01;10;12 Расчет формы массовых пиков гиперболоидных масс-спектрометров с одномерной однополярной сортировкой ионов

© Е.В. Мамонтов, Д.В. Кирюшин

Рязанская государственная радиотехническая академия, 391000 Рязань, Россия

(Поступило в Редакцию 18 ноября 1997 г.)

Используя свойства частных решений уравнения Хилла найдены выражения для огибающих траекторий заряженных частиц в гиперболоидном анализаторе с сортировкой ионов вдоль одной координаты в положительной области ее значений. На их основе получены аналитические соотношения для расчета формы массовых пиков. Результаты аналитических расчетов сравниваются с результатами моделирования на ЭВМ. По массовым пикам определены параметры для расчета чувствительности и разрешающей способности одномерного анализатора.

В [1,2] обсуждаются возможности создания динамического масс-спектрометра с анализатором в виде двух гиперболоидов вращения с радиусами r₁ > r₂, сортировка заряженных частиц в котором осуществляется вдоль одной координаты z. Анализируемые частицы с массой m₀ в процессе сортировки совершают почти периодические колебания в положительной области координаты сортировки z > 0. Оценки, сделанные в [1,2], указывают на целесообразность использования одномерного однополярного режима сортировки частиц по удельному заряду. Более полное представление об аналитических возможностях способа сортировки дает аппаратная функция — форма массового пика прибора. В случае одномерного однополярного масс-спектрометра (ООМС) под аппаратной функцией понимается зависимость коэффициента удержания ионов η от нормированной массы $M = m/m_0$ [1].

Форма массового пика может быть построена в результате численного моделирования процессов сортировки заряженных частиц на ЭВМ. Но при этом не устанавливается полная взаимосвязь между различными параметрами сортировки и аналитическими показателями масс-спектрометра. Одномерный однополярный метод сортировки ионов допускает получение достаточно простых и точных аналитических представлений для формы массовых пиков, основанных на особенностях движения частиц в окрестностях границы стабильности $a_0(q)$. В условиях бесполевого фазового ввода и малого разброса начальных координат ионов $\Delta z/z \ll 1$, характерных для одномерного однополярного масс-анализатора, фактором разнообразия траекторий по оси сортировки z частиц с фиксированной массой *т* являются тепловые скорости *v*. Некоторые траектории ионов с различными массами и начальными скоростями показаны на рис. 1. Частица является стабильной, если в течение n_c циклов сортировки ее текущая координата z находится в пределах электродной системы анализатора $r_1 > z > r_2$. Для установления этого факта достаточным является знание поведения экстремальных значений $Z_{\max}(n)$ и $Z_{\min}(n)$, являющихся огибающими траекторий заряженных частиц.

Движение ионов в переменном поле в квадратичным распределением потенциала при питании анализатора импульсным напряжением прямоугольной формы описывается уравнением Хилла [3]

$$\frac{d^2z}{dt^2} + \left[a + 2q\Phi(t)\right]z = 0, \tag{1}$$

где $\Phi(t)$ — нормированная прямоугольная функция с периодом 2T.

Общее решение уравнения (1) можно представить в виде линейной комбинации двух частных независимых решений [3]

$$z(t) = Az_1(t) + Bz_2(t),$$
 (2)

где *А* и *В* — постоянные, определяемые из начальных условий.

При малых $\Delta m/m$, когда рабочая точка находится вблизи границы стабильности $a_0(q)$, с ростом числа периодов сортировки n_c положения экстремальных значений функций $z_1(t)$ и $z_2(t)$ совпадают с возрастающей точностью. Например, для независимых частных решений $ce_0(t)$ и $fe_0(t)$ при q = 0.8, $n_c = 10$ расхождения в положении экстремальных положений не превышает величины $0.75 \cdot 10^{-2}$ периода сортировки. При этом

Рис. 1. Траектория ионов в гиперболоидном масс-спектрометре с одномерной однополярной сортировкой ионов: M = 1.002 (*a*), 0.998 (*b*); 1 - v = 0.0 (*a*), v_T (*b*); $2 - v = -v_T$ (*a*), 0 (*b*).

