01;09;10 Расчет характеристик излучения генератора на виртуальном катоде

© С.Л. Гинзбург, В.Ф. Дьяченко, В.В. Палейчик, К.В. Ходатаев

Институт прикладной математики им. М.В. Келдыша РАН, 125047 Москва, Россия Московский радиотехнический институт РАН, 113519 Москва, Россия

(Поступило в Редакцию 11 ноября 1997 г.)

Трехмерная компьютерная модель взаимодействия плазмы с электромагнитным полем, описываемая системой уравнений Максвелла–Власова, была применена для расчета возбуждения поля релятивистским электронным пучком с виртуальным катодом, осциллирующим в резонирующей камере. Исследуются характеристики излучения генератора.

Введение

Настоящее исследование является продолжением работы [1] по моделированию процесса генерации электромагнитных колебаний в приборе, называемом по терминологии авторов обзора [2] отражательным диодом. В нем пучок электронов через тонкую анодную фольгу проникает в резонансную полость, где образует виртуальный катод. Последний является образованием неустойчивым и колеблется на частоте, близкой к плазменной частоте пучка [3]. Колебания виртуального катода возбуждаеют собственные моды резонатора. Энергия возбуждаемых электромагнитных колебаний через элементы связи отбирается в нагрузку. Отражательный диод является разновидностью виркатора — электронного прибора с виртуральным катодом.

В [1] процессы описывались в предположении азимутальной симметрии. В то же время реальные конструкции предполагают существенные отклонения от симметрии, обусловленные необходимостью отвода генерируемой СВЧ мощности в волноводный тракт. Здесь используется 3-*D* модель, которая позволила ввести в моделируемую конструкцию отражательного диода отводящий волновод прямоугольного сечения, на удаленном конце которого неотражающие граничные условия имитируют неизбирательный эквивалент нагрузки. Полученные в [1] сведения о характеристиках электронного потока, зависящих от геометрических параметров и приложенного напряжения, использованы при выборе типичных режимов пучка в интересах получения максимальной эффективности генерации СВЧ колебаний.

Как известно, в отражательном диоде формирование виртуального катода сопровождается накоплением электронов в потенциальной яме, образуемой электростатическим полем собственного заряда пучка и приложенным потенциалом. Захваченные электроны совершают колебания относительно анодной фольги. В присутствии колебаний время захвата электронов ограничивается несколькими периодами. Энергетический спектр и соответственно частотный спектр колебаний захваченных частиц достаточно широки. Захваченные частицы в зависимости от конкретных условий могут либо участвовать в общем колебательном процессе виртуального катода, либо нет. В первом случае они способствуют повышению эффективности генерации, но во втором их роль сводится к увеличению непроизводительных потерь.

Для повышения эффективности генерации необходимо обеспечить либо участие захваченных электронов в коллективном колебательном процессе, либо свести их присутствие к минимуму. Разработанная 3-D модель позволяет исследовать основные особенности процесса генерации и степень влияния геометрии устройства и приложенного напряжения на параметры генерации.

Постановка задачи

Взаимодействие релятивистского электронного пучка с электромагнитным полем описывается системой уравнений Максвелла–Власова. При соответствующем (указанном ниже) выборе единиц измерения она имеет вид

$$\frac{\partial \mathbf{E}}{\partial t} - \nabla \times \mathbf{H} + \mathbf{j} = 0, \quad \nabla \mathbf{E} = \rho,$$
$$\frac{\partial \mathbf{H}}{\partial t} - \nabla \times \mathbf{E} = 0, \quad \nabla \mathbf{H} = 0,$$
$$\frac{\partial f}{\partial t} + \mathbf{v} \frac{\partial f}{\partial \mathbf{x}} - (\mathbf{E} + \mathbf{v} \times \mathbf{H}) \frac{\partial f}{\partial \mathbf{p}} = 0,$$

где E(t, x), H(t, x) — электромагнитное поле; f(t, x, p) — функция распределения электронов; p, v — импульс и скорость электрона;

$$o = -\int f d^3 p, \quad \mathbf{j} = -\int \mathbf{v} f d^3 p$$

плотности заряда и тока соответственно.

Общий вид рассчитываемой конструкции схематично представлен на рис. 1. Она состоит из двух прямоугольных камер: большой (верхней) и малой (нижней). Верхняя камера представляет собой волновод прямоугольного сечения, короткозамкнутый слева и открытый справа, где в качестве "неотражающего" граничного условия используются соотношения $E_y - H_z = 0$, $E_z + H_y = 0$. Кроме того, для имитации свободного отбора потока излучения в небольшом слое, прилегающем к этой границе, среда считается проводящей, т.е. в уравнениях Максвелла **j** заменяется на **j** + σ **E**, где σ — проводимость.

