01;05;06 Решение обратной задачи динамической дифракции на неоднородных кристаллах методом итераций

© С.Г. Подоров, В.И. Пунегов

Сыктывкарский государственный университет, 167001 Сыктывкар, Россия

(Поступило в Редакцию 28 мая 1997 г.)

Разработан итерационный метод решения обратных задач динамической дифракции рентгеновских лучей на неоднородных по глубине кристаллических слоях. С помощью метода рассчитаны структурные характеристики InGaAsSb/AIGaAsSb/GaSb гетероэпитаксиальной системы.

Введение

Одной из важнейших проблем физики твердого тела является исследование пространственных распределений структурных характеристик кристаллов с помощью рентгеновской дифракции. Эта проблема приобрела значимую актуальность в последние двадцать с небольшим лет в связи с разработкой новых полупроводниковых приборов. Несмотря на большое число работ, посвященных этому направлению (смотри, например, [1–10]), в настоящее время все еще не разработан общепризнанный и универсальный метод решения обратной задачи дифракции рентгеновских лучей. Поэтому поиск новых путей в этой области физики твердого тела продолжается.

В [8] авторами настоящей работы разработан метод решения обратной задачи в рамках кинематического приближения. В ку́пе с другими подходами этот метод использован для получения пространственных структурных характеристик тонкой монокристаллической градиентной пленки AlGaAs на толстой подложке GaAs [10]. Однако для относительно толстых гетероэпитаксиальных систем этот метод не применим, поскольку кинематическое (борновское) приближение справедливо лишь для тонких слоев. Следовательно, целью настоящей работы является разработка более общего подхода к решению обратной задачи в рамках итерационной процедуры.

Основные уравнения

Не теряя общности, рассмотрим симметричную брэгговскую дифракцию рентгеновских лучей от неоднородного по глубине z кристаллического слоя толщиной l, лежащего на толстой идеальной подложке. Пусть на поверхность исследуемого кристалла под углом θ падает плоская монохроматическая рентгеновская волна. Дифракция рентгеновских лучей на одномерно искаженном кристалле описывается системой уравнений Такаги– Топэна

$$\frac{d}{dz}E_0(z) = i\sigma_0 E_0(z) + i\sigma_{-g}U^*(z)E_g(z),$$

$$-\frac{d}{dz}E_g(z) = i(\eta - \sigma_0)E_g(z) + i\sigma_g U(z)E_0(z), \quad (1)$$

где $E_0(z)$ и $E_g(z)$ — амплитуды проходящей и отраженной волны.

Присутствующие в (1) параметры в общепризнанных обозначениях [7] имеют вид

$$egin{aligned} \sigma_0 &= \pi \chi_0 / (\lambda \gamma_0); & \sigma_{g,-g} &= \pi \chi_{g,-g} C / (\lambda | \gamma_{g,0} |); \ \eta &= 2 \pi ig(\chi_0 + \sin(2 heta_0) \Delta heta ig) / (\lambda \gamma_0). \end{aligned}$$

Здесь **g** — вектор дифракции, $\Delta \theta = \theta - \theta_0$ — угловая отстройка. За начало углового отсчета θ_0 обычно принимают брэгговский угол подложки. Нарушения структуры кристаллической решетки в системе (1) задаются функцией U(z)

$$U(z) = B(z) \exp\left(-iF(z)\right), \qquad F(z) = \mathbf{gu}(z) = \int_{0}^{z} f(x)dx,$$

$$f(z) = -2\pi\Delta d(z)/d^2.$$
 (2)

Таким образом, в рамках рассматриваемой задачи структурные искажения исследуемого объекта обусловлены полем деформаций кристаллической решетки $\Delta d(z)/d$ и наличием дефектов, тип, концентрация и размеры которых влияют на величину статистического фактора Дебая–Валлера

$$B(z) = e^{-W(z)}.$$

Для случая Брэгга выполняются граничные условия $E_0(0) = 1$, $E_g(l) = R_s(\eta)$, где $R_s(\eta)$ — амплитудный коэффициент отражения от подложки. По известной процедуре сведем систему уравнений Такаги (1) к нелинейному уравнению типа Риккати (уравнению Топэна) [11]

$$\frac{d}{dz}R_g(z,\eta) = -i\sigma_g E(z) - i(\eta - f)R_g(z,\eta)$$
$$-i\sigma_{-g}E(z)R_g^2(z,\eta)$$
(3)

с краевым условием $R_g(z, \eta)|_{z=L} = R_s(\eta)$. Уравнение (3) лежит в основе алгоритма решения поставленной задачи. Здесь $R_g(z = 0, \eta)$ — амплитудный коэффициент отражения от исследуемого неоднородного кристалла.