погрешность определения самих экстремальных значений составляет $3 \cdot 10^{-4}$. Отмеченная особенность частных решений позволяет определять значения огибающих $Z_{\max}(t)$ и $Z_{\min}(t)$ в виде суммы экстремальных значений функций $z_1(t)$ и $z_2(t)$.

Для нахождения экстремальных значений траекторий воспользуемся методом характерных решений [4]. Выберем в качестве характерных точки t_{max} или t_{min} , совпадающие с экстремумами функций $z_1(t)$ и $z_2(t)$ при фазах ввода φ_{01} и φ_{02} ,

$$t_{\max n} = 2Tn;$$
 $t_{\min n} = T \frac{2n+1}{2}.$ (3)

В соответствии с методом характерных решений координаты частиц z_n и их скорости v_n после *n*-го цикла сортировки определяются значениями этих параметров z_{n-1} и v_{n-1} после n-1 цикла с помощью системы уравнений [4]

$$z_n = \Psi_{i3} z_{n-1} + \Psi_{i4} v_{n-1}, \quad v_n = \Psi_{i1} z_{n-1} + \Psi_{i2} v_{n-1}, \quad (4)$$

где коэффициенты вычисляются по формулам: для фазы ввода $\varphi_{01} = 0$

$$\begin{split} \Psi_{11} &= -\sqrt{\alpha}\,\Omega\sin\sqrt{\alpha}\,\Theta\,\mathrm{ch}\,\Theta + \frac{\sqrt{\alpha}\Omega}{\alpha} \bigg[\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}} \\ &+ \left(\frac{1}{\sqrt{\alpha}} - \sqrt{\alpha}\right)\cos\sqrt{\alpha}\Theta\bigg]\,\mathrm{sh}\,\Theta, \\ \Psi_{14} &= \frac{1}{\sqrt{\alpha}\Omega}\sin\sqrt{\alpha}\,\Theta\,\mathrm{ch}\,\Theta + \frac{1}{2\sqrt{\alpha}\Omega}\bigg[\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}} \\ &- \left(\frac{1}{\sqrt{\alpha}} - \sqrt{\alpha}\right)\cos\sqrt{\alpha}\Theta\bigg]\,\mathrm{sh}\,\Theta, \end{split}$$

для фазы ввода $\varphi_{02}=\pi$

$$\begin{split} \Psi_{21} &= \Omega \operatorname{sh} \Theta \cos \sqrt{\alpha} \, \Theta - \frac{\Omega}{2} \bigg[\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}} \\ &- \left(\frac{1}{\sqrt{\alpha}} - \sqrt{\alpha} \right) \operatorname{ch} \Theta \bigg] \sin \sqrt{\alpha} \Theta, \\ \Psi_{24} &= \frac{1}{\Omega} \operatorname{sh} \Theta \cos \sqrt{\alpha} \, \Theta + \frac{1}{2\Omega} \bigg[\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}} \\ &+ \left(\frac{1}{\sqrt{\alpha}} - \sqrt{\alpha} \right) \operatorname{ch} \Theta \bigg] \sin \sqrt{\alpha} \Theta, \end{split}$$

для фазы ввода φ_{01} и φ_{02}

$$\Psi_2 = \Psi_3 = \operatorname{ch} \Theta \cos \sqrt{\alpha} \Theta - \frac{1}{2} \left[\sqrt{\alpha} - \frac{1}{\sqrt{\alpha}} \right] \sin \sqrt{\alpha} \Theta \operatorname{sh} \Theta,$$

где $\Omega = \sqrt{2U_m e/mr_1^2}$, $\alpha = U_{m1}/U_m$ — параметр импульсного напряжения, Θ — решение уравнения для границы зоны стабильности $a_0(q)$ [1].

