s_e(\varepsilon)$  — торможная способность ионов при неупругом торможении;  $\sigma(\varepsilon)$  — полное сечение упругого рассеяния, которое определяется через длину экранирования  $\sigma(\varepsilon) = \pi a^2(\varepsilon)$ .

С учетом (7)  $\sigma(\varepsilon) = \pi a_{TF}^2/(\beta^2 \sqrt{\varepsilon})$ . Соотношение (9) позволяет выразить энергию  $\varepsilon'$  через случайную величину  $\xi$ , используя закон преобразования случайных величин [10]. Предполагая что  $s_e(\varepsilon) = k\sqrt{\varepsilon}$ , нетрудно получить

$$\varepsilon' = \varepsilon^{kQ\beta^2}.\tag{10}$$

Неупругие потери энергии иона в приближении непрерывного замедления описывается следующим уравнением [7]:

$$\frac{d\varepsilon}{dl} = -As_e(\varepsilon),$$

где  $A = Qn\pi a_{TF}^2$ , n — концентрация атомов мишени.

Из этого уравнения очевидным образом определяется длина пробега иона между упругими столкновениями

$$l = \frac{2}{Ak} \left( \sqrt{\varepsilon} - \sqrt{\varepsilon'} \right). \tag{11}$$

Подставив (10) в (11), выразим длину пробега l через случайную величину  $\xi$ 

$$l = \frac{2\sqrt{\varepsilon}}{Ak} \left(1 - \xi^{kQ\beta^2/2}\right). \tag{11a}$$

Значению  $\xi = 0$  отвечает максимальная длина пробега  $l = 2\sqrt{\varepsilon}/(Ak)$ . При  $\xi = 1$  l = 0. Если неупругими процессами можно пренебречь,  $k \to 0$ , из (11a) следует  $l \to \ln(1/\xi)/n\sigma(\varepsilon)$ . Это соответствует предельному случаю свободного движения иона между упругими столкновениями [1].

Изменение параметров иона в результате упругого рассеяния на атоме мишени описываются соотношениями из [1]

$$\cos\Theta = \left(1 + \frac{m_2}{m_1}\cos\chi\right) / \sqrt{1 + 2\frac{m_2}{m_1}\cos\chi + \left(\frac{m_2}{m_1}\right)^2},$$
$$\frac{\varepsilon''}{\varepsilon'} = \left(1 + 2\frac{m_2}{m_1}\cos\chi + \left(\frac{m_2}{m_1}\right)^2\right) / \left(1 + \frac{m_2}{m_1}\right)^2,$$

где  $\Theta$  — угол рассеяния иона в лабораторной системе координат;  $\varepsilon'$  — энергия иона до столкновения;  $\varepsilon''$  энергия иона после столкновения,  $\cos \chi$  определяется формулой (4), в которой величина *t* пропорциональна квадрату прицельного параметра и моделируется с помощью случайной величины соотношением  $t = \xi$ .

Координата k-го столкновения иона в веществе  $x_k$ определяется суммированием соответствующих смещений иона вдоль оси x при его движении между последовательными упругими столкновениями

$$x_k = \sum_{j=0}^{k-1} l_j \mu_j$$

где  $l_j$  — длина пробега иона между *j*-м и (j + 1)-м упругими столкновениями,  $\mu_j$  — косинус угла между траекторией иона после *j*-го столкновения и осью *x*.

Для  $\mu_j$ , согласно [5], справедливо следующее рекуррентное соотношение:

$$\mu_j = \mu_{j-1} \cos \Theta + \sqrt{1 - \mu_{j-1}^2} \sin \Theta \cos \psi.$$

Азимутальный угол рассеяния  $\psi$  определяется через случайную величину  $\xi$  соотношением  $\psi = 2\pi\xi$ .

В результате прослеживания траекторий N ионов от момента их попадания в вещество и до момента остановки получаем набор значений координат, при которых произошла остановка ионов в веществе  $\hat{x}_i$ ,  $i = 1, \ldots, N$ . На основе этих расчетов строятся гистограммы пространственного распределения имплантированных ионов и определяются средние значения:  $R_p$  — средний проективный пробег и  $\Delta R_p$  — среднеквадратичное отклонение проективных пробегов

$$R_p = \frac{1}{N} \sum_{i=1}^{N} \hat{x}_i, \quad \Delta R_p = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \hat{x}_i^2 - R_p^2}.$$
 (12)