Рис. 1. Схема конструкции.

В середине дна нижней камеры располагается квадратный катод, изолированный от стенок камеры и волновода. Последний является анодом. На поверхности "изолятора" задается электрическое поле, реализующее приложенную к системе разность потенциалов между катодом и анодом. Эмиссионная способность катода реализуется граничным условием на функцию распределения $f = -j_{z0}\delta(\gamma - \gamma_0), j_{z0} = (\nabla \times \mathbf{H})_z$, разумеется, при $p_z > 0, j_{z0} < 0$. Здесь γ_0 — заданная полная стартовая энергия электрона.

Камеры разделены металлической фольгой, прозрачной для электронов (торможение и рассеивание электронов на ней на данном этапе исследования не учитываются). На фольге и всех остальных стенках камер (проводящих или с высоким значением диэлектрической проницаемости, как у изолятора) касательная компонента электрического поля равна нулю. Частицы, попадающие на стенки камер, поглощаются ими.

Описание результатов расчетов производится с использованием следующих единиц измерения: L — длина (характерный размер); c — скорость света в вакууме; L/c — время; c/L — частота; $c/4\pi L$ — проводимость; mc — импульс электрона, где m — его масса покоя; mc^2 — энергия электрона; mc^2/eL — поле, где e — элементарный заряд; mc^2/e — потенциал; $mc^3/4\pi e$ — ток; $m^2c^4L/4\pi e^2$ — энергия системы; $m^2c^5/4\pi e^2$ — мощность. Задача решалась численным методом, основные принципы которого изложены в [4].

Основной вариант расчета

Основным, или базовым, будем считать вариант, определяемый следующими значениями параметров расчета: нижняя камера — в основании квадрат 5×5 , высота 0.3, верхняя камера — прямоугольник 7.6×5 , высота 1.5, катод — квадрат 1.6×1.6 , напряжение $\varphi = 1$, кинетическая энергия эмиссии электронов $\gamma_0 - 1 = 0.001$, проводимость линейно растет в слое 6.6 < x < 7.6, среднее значение $\sigma = 1$.

Возникающее в нижней камере при включении напряжения φ электромагнитное поле приводит к эмиссии электронов с катода. Разгоняясь под действием этого поля до энергии $\gamma_1 \sim 1 + \varphi$, электроны проникают через анодную сетку и возбуждают электромагнитное

поле в верхней камере. Если ток пучка электронов достаточно большой, то, как известно, внутри него возникает виртуальный катод — поверхность, отражающая часть электронов в обратном направлении. Вернувшиеся в нижнюю камеру электроны снова разворачиваются полем в прямом направлении, получая возможность осциллировать около анодной сетки. На рис. 2 показаны траектория одной из частиц (в проекциях на x, z и y, z) и соответствующая фазовая картина (z, p_z) . Разумеется, не все электроны живут столь долго.

На рис. 3 представлены общая картина расположения ансамбля частиц на некоторый момент времени (в проекции на x, z) и общий фазовый портрет его (z, p_z). Кроме уже упомянутых осцилляций около анодной сетки и вир-

Рис. 2. Проекции траектории частицы.

Рис. 3. Форма потока и его фазовый портрет.

Рис. 4. Поле и его частотный спектр.

Журнал технической физики, 1999, том 69, вып. 2

Рис. 5. Распределение токов.

Рис. 6. Распределение энергии.

Рис. 7. Полезная мощность.

Рис. 8. Поле и его спектр.

туального катода, фильтрующего электронный пучок, на рисунке наблюдается еще один фильтр — непосредственно около катода. Его образованию способствует малая энергия эмиттируемых частиц при том же большом токе. Фактически проходят только электроны, стартующие в интервалах, где и когда $E_z < 0$.

На рис. 4 приведены зависимость $E_z(t)$ в одной из точек прикатодного слоя (нижняя кривая) и за фольгой (верхняя), а также частотный спектр (справа) этих колебаний (для первой пунктиром), полученный фурьеанализом этих кривых. Очевидно преобладание колебаний на частоте $\omega \sim 10$.

На рис. 5 представлены токи, проходящие сквозь анодную сетку в прямом i^+ и обратном i^- направлениях, а также уходящие через верхнюю поверхность заанодной полости i_z . Кроме того, здесь же приведена потребляемая системой мощность P_0 .