Решения системы уравнений (4), представленные в виде суммы двух независимых решений, имеют вид

$$Z_1(n) = A_i \operatorname{ch} \omega_1 n + B_i \operatorname{sh} \omega_1 n, \quad m > m_0;$$

$$Z_2(n) = A_i \cos \omega_2 n + B_i \sin \omega_2 n, \quad m < m_0.$$
(5)

Функции $Z_1(n)$ и $Z_2(n)$ в зависимости от значений постоянных A_i и B_i описывают огибающие минимумов или максимумов траекторий при фазах ввода φ_{01} и φ_{02} . При $\Delta m/m < 10^{-2}$ значения параметров $\omega_1 = \operatorname{arth} \Psi_2$ и $\omega_2 = \operatorname{arctg} \Psi_2$ с достаточной степенью точности можно представить в виде

$$\omega_1 \cong \omega_2 \cong \omega = \sqrt{\gamma \Theta \Delta m/m},\tag{6}$$

где $\gamma = (1/2\sqrt{\alpha} - 3\sqrt{\alpha}/2) \sin \sqrt{\alpha}\Theta \operatorname{ch} \Theta + \frac{1}{2}(3-\alpha) \cos \times \sqrt{\alpha}\Theta \operatorname{sh} \theta.$

Постоянная A_i в (5) для огибающих максимумов $Z_{\max}(n)$ равна начальной координате Z_{01} при фазе ввода φ_{01} , а для огибающих минимумов $Z_{\min}(n)$ — начальной координате Z_{02} при фазе ввода φ_{02} . При определении постоянных B_i учтем, что для $\rho > 10^2$ относительные изменения коэффициентов Ψ_{14} и Ψ_{24} при отклонении m от m_0 не превышают величины $2.5 \cdot 10^{-4}$, поэтому их можно считать постоянными. Как следует из (4), при нулевой начальной координате огибающие траекторий с ростом n изменяются по линейному закону: для φ_{01}

$$Z_{\max}(n) = \Psi_{14}\nu n, \qquad Z_{\min}(n) = \sqrt{\Psi_{14}\Psi_{24}}\nu n,$$

для φ_{02}

$$Z_{\max}(n) = \sqrt{\Psi_{14}\Psi_{24}}\,\nu n, \qquad Z_{\min}(n) = \Psi_{24}\nu n.$$
 (7)

Согласно (7), выражения для огибающей минимумов при φ_{01} совпадает с выражением для огибающей максимумов при φ_{02} . При малых $\Delta m/m$ (5) преобразуется к виду

$$Z(n) = B_i \omega n. \tag{8}$$

Приравнивая (7) и (8), получим значения постоянных *B_i*: для огибающих максимумов

$$B_1 = rac{\Psi_{14}
u}{\omega}$$
для $arphi_{01}, \quad B_3 = rac{\sqrt{\Psi_{14} \Psi_{24}} \,
u}{\omega}$ для $arphi_{02},$

для огибающих минимумов

$$B_2 = rac{\sqrt{\Psi_{14}\Psi_{24}}\,
u}{\omega}$$
для $arphi_{01}, \quad B_2 = rac{\Psi_{24}
u}{\omega}$ для $arphi_{02}.$

Используем соотношения (5) для расчета массовых пиков ООМС. С помощью функций огибающих условия удержания частиц записываются в виде

$$Z_{\max}(n) < r_1, \qquad Z_{\min}(n) > r_2.$$
 (9)

Этим условиям соответствует диапазон начальных скоростей ионов $v_{\min} - v_{\max}$, при которых частицы с массой *m* удерживаются в анализаторе в течение n_c

Рис. 2. Решение нелинейных уравнений.

периодов сортировки. С учетом значений постоянных A_i и B_i в (5) граничные скорости должны определяться для масс $m < m_0$, $m > m_0$ и фаз ввода φ_{01} , φ_{02} .

Для $m < m_0$ и φ_{01} уравнение для v_{\min} имеет вид

$$Z_{02}\cos\omega n_c + \frac{\sqrt{\Psi_{14}\Psi_{24}}v_{\min}}{\omega}\sin\omega n_c = r_2.$$

После введения обозначений $\omega n_c = \xi_c, r_2/r_1 = \varepsilon, r_2/z_{02} = c_2$ имеем

$$v_{\min} = \frac{\varepsilon r_1}{\sqrt{\Psi_{14}\Psi_{24}}c_2n_c} \frac{c_2 - \cos\xi_c}{\sin\xi_c} \xi_c.$$
(10)