Итерационная процедура решения обратной задачи

Построим функцию $R_k[U](\eta) = i\sigma_g \int_0^l e^{i\eta z} U(z) dz$, которая описывает амплитудный коэффициент отражения от кинематического слоя толщиной l и является решением уравнения (3) при выполнении условия $\sigma_{-g} = 0$. Пусть R_g — коэффициент отражения от неоднородного слоя в общем случае динамической дифракции. Процедуру нахождения функции U(z) будем рассматривать как решение задачи нелинейного функционального уравнения

$$(R_g[U](\eta))R_g[U](\eta)^* = I_g(\eta), \tag{4}$$

где звездочка означает комплексное сопряжение.

Функция U(z) — неизвестный параметр в этом уравнении. Определим оператор A(U)V

$$A(U)V = \{R_g[U]\}^* \{aR_k[V] + R_g[U] - aR_k[U]\}, \quad (5)$$

где *а* — некоторый параметр.

Уравнение (4) можно записать тогда в следующем виде:

$$A(U)U = I_g(\eta), \tag{6}$$

решение которого и есть решение обратной задачи рентгеновской дифракции на нарушенном кристаллическом слое. Предлагается следующий итерационный метод решения функционального уравнения (6)

$$A\left(U^{(n+1)}\right)U^{(n)}=I_g(\eta)$$

Отсюда находим

$$U^{(n+1)}(z) = A^{-1} \left(U^{(n)} \right) I_g(\eta)$$

или

$$U^{(n+1)}(z) = U^{(n)}(z) + \frac{1}{2\pi a i \sigma_g} \\ \times \int_{\Delta\Omega} \frac{I_g - I_g [U^{(n)}]}{I_g [U^{(n)}]} R_g [U^{(n)}] e^{-i\eta z} d\eta.$$
(7)

Итерационная формула (7) является базовым соотношением решения обратной задачи динамической дифракции на одномерно искаженном кристалле.

Вычисление статистического фактора Дебая–Валлера и профили деформации

Из соотношения (7) найдем итерационное решение для статистического фактора Дебая–Валлера и профиля деформации исследуемой структуры. С этой целью проведем преобразования в (7) и выразим решение через $I_g(\eta)$, $R_g[U^{(n)}]$ и $R_k[U^{(n)}]$. Для статистического фактора Дебая–Валлера получаем

$$B^{(n+1)}(z) = \left| \frac{1}{2\pi\sigma_g} \int_{\Delta\Omega} \left[\left\{ I_g - I_g[U^{(n)}] \right\} \times R_g[U^{(n)}] / \left(aI_g[U^{(n)}] \right) + R_k[U^{(n)}] \right] e^{-i\eta z} d\eta \right|.$$
(8)

Профиль деформации решетки находится из итерационной формулы

$$f^{(n+1)}(z) = \frac{d}{dz} F^{(n+1)}(z)$$

= Re $\left\{ i \left(\frac{dU^{(n+1)}(z)}{dz} / U^{(n+1)} \right) \right\},$ (9)

где производная имеет вид

$$\frac{dU^{(n+1)}(z)}{dz} = \frac{-1}{2\pi\sigma_g} \int_{\Delta\Omega} \eta \Big\{ R_k[U^{(n)}] + (I_g - I_g[U^{(n)}]) R_g[U^{(n)}] / (aI_g[U^{(n)}]) \Big\} e^{-i\eta z} d\eta.$$
(10)

В качестве начального приближения для вычислений по формуле (8) предлагается использовать модель кристалла с отсутствием дефектов, при этом $B^{(0)} = 1$. Строго говоря, уравнения (8) и (9) являются приближенными, так как угловой интеграл интегрирования $\Delta\Omega$ ограничен. Из-за этого ограничения преобразование Фурье нельзя считать строгими. Это в свою очередь приводит к тому, что вычисляемые профили будут иметь осцилляционный характер. Все это сказывается на сходимости итерационной процедуры. Улучшение сходимости возможно с помощью методов регуляризации.