## Результаты расчетов методом Монте-Карло

Для описания пробегов ионов в веществе в рамках рассматриваемой модели необходимо задать величину k, определяющую неупругие потери энергии, и величину  $\beta$ , определяющую длину экранирования. Параметры В и k будем рассматривать как подгоночные и определим путем подбора при сопоставлении результатов численных расчетов с экспериментом. В таблице приводится сравнение экспериментальных значений  $R_p$  и  $\Delta R_p$  из работы [3] с результатами расчетов методом Монте-Карло. Для каждой энергии расчет проводился с прослеживанием 10<sup>5</sup> числа историй. Относительная погрешность расчета средней величины  $R_p$ , оцененная в соответствии с [10], в этом случае не превышает 0.3%. Значения  $\beta$  и k для приведенных пар ион-мишень были определены на этапе пердварительных расчетов. Для пары Си-С  $\beta = 0.67$ , k = 0.04, для Rb–C  $\beta = 0.6$ , k = 0.04, для Rb–B  $\beta = 0.57, k = 0.05$ . Из таблицы видно, что результаты численных расчетов хорошо согласуются с экспериментальными данными. Максимальное относительное отклонение теоретических значений  $R_p$  и  $\Delta R_p$  от экспериментальных не превышает 17%. Абсолютное отклонение

Параметры экспериментальных и теоретических пробегов ионов

| Ион | Мишень | E, keV | ε     | Эксперимент |                          | Теория   |                          |
|-----|--------|--------|-------|-------------|--------------------------|----------|--------------------------|
|     |        |        |       | $R_p, Å$    | $\Delta R_p, \text{\AA}$ | $R_p, Å$ | $\Delta R_p, \text{\AA}$ |
| Cu  | С      | 30     | 0.250 | 280         | 90                       | 300      | 88                       |
|     |        | 50     | 0.416 | 430         | 130                      | 441      | 124                      |
|     |        | 79     | 0.582 | 570         | 160                      | 579      | 157                      |
|     |        | 100    | 0.832 | 785         | 215                      | 791      | 205                      |
|     |        | 150    | 1.248 | 1180        | 320                      | 1162     | 283                      |
|     |        | 200    | 1.664 | 1547        | 400                      | 1555     | 362                      |
| Rb  | С      | 10     | 0.047 | 104         | 40                       | 121      | 34                       |
|     |        | 30     | 0.143 | 210         | 70                       | 242      | 65                       |
|     |        | 50     | 0.238 | 330         | 90                       | 347      | 90                       |
|     |        | 80     | 0.380 | 500         | 145                      | 496      | 123                      |
|     |        | 100    | 0.475 | 590         | 160                      | 593      | 144                      |
|     |        | 150    | 0.713 | 850         | 215                      | 846      | 195                      |
|     |        | 200    | 0.951 | 1077        | 270                      | 1106     | 245                      |
| Rb  | В      | 20     | 0.105 | 170         | 45                       | 167      | 43                       |
|     |        | 50     | 0.264 | 325         | 80                       | 317      | 78                       |
|     |        | 100    | 0.527 | 565         | 150                      | 552      | 125                      |
|     |        | 300    | 1.581 | 1550        | 320                      | 1592     | 310                      |



**Рис. 3.** Пространственное распределение имплантированных ионов Cu с энергией E = 200 keV в мишень из углерода: гистограммы — расчет методом Монте-Карло при  $\beta = 0.67$  и k = 0.04 (сплошная кривая), 0 (пунктир); кривые — функции Гаусса при  $R_p = 1555 \text{ Å}$ ,  $\Delta R_p = 362 \text{ Å}$  (сплошная кривая); при  $R_p = 1742 \text{ Å}$ ,  $\Delta R_p = 440 \text{ Å}$  (пунктир).



**Рис. 4.** Сравнение пробегов ионов Си в мишени из углерода, рассчитанных методом Монте-Карло в приближении модифицированной модели твердых шаров и нового модельного потенциала  $\beta = 0.67$ , k = 0.04: кружки —  $r_p$ , квадраты —  $\delta r_p$ .

не превышает 42 Å. На рис. 3 приводятся гистограммы пространственного распределения ионов Cu в мишени из углерода, рассчитанные методом Монте-Карло, для двух приближений: с учетом неупругих потерь (k = 0.04) и без учета неупругих потерь (k = 0). В том случае, когда неупругие потери не учитываются, максимум пространственного распределения смещается в сторону больших значений x, распределение становится более широким. Так, при изменении k от 0.04 до 0 значение  $R_p$  увеличивается от 1555 до 1742 Å, а  $\Delta R_p$  — от 362 до 440 Å. Как следует из рис. 3, пространственное распределение 200 keV в мишени из углерода с высокой точностью описывается распределением Гаусса

$$Ni(x) = \frac{1}{\Delta R_p \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - R_p}{\Delta R_p}\right)^2\right).$$

Журнал технической физики, 1999, том 69, вып. 5

Полученные результаты показывают, что предложенный потенциал взаимодействия позволяет с высокой точностью описывать пробеги ионов в веществе, когда торможение ионов определяется как упругими, так и неупругими потерями энергии. Используем разработанную программу для определения области применимости модифицированной модели твердых шаров, предложенной в [4,5] для расчета пробегов ионов низкой энергии ( $\varepsilon < 0.1$ ) в аморфном веществе. В модифицированной модели твердых шаров рассеяние изотропно в системе центра масс, полное сечение упругого рассеяния ионов описывается, согласно [4], соотношением  $\sigma(\varepsilon) = 2\pi a_{TF}^2 s_n(\varepsilon)/\varepsilon$ . При расчетах методом Монте-Карло  $s_n(\varepsilon)$  для модифицированной модели твердых шаров определяем из формулы (8).