При вычислении граничной скорости v_{\max} учтем, что огибающая $Z_{\max}(n)$ на интервале сортировки ξ_c монотонно нарастает при $\xi_c < \xi_1$, а при $\xi_c > \xi_1$ имеет максимум в точке $\xi_1 = \arctan B_{01}/Z_{01}$, где величина B_{01}/Z_{01} определяется ниже. На интервале $0 \leq \xi_c \leq \xi_1$ максимальная скорость находится из уравнения

$$Z_{01}\cos\xi_c + \frac{\Psi_{14}\nu_{\max}}{\omega}\,\sin\xi_c = r_1.$$

После преобразования и введения обозначения $r_1/z_{01} = c_1$ получаем

$$v_{\max} = \frac{r_1}{\Psi_{14}c_1 n_c} \frac{c_1 - \cos \xi_c}{\sin \xi_c} \xi_c.$$
 (11)

На интервале $\xi_c > \xi_1$ с учетом значения ξ_1 уравнение для v_{max} принимает вид

$$\cos \arctan B_{01}/Z_{01} + \sin \arctan B_{01}/Z_{01} = c_1.$$
(12)

Численное решение уравнения (12) для параметра $a_0 = B_{01}/Z_{01}$ приведено на рис. 2, *а*. По найденному значению a_0 рассчитывается граничная скорость

$$v_{\max} = \frac{a_0 r_1}{c_1 \Psi_{14} n_c} \xi_c.$$
 (13)

Аналогично определяются выражения для граничных скоростей в диапазоне масс *m* > *m*₀

$$\nu_{\min} = \frac{\varepsilon r_1}{\sqrt{\Psi_{14}\Psi_{24}} c_2 n_c} \frac{c_2 - ch \xi_c}{sh \xi_c} \xi_c \text{ при } \xi_c < \xi_2,$$

$$\nu_{\min} = \frac{b_0 r_1 \varepsilon}{\sqrt{\psi_{14}\psi_{24}} c_2 n_c} \xi_c \text{ при } \xi_c > \xi_2,$$

$$\nu_{max} = \frac{r_1}{\Psi_{14} c_1 n_c} \frac{c_1 - ch \xi_c}{sh \xi_c} \xi_c,$$
(14)

Журнал технической физики, 1999, том 69, вып. 2

где $\xi_1 = \operatorname{arth} B_{02}/Z_{02}, \ b_0 = B_{02}/Z_{02}$ — решение нелинейного уравнения, аналогичного 12, приведено на рис. 2, b. Совокупность соотношений (10), (11), (13), (14) описывает область начальных скоростей, при которых ионы удерживаются в анализаторе при фазе ввода φ_{01} . Для фазы ввода φ_{02} граничные скорости, рассчитанные по этим соотношениям, необходимо умножить на коэффициент $\sqrt{\Psi_{14}\Psi_{24}}$. Области удержания, построенные с использованием выражений (10), (11), (13), (14) для параметров сортировки $\lambda = 0.266, \varepsilon = 0.3$ и двух значений $c_1 = 1.1, 1.2,$ представлены на рис. 3. Можно показать, что для имеющих практическое значение величин $c_1 < 1.3$ области удержания являются замкнутыми. Ограниченность областей удержания частиц определяет конечную протяженность массовых пиков, что является важным свойством ООМС, вытекающим из особенностей однополярной сортировки ионов. Точки пересечения границ скоростей v_{min} и v_{max} в области меньших масс ξ_{01} и в области больших масс ξ_{02} определяют ширину массового пика $\xi_{02} - \xi_{01}$. Симметрия массового пика в смысле его протяженности в сторону больших и меньших от m_0 масс достигается при равенстве $c_1 \approx c_2$

$$\xi_{01} = \xi_{02} = \xi_0 \approx 3.16\sqrt{c_0 - 1}.$$
 (15)

Используя (15) получим соотношение для числа периодов сортировки n_c в зависимости от разрешающей способности ρ_0 , определенной по нулевому уровню

$$n_c = 4.5\varepsilon c_1^2 \sqrt{c_1 - 1} \sqrt{\rho_0}.$$
 (16)

При $\varepsilon = 0.3, c_1 = 1.1, \lambda = 0.32$ получим $n_c = 0.52 \sqrt{\rho_0}.$

При строгой ограниченности массового пика скорость сортировки в ООМС оказывается существенно выше, чем в других типах гиперболоидных масс-спектрометров.