Процедуры регуляризации

Для регуляризации итерационного алгоритма используем свертки искомых решений (8) и (9) с функцией Гаусса

$$\langle B(z) \rangle = \int_{\Delta x} \exp\left(-\frac{(z-x)^2}{\gamma}\right) B(x) \, dx,$$
 (11)

$$\langle f(z) \rangle = \int_{\Delta x} \exp\left(-\frac{(z-x)^2}{\gamma}\right) f(x) \, dx.$$
 (12)

Значения коэффициентов γ в (11), (12) подбирались таким образом, чтобы сгладить осцилляционное поведение функций B(z) и f(z) из-за ограничения угловых пределов интегрирования в (7)–(10). Отметим, что при вычислении углового распределения дифракционной интенсивности в рассмотрение брались σ - и π -поляризации волн, а также производилась свертка с аппаратной функцией монохроматора.

Разработанная вычислительная итерационная процедура применена к структурной диагностике неоднородной полупроводниковой гетероструктуры $In_{0.22} Ga_{0.78} As_{0.19} Sb_{0.81} / Al_{0.5} Ga_{0.5} As_{0.05} Sb_{0.95} / (001) GaSb$ выращенной методом жидкофазной эпитаксии. На очищенную поверхность подложки (001)GaSb при температуре 600°С эпитаксиально наращивался слой Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} толщиной приблизительно 3.3 µm. Сверху этого слоя создавался еще один слой с композицией In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81}, толщина которого эпитаксиальной технологии ориентировочно по составляла порядка 1 μ m.

Измерения углового распределения дифрагированного излучения проводились на высокоразрешающем двухкристальном дифрактометре "Торо" японской фирмы "Rigaku". Двухкристальная камера совмещена с генератором RU-200. Для коллимации и монохроматизации первичного пучка использовалось отражение (440) Си $K_{\alpha 1}$ -излучения от совершенного кристалла германия с ориентацией (001). Фактор асимметрии b = 0.095, что обеспечивало угловую расходимость первичного пучка менее 1'. Рентгенодифракционная съемка гетероэпитаксиальной структуры проводилась на симметричном отражении (006), при этом угол Брэгга составлял 49.46°.

Кривая дифракционного отражения имеет форму, характерную для неоднородных эпитаксиальных структур с положительным градиентом деформации решетки (рис. 1). Поведение осцилляций на экспериментальной кривой дифракционного отражения указывает на наличие постоянного или близкого к постоянному градиента деформации слоя Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95}. Повидимому, в процессе эпитаксиального роста имело место линейное распределение компонент твердого раствора по толщине этого слоя. Среднее межплоскостное расстояние отражающих атомных плоскостей верхнего слоя In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} меньше по сравнению с соответствующим параметром подложки GaSb. Поэтому дифракционный пик от слоя In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} находится в области больших углов на расстоянии 200" от пика подложки.

Начальное приближение вычислительной диагностики получено с помощью методики для модели кристалла с линейным изменением межплоскостного расстояния по его глубине [12]. Статический фактор Дебая–Валлера при этом брался равным единице.

Результаты вычислений по изложенной выше методике показаны на рис. 1–3. На рис. 1 теоретическая кривая дифракционного отражения приведена штриховой линией. Как и следовало ожидать, эпитаксиальный слой Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} имеет практически постоянный градиент деформации кристаллической решетки (рис. 2).

Рис. 1. Расчетная I (штриховая) и экспериментальная 2 (слошная) кривые дифракционного отражения от гетероструктуры In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} /Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95}/(001)GaSb.

Рис. 2. Профиль деформации $\Delta d(z)/d$ гетероструктуры In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} /Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95}/(001)GaSb.

Верхний слой In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} также неоднороден, при этом толщина его оказалась менее одного микрона. Следует также отметить, что между верхним и градиентным слоем Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} имеется переходная область толщиной порядка 0.3 μ m, образованная либо во время ростового процесса, либо в результате самодиффузии. Граница между слоем Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} и подложкой является достаточно резкой.