Рис. 6 демонстрирует энергетическую динамику процесса. Здесь W — полная энергия частиц, находящихся в системе; U — электромагнитная энергия системы; U1 ее часть, заключенная в нижней камере; S_{σ} — электромагнитная энергия, поглощенная проводящим слоем; S_x — ушедшая из системы через открытую правую границу.

На рис. 7 показана зависимость от времени мощности, поглощаемой в проводящем слое $P_{\sigma} = dS_{\sigma}/dt$ и излучаемой системой через открытую границу $P_x = dS_x/dt$. При этом указана P_0 — потребляемая мощность, которая практически постоянна.

Таблица 1. Распределение энергии

t	<i>S</i> 0	V	U1	<i>U</i> 2	S	i^+	i ⁻	P_0	Р	КПД, %
50	760	638	42	55	25	37	22	15	0.8	5
100	1515	1320	50	69	76	38	23	15	1.2	8
150	2270	2005	56	77	139	39	24	15	1.3	9
200	3024	2675	60	82	205	39	24	15	1.3	9

В табл. 1 дано распределение воспринятой системой электромагнитной энергии S0 на кинетическую энергию частиц V, энергию нижней камеры U1, верхней камеры U2, энергию, ушедшую в нагрузку $S(=S_{\sigma} + S_{x}0, \text{ токи сквозь фольгу } i^{+}, i^{-}, потребляемая P_{0} и отдаваемая P мощность для четырех моментов времени.$

Внешние условия стационарны, и многие характеристики процесса сравнительно быстро выходят на практически установившийся режим. Если пренебречь мелкими высокочастотными колебаниями, то постоянными оказываются эффективный проходящий ток $i = i^+ - i^-$, потребляемая мощность P_0 (при этом, как и должно быть, $P_0 = i * \varphi$), энергия находящихся в системе частиц — W. В то же время энергия электромагнитного поля, заключенная в нижней U1 и верхней U2 камерах, а также полезная мощность P, выходят на стационар значительно позже, при t = 100-200. Частотную характеристику излучения демонстрирует рис. 8, где показаны $E_z(t)$ около проводящего слоя (нижняя кривая) и на фольге (верхняя — та же, что и на рис. 4). Фурье-анализ этих зависимостей дает спектральную плотность излучения как функцию частоты, показанную справа.

Вариация параметров

Все вышеописанное относится к базовому варианту, параметры, которого перечислены в начале предыдущего раздела. Чтобы определить влияние того или иного из них на характеристики процесса, была проведена серия расчетов, в каждом из которых менялся один из параметров базового набора. Поскольку общая картина процесса существенно не изменяется, мы ограничимся лишь представлением отдельных результатов, в основном в виде таблиц значений основных характеристик, каковыми будем считать энергию S0, воспринятую системой; энергию поля, заключенную в нижней U1 и верхней U2 камерах; энергию ушедшую в нагрузку, $S = S_{\sigma} + S_x$; прямой i^+ и обратный i^- токи сквозь фольгу; потребляемую P_0 и отдаваемую $P = P_{\sigma} + P_x$ мощности; отношение последних — КПД.

В табл. 2 приведены (на момент t = 50) результаты изменения величины прилагаемого напряжения φ при сохранении значений остальных параметров базового варианта, который представлен средней строкой.

Рис. 9. Поле у катода и за фольгой.

Рис. 10. Поле у катода, за фольгой и на выходе.

Таблица 2. Вариация напряжения

<i>S</i> 0	U1	<i>U</i> 2	S	i^+	i ⁻	P_0	Р	КПД, %
15.5	9.3	8.9	4.1	13.7	7.5	3.1	0.11	3.5
760	43	55	25	37	22	15	0.81	5.4
1923	108	180	70	71	46	38	2.6	7
	50 15.5 760 1923	S0 U1 15.5 9.3 760 43 1923 108	S0 U1 U2 15.5 9.3 8.9 760 43 55 1923 108 180	S0 U1 U2 S 15.5 9.3 8.9 4.1 760 43 55 25 1923 108 180 70	S0 U1 U2 S i ⁺ 15.5 9.3 8.9 4.1 13.7 760 43 55 25 37 1923 108 180 70 71	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S0 U1 U2 S i ⁺ i ⁻ P0 P 15.5 9.3 8.9 4.1 13.7 7.5 3.1 0.11 760 43 55 25 37 22 15 0.81 1923 108 180 70 71 46 38 2.6