5

В программу для расчета пробегов ионов методом Монте-Карло были внесены соответствующие этой модели кооррективы. Результаты расчетов для пары Cu-C в приближении модифицированной модели твердых шаров представлены на рис. 4 в относительной форме. Приведенные на рисунке величины  $r_p$  и  $\delta r_p$  являются отношением соответственно величин  $R_p$  и  $\Delta R_p$ , рассчитанных в приближении модифицированной модели твердых шаров к пробегам, рассчитанным в приближении нового (реального) потенциала взаимодействия. Из рис. 4 следует, что проективный пробег ионов  $R_p$ , рассчитанный в приближении модифицированной модели твердых шаров, практически совпадает с пробегом, рассчитанным для реального потенциала взаимодействия во всем диапазоне энергий. Среднеквадратичное отклонение  $\Delta R_p$  в приближении модифицированной модели твердых шаров завышено. Относительная функция  $\delta r_p$ возрастает с увеличением энергии. При энергиях иона  $E \leqslant 10\,\mathrm{keV}~(arepsilon \leqslant 0.083)$  величина  $\delta r_p < 1.1,$  при  $E = 30 \,\mathrm{keV}$  ( $\varepsilon = 0.25$ ) величина  $\delta r_p \approx 1.2$ . Taким образом, проведенное сравнение показывает, что модифицированная модель твердых шаров в диапазоне энергий  $\varepsilon < 0.2$  может быть использована для расчета  $R_p$ и  $\Delta R_p$ . В диапазоне больших энергий модифицированная модель твердых шаров может быть использована для расчета проективного пробега  $R_p$ , величина  $\Delta R_p$  в этом случае значительно завышена.

#### Выводы

В работе предложен новый модельный потенциал взаимодействия в форме экранированного кулоновского потенциала. Получены аналитические выражения для зависимости угла рассеяния в системе центра масс от прицельного параметра и энергии иона. Получены аналитические выражения для тормозной способности ионов в упругих столкновениях и страгглинга их энергетических потерь. Разработана программа моделирования пробегов ионов в веществе методом Монте-Карло, учитывающая упругие потери энергии в приближении нового модельного потенциала взаимодействия, а неупругие потери в приближении непрерывного замедления. Проведены

Е.Г. Шейкин

расчеты пробегов  $R_p$  и  $\Delta R_p$  для ионов Cu и Rb в мишенях из углерода и бора. Результаты расчетов с высокой точностью согласуются с экспериментальными результатами, что свидетельствует об удачном выборе потенциала взаимодействия. Проведенные сравнительные расчеты пробегов ионов в веществе в приближении нового модельного потенциала взаимодействия и в приближении разработанной ранее модифицированной модели твердых шаров показали, что модифицированная модель твердых шаров может быть использована для расчета  $R_p$  и  $\Delta R_p$ при низких энергиях  $\varepsilon < 0.2$ . Проективный пробег ионов R<sub>p</sub> в приближении модифицированной модели твердых шаров прктически совпадает во всем диапазоне энергий с проективным пробегом, рассчитываемым в приближении нового, более реалистичного потенциала взаимодействия. Это позволяет в будущем определять подгоночный параметр  $\beta$ , входящий в выражение для длины экранирования нового модельного потенциала, не трудоемким путем, использующим численные расчеты методом Монте-Карло, а более простым способом из сравнения экспериментальных значений R<sub>p</sub> с аналитическими результатами [7], полученными в приближении модифицированной модели твердых шаров.

### Список литературы

- [1] Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 320 с.
- [2] Аккерман А.Ф. Моделирование траекторий заряженных частиц в веществе. М.: Энергоатомиздат, 1991. 200 с.
- [3] Grande M., Zawislak F.C., Fink D., Behar M. // Nucl. Instr. and Meth. 1991. Vol. B61. N 3. P. 282–290.
- [4] Шейкин Е.Г. // ЖТФ. 1996. Т. 66. Вып. 10. С. 63-75.
- [5] Шейкин Е.Г. // ЖТФ. 1997. Т. 67. Вып. 10. С. 16-20.
- [6] Шейкин Е.Г. // ЖТФ. 1998. Т. 68. Вып. 9. С. 33-36.
- [7] Шейкин Е.Г. // ЖТФ. 1999. Т. 69. Вып. 2. С. 93-97.
- [8] *Кумахов М.А., Комаров Ф.Ф.* Энергетические потери и пробеги ионов в твердых телах. Минск, 1979. 320 с.
- [9] Оцуки Ё.-Х. Взаимодействие заряженных частиц с твердыми телами. М.: Мир, 1985. 280 с.
- [10] Соболь И.М. Численные методы Монте-Карло. М.: Наука, 1973. 312 с.