Полученные в ходе вычислений результаты для статического фактора Дебая-Валлера указывают на то, что наиболее дефектными являются области гетерограниц и поверхности образца (рис. 3). Эти структурные особенности наблюдались и для других много-

Рис. 3. Изменение статического фактора Дебая–Валлера по глубине гетероструктуры $In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81}/Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95}/(001)GaSb.$

слойных систем, продиагностированных разными методами [8–10,13]. Среднее значение статического фактора Дебая-Валлера слоя Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} приблизительно равно 0.8. Практически таким же кристаллическим совершенством обладал ранее исследованный градиентный слой AlGaAs, выращенный методом металлоорганической газофазной эпитаксии [9,10]. Согласно полученным результатам, верхний слой In_{0.22}Ga_{0.78}As_{0.19}Sb_{0.81} имеет более дефектную структуру. Сильный скачок степени аморфизованности на границе этого слоя и слоя Al_{0.5}Ga_{0.5}As_{0.05}Sb_{0.95} обусловлен большим рассогласованием параметров решетки этих двух соединений. Как следствие, сильное рассогласование параметров решетки приводит к релаксационным процессам, частично или полностью снимающим тетрагональную деформацию в многослойной структуре. Это в свою очередь сопровождается дополнительным образованием дефектов.

Заключение

Таким образом, разработан один из наиболее простых методов численного решения обратной задачи дифракции на искаженной кристаллической структуре. Метод позволяет за достаточно короткое время получить информацию о распределении деформаций кристаллической решетки и степени аморфизованности эпитаксиальных слоев. Поскольку эти структурные характеристики связаны с композиционным составом исследуемой полупроводниковой системы, то это открывает дополнительные возможности в изучении процессов релаксации и дефектообразования в эпитаксиальных многослойных структурах в зависимости от ростовой технологии.

Все решения в силу особенностей разработанного метода получены в классе непрерывных функций. Метод решения задачи является рекуррентным, поэтому лучший выбор начального приближения позволяет существенно сократить время счетной процедуры. Кроме всего, существует проблема неединственности решения обратной задачи [7]. По этой причине хороший выбор стартового приближения и привлечение априорной информации о технологии изготовления образцов являются важным шагом в структурной диагностике. Алгоритм разработанного метода предполагает вычисление интегралов Фурье, при этом большие значения толщины слоев требуют увеличения углового интервала в процессе расчетов.

Наконец, отметим следующий факт: разработанный алгоритм отличается относительной простотой и не требует сложных и длительных вычислений. Численное решение обратной дифракционной задачи на персональной ЭВМ с процессором Pentium-90 для десяти итераций занимает приблизительно 10 min при величине массива по глубине слоя 1200 значений и величине массива по углам 400 значений.

Авторы признательны В.А. Кусикову за предоставление экспериментельных результатов.

Список литературы

- [1] Burget J., Taupin D. // Acta Cryst. 1968. Vol. A24. P. 99–102.
- [2] Burget J., Collela R. // J. Appl. Phys. 1969. Vol. 40. P. 3505– 3509.
- [3] Fukuhara A., Takano Y. // Acta Cryst. 1977. Vol. A33. P. 137– 142.
- [4] Afanasev A.M., Kovalchuk M.V., Kovev E.K., Kohn V.G. // Phys. Stat. Sol. (a). 1977. Vol. 42. P. 415–422.
- [5] Kyutt R.N., Petrashen' P.V., Sorokin L.M. // Phys. Stat. Sol. (a). 1980. Vol. 60. P. 381–389.
- [6] Larson B.C., Barhorst J.F. // J. Appl. Phys. 1980. Vol. 51. P. 3181–3185.
- [7] Гончарский А.В., Колпаков А.В., Степанов А.А. Обратные задачи рентгеновской дифрактометрии. Рига: Латвийский университет, 1992. 181 с.
- [8] Подоров С.Г., Пунегов В.И., Кусиков В.А. // ФТТ. 1994.
 Т. 36. С. 827–835.
- [9] Пунегов В.И., Фалеев Н.Н. // ФТТ. 1996. Т. 38. С. 255–263.
- [10] Пунегов В.И., Павлов К.М., Подоров С.Г., Фалеев Н.Н. // ФТТ. 1996. Т. 38. С. 264–271.
- [11] *Taupin D.* // Bull. Soc. Franc. Mineral. Cryst. 1964. Vol. 87. P. 469–511.
- [12] Колпаков А.В., Пунегов В.И. // Поверхность. Физ. Хим. Мех. 1988. № 3. С. 82–85.
- [13] Павлов К.М., Пунегов В.И., Фалеев Н.Н. // ЖЭТФ. 1995.
 Т. 107. С. 1967–1982.