Диапазон скоростей $v_{\min} - v_{\max}$ определяет количество частиц данной массы *m*, удерживаемых в анализаторе. Учитывая нормальное распределение компоненты тепловой скорости в направлении оси сортировки и используя выражения для v_{\min} и v_{\max} в качестве пределов интегри-

Рис. 3. Области удержания анализируемых частиц при $c_1 = 1.2$ (*I*) и 1.1 (*2*).

Рис. 4. Массовые пики одномерного однополярного масс-спектрометра при $n_c = 10$ и при $c_1 = 1.1$ (*a*), 1.2 (*b*); $\lambda = 0.327$ (*a*), 0.276 (*b*). Сплошные кривые — аналитический расчет, пунктир — моделирование на ЭВМ, I — для фазы ввода φ_{02} , 2 — для фазы ввода φ_{01} .

рования, для коэффициента удержания получим

$$\eta(\xi) = \frac{1}{\sqrt{2\pi} v_T} \int_{V_{\min}}^{V_{\max}} \exp(-v^2/v_T^2) \, dv.$$
(17)

После замены переменной

$$M = 1 + \frac{\Delta m}{m} = \frac{\xi^2}{\gamma \Theta} + 1$$

выражение (17) преобразуется в функцию $\eta(M)$.

Массовые пики, рассчитанные с использованием полученных соотношений для аппаратной функции, представлены на рис. 4. Для оценки погрешности расчетов, связанной с конечным разбросом начальных координат частиц и кривизной электродов, не учтенных в (9), проведено численное моделирование на ЭВМ процессов одномерной однополярной сортировки ионов. Результаты моделирования, представленные на рис. 4, указывают на достаточную точность аналитических выражений для массовых пиков.

Полагая в (17) $\xi = 0$ и выполняя ряд упрощений, получим формулы для расчета коэффициента удержания для частиц анализируемой массы, характеризующего чувствительность ООМС,

$$\eta_1 \approx \eta_0 \frac{\varepsilon(c_0^2 - 1)}{\sqrt{(c_0 - 1)\rho_0}}$$
 при $\varphi = \varphi_{01},$ (18)

$$\eta_2 \approx \eta_0 \frac{(c_0^2 - 1)}{c_0^2 \sqrt{(c_0 - 1)\rho_0}} \quad \text{при} \quad \varphi = \varphi_{02},$$
(19)

где $\eta_0 = 8.9 \sqrt{U_m e/m} / v_T$.

Согласно (18), (19) для одномерного анализатора характерна слабая зависимость коэффициента удержания η от разрешающей способности ρ_0 , что делает возможным получение высокого разрешения $\rho_0 \ge 10^3$ без существенного снижения чувствительности масс-спектрометра. Из сопоставления (18) и (19) видно, что эффективность сортировки при фазе ввода φ_{02} в $1/\varepsilon c_0^2$ выше, чем при фазе ввода φ_{01} , что также отражено в различной интенсивности пиков в рис. 4.

Выводы

Положения экстремумов частных решений уравнений Хилла в окрестностях границы стабильности $a_0(q)$ при $n_c > 10$ совпадают с высокой точностью. Использование этой особенности траекторий и метода характерных решений позволяет рассчитывать огибающие траекторий заряженных частиц с различными начальными координатами и начальными скоростями, что является основой для нахождения формы массовых пиков одномерного однополярного масс-спектрометра. Массовые пики, построенные с использованием аналитических выражений и в результате численного моделирования на ЭВМ, хорошо согласуются.

Отличительной особенностью массовых пиков ООМС является их строгая ограниченность по массам. Коэффициент удержания одномерного анализатора слабо зависит от разрешающей способности масс-спектрометра, что делает возможным получение параметра $\rho_0 > 10^3$ без заметного ухудшения чувствительности прибора.

Список литературы

- [1] Мамонтов Е.В. // Вестн. Рязанской радиотехнической академии, 1997. Вып. З. С. 116–121.
- [2] Mamontov E.V. Dynamic Mass Spectrometer with One-Dimensional Separation. 14th IMSC. Tampere, 1997.
- [3] Мак-Лахлан Н.В. Теория и приложения функций Матье. М.: ИЛ, 1953.
- [4] Шеретов Э.П., Терентьев В.И. // ЖТФ. 1972. Т. 42. Вып. 5. С. 953–962.