Таблица 3. Вариация размера катода

Q	<i>S</i> 0	U1	<i>U</i> 2	S	i^+	<i>i</i> ⁻	P_0	Р	КПД, %
1.44	1049	42	48	52	21	10.5	10.5	0.87	8.3
2.56	1515	50	69	76	38.5	23.5	15.1	1.22	8.1
4.00	1990	57	92	99	60	40	20	1.51	7.6

Таблица 4. Изменение высоты нижней камеры

h	<i>S</i> 0	U1	<i>U</i> 2	S	i^+	i ⁻	P_0	Р	КПД, %
0.2	1235 760	70 43	139 55	59 25	106 57	82 22	24 15	2.25	9.4 5.4
0.5	520	27	31	16	18	8	10	0.81	4.5

Таблица 5. Изменение высоты верхней камеры

Η	<i>S</i> 0	U1	<i>U</i> 2	S	i^+	i^{-}	P_0	Р	КПД, %
0.75	1718	49	57	62	33	16	17	0.85	5
1.5	1515	50	69	76	38.5	23.5	15	1.22	8
2.25	1458	50	57	89	40	25	15	1.47	10

Таблица 6. Изменение проводимости

σ	<i>S</i> 0	U1	<i>U</i> 2	S	i^+	i ⁻	P_0	Р	КПД, %
0.0	762	44	60	18	38	23	15	0.6	4
1.0	760	43	55	25	37	22	15	0.81	5.4
10.0	763	44	58	21	37	22	15	0.7	4.7

Изменение напряжения сказывается на частоте колебаний поля в нижней камере. На рис. 9 (слева) показана компонента E_z электрического поля около катода для вариантов с $\varphi = 0.5$ и 1.5 (пунктир) и за фольгой (справа). Частота последнего практически не меняется.

Влияние такого параметра, как размер катода, демонстрирует табл. 3, где даны результаты на момент t = 100для трех вариантов, отличающихся лишь площадью катода Q (средняя строка соответствует базовому набору параметров). С увеличением площади потребляемая и отдаваемая мощности возрастают, но КПД падает.

Изменение высоты нижней камеры h дает результаты (на момент t = 50), показанные в табл. 4.

Обработка данных этой таблицы приводит к зависимостям типа $i^+ \sim h^{-2.5}$ или $P_0 \sim h^{-1.3}$, которые не следует распространять на малые значения *h*. Последние требуют специального исследования.

Рис. 11. Энергия, выходная мощность и потоки энергии.

Рис. 12. Распределение энергии.

Рис. 13. Излучаемое поле и его спектр.

Изменение размера нижней камеры приводит и к изменению частоты колебаний поля. На рис. 10 показано электрическое поле для двух вариантов — с h = 0.4 и 0.2 (пунктир) у катода, за фольгой и на выходе из верхней камеры соответственно. Вариация вертикального размера верхней камеры H дает результаты (на момент t = 100), приведенные в табл. 5. Заметного изменения частоты излучаемого поля не наблюдается и в этом случае.

Удвоение горизонтального размера верхней камеры — длины волновода D практически не сказывается на значениях основных характеристик, происходит лишь естественное перераспределение энергии. На рис. 11 приведена энергия поля, содержащаяся в системе U и

ушедшая в нагрузку S_{σ} , S_x для базового и удлиненного (показан пунктиром) вариантов. Сумма $U + S_{\sigma} + S_{\bar{x}}$, очевидно, одинакова. Сдвиг по времени в величине выходной мощности и потоках энергии через сечения x = const для этих двух вариантов демонстрируют второй и третий графики на рис. 11. Все это косвенно оправдывает способ имитации отбора энергии путем введения проводящего слоя.

Несколько вариантов также посвящены выяснению качества этой имитации. В табл. 6 приведены результаты расчетов (на момент t = 50) с различными средними значениями проводимости σ .

Очевидно, $\sigma \sim 1$ является оптимальным значением.

Однокамерный вариант

Роль нижней камеры сводится к формированию потока электронов, проникающих через анодную фольгу в верхнюю камеру. Имеет смысл в методических целях рассмотреть упрощенную постановку задачи, содержащую только одну камеру, в которой с площади q инжектируются электроны с энергией γ_+ и реализующие величину тока i^+ .

При малых значениях i^+ весь ток проходит $i = i^+$ и излучения практически нет. Когда инжектируемый ток достигает критического (для данной конструкции) значения, образуется виртуальный катод, часть электронов поворачивает обратно, появляется излучение. Как показывают расчеты, при дальнейшем увеличении i^+ проходящий ток *i* растет незначительно, нарастание мощности излучения также замедляется. В табл. 7 даны результаты расчета вариантов, отличающихся лишь током i^+ , при $\gamma_+ = 2$ и площади инжекции q = 2. Использованы прежние обозначения, W2 и U2 — энергия частиц и поля соответственно единственной (верхней) камеры, а КПД определяется как отношение полезной мощности *P* к величине $i * (\gamma_+ - 1)$ — эквивалентом $i * \varphi$.

Таблица 7.

i^+	<i>i</i> ⁻	i	W2	<i>U</i> 2	S	Р	КПД, %
10	2.4	7.6	35.5	17.4	3.8	0.06	0.8
16	6	10	57	32	13.2	0.36	3.6
40	29.6	10.4	80	65	35	1.0	9

Большинство величин принимает свои стационарные значения довольно быстро, уже при t < 10. Установление энергии поля в объеме, особенно в сильноточных случаях, задерживается, что демонстрирует рис. 12.

Таким образом, в целом результаты однокамерного и двухкамерного расчетов хорошо согласуются. Не меняется и диапазон частот излучения $\omega < 20$ с преобладанием $\omega \sim 10$. В частности, это видно на рис. 13, где представлены поле на выходе и (справа) его спектральный состав для варианта $i^+ = 16.2$.

Заключение

Разработанная модель позволила на примере виркатора с простейшей геометрией (отражательный диод без магнитного поля) выявить основные особенности процесса генерации электромагнитных колебаний в приборах подобного типа.

В основе механизма генерации лежит неустойчивость виртуального катода, которая на нелинейной стадии выходит на предельный цикл. Высота виртуального катода близка к величине катод-анодного промежутка. Максимум спектральной плотности колебаний соответствует частоте, определяемой средней частотой колебаний захваченных электронов около анода. Основная частота спектра может быть оценена как отношение скорости ускоренных электронов к катод-анодному зазору. Излучение появляется, когда образуется виртуальный катод.

Численный эксперимент показал, что генерируемая основная частота чувствительна лишь к величине зазора и при достаточном релятивизме ($\varphi \ge 1$) не чувствительна к приложенному напряжению. Колебания плотности заряда над анодной фольгой сопровождаются излучением, частотный спектр которого практически совпадает со спектром электрического поля в виртуальном катоде, имеющем в основном электростатическую природу.

Отсюда можно сделать вывод, что основным механизмом генерации является дипольное излучение колеблющегося виртуального катода. Сопоставление результатов расчетов двухкамерного и (методического) однокамерного вариантов подтвердили это положение.

Попытки стимулировать колебания виртуального катода и сузить спектр генерации созданием резонансных условий в верхней камере ни к чему не привели. Вариация вертикального размера верхней камеры Hзаметного изменения частоты излучаемого поля не дает. Не меняется и диапазон частот излучения $\omega < 20$ с преобладанием $\omega \sim 10$. Этот результат не кажется удивительным, поскольку длина волны генерируемых колебаний в несколько раз меньше размеров наданодной (верхней) полости. Уменьшение ее размеров нарушает динамику виртуального катода и срывает колебания.

Полученные зависимости указывают на возможность оптимизации процесса. В основных вариантах устойчиво наблюдался коэффициент полезного действия (отношение интегральной по спектру мощности электромагнитных колебаний в эквиваленте нагрузки к мощности питания пучка), равный 0.09, что совпадает с типичными значениями, получаемыми в реальных экспериментах. С увеличением площади катода потребляемая и отдаваемая мощности возрастают, но КПД падает, что естественно, поскольку дипольное излучение формирует периферийная часть виртуального катода за счет краевого эффекта. С ростом релятивизма КПД растет.

В приборах сверхмощной генерации, к которым относится исследуемый здесь виркатор, существенным усложняющим и ограничивающим элементом является возникновение плазмы в объеме. Разработанная модель вполне допускает учет этого фактора, равно как и процессов рассеяния электронов анодной фольгой и ее испарение.

Список литературы

- [1] Гинзбург С.Л., Дьяченко В.Ф., Палейчик В.В., Ходатаев К.В. Препринт ИПМ им. М.В. Келдыша РАН. № 38. М., 1995. 20 с.
- [2] Рухадзе А.А., Столбцев С.Д., Тараканов В.П. // РиЭ. 1992.
 Т. 37. Вып. 3. С. 385–396.
- [3] Ginzburg S.L., Dyachenko V.F., Imshennik V.S. et al. // Proc. III Intern. Conf. on High Power Electron and Ion Beam Res. and Technology. Novosibirsk, 1979. Vol. 2. P. 670.
- [4] Дьяченко В.Ф. // ЖВМиМФ. 1985. № 4. С. 622–627.