Эффективность возбуждения волн пространственного заряда в тонкопленочной полупроводниковой структуре одиночным полосковым барьером Шоттки

© А.И. Михайлов, С.А. Сергеев

06

Саратовский государственный университет им. Н.Г. Чернышевского, 410601 Саратов, Россия

(Поступило в Редакцию 8 декабря 1997 г.)

Приводятся результаты теоретического анализа влияния различных факторов на эффективность возбуждения волн пространственного заряда (ВПЗ) в тонкопленочных полупроводниковых структурах одиночным полосковым барьером Шоттки (БШ). Показано, что для повышения эффективности преобразования СВЧ сигнала в ВПЗ целесообразно использовать БШ с малым значением контактной разности потенциалов, а ширина БШ и концентрация электронов в пленке должны быть оптимизируемыми параметрами.

Одним из наиболее перспективных классов устройств функциональной микроэлектроники СВЧ диапазона являются устройства на волнах пространственного заряда (ВПЗ) в полупроводниках с отрицательной дифференциальной проводимостью (ОДП) [1,2]. Они могут выполнять различные радиотехнические функции по обработке СВЧ сигналов вплоть до миллиметрового диапазона [1–5]. При разработке и конструировании функциональных устройств на ВПЗ в тонкопленочных полупроводниковых структурах (ТПС) с ОДП для 8-миллиметрового диапазона особое значение приобретают работы по оптимизации конструктивно-

Рис. 1. Схема входной области: *I* — катод, *2* — барьер Шоттки, *3* — к аноду.

топологических и электрофизических параметров ТПС и элементов возбуждения ВПЗ. Это связано с тем, что именно в этом диапазоне находится граничная частота усиления ВПЗ.

В качестве элементов связи ТПС с электродинамической системой, обеспечивающих возбуждение ВПЗ, в настоящее время чаще всего используются одиночные полосковые барьеры Шоттки (БШ), важным свойством которых является широкополосность. В данной работе приводятся результаты теоретического анализа влияния конструктивно-топологических и электрофизических параметров ТПС и элементов связи на эффективность возбуждения ВПЗ одиночным полосковым барьером Шоттки.

При подаче СВЧ сигнала на входной полосковый обратносмещенный БШ происходит модуляция глубины области обеднения под БШ с частотой входного СВЧ напряжения. При этом с той же частотой модулируется и *z*-компонента напряженности электрического поля E_z в пленке *n*-GaAs под БШ (рис. 1, *a*). В пренебрежении диффузией *z*-компонента полного тока под полосковым БШ записывается выражением

$$I = W[2a - b(V)] \left\{ qnv(E_z) + \varepsilon \varepsilon_0 \frac{dE_z}{dt} \right\}, \qquad (1)$$

где *W* — апертура полупроводниковой структуры; 2*a* — толщина пленки *n*-GaAs;

$$b(V) = \sqrt{\frac{2\varepsilon\varepsilon_0(\varphi_0 - V)}{qn_0}}$$
(2)

— глубина области обеднения под барьером Шоттки, зависящая от напряжения V; ε — относительная диэлектрическая проницаемость *n*-GaAs; ε_0 — электрическая постоянная; *q* и *n* — модуль заряда и концентрация электронов в пленке *n*-GaAs; φ_0 — контактная разность потенциалов полоскового контакта с БШ; n_0 — равновесная концентрация электронов; $v(E_z)$ — дрейфовая скорость электронов под БШ, зависящая от напряженности поля E_r ; *t* — время.

Рис. 2.

Рис. 3.

Предположим, что к БШ кроме постоянного напряжения V_0 приложено малое переменное напряжение V_1 с частотой ω , т. е.

$$V = V_0 + V \exp(i\omega t); \quad V_1 \ll V_0.$$
 (3)

В случае если СВЧ генератор во входной области устройства включен между БШ и катодом, схема входной области имеет вид, представленный на рис. 1, *b*. Полный ток *I*, втекающий в БШ, делится на две токовые компоненты I_1 и I_2 : ток I_2 идет на катод, а ток I_1 — на анод. В идеальном случае вследствие высокого импенданса участка между БШ и анодом в сравнении с импедансом узкого промежутка между БШ и катодом $I_1 \ll I_2$, *I*. Тогда, следуя методике, изложенной в [6], можно получить выражение для коэффициента связи напряженности электрического поля ВПЗ и СВЧ сигнала на БШ

$$K = \frac{dE_z}{dV} = -\frac{1}{(2a-b_0)} \frac{1}{b_0} \frac{v_0}{\omega_d}$$
$$\times \left[\left(1 + \frac{v_0}{l_2} \frac{1}{\omega_d} \right) + i \frac{\omega}{\omega_d} \right]^{-1}, \qquad (4)$$

где b_0 — это значение b(V) при $V = V_0$; $\omega_d = (qn_0\mu_d)/(\varepsilon\varepsilon_0)$; μ_d — дифференциальная подвижность электронов в *n*-GaAs, соответствующая значению напряженности статического электрического поля E_0 .

Как видно из (4), коэффициент связи *К* является в общем случае комплексной величиной, что свидетельствует о существовании разности фаз между СВЧ напряжением на входном барьере Шоттки и напряженностью электрического поля ВПЗ под ним.

На рис. 2 и 3 приведены зависимости модуля коэффициента связи |K|, рассчитанные с помощью формулы (4), от φ_0 , $f = \omega/2\pi$, n_0 и l_2 . Расчеты проведены для следующих параметров, соответствующих *n*-GaAs, в предположении, что напряженность статического электрического поля под БШ $E_0 = 5.5 \text{ kV/cm}$: $v_0 = 1.7 \cdot 10^7 \text{ cm/s}$, $\varepsilon = 12.9$ [7], $2a = 5 \,\mu\text{m}$. Зависимость μ_d от f для *n*-GaAs взята из работы [8]. Во всех расчетах полагалось, что $V_0 = -1 \text{ V}$.

На рис. 2, a показаны зависимости |K| от величины контактной разности потенциалов φ_0 для $f = 30 \,\mathrm{GHz}$ $(\mu_d = -0.128 \,\mathrm{m^2/Vs}), \ l_2 = 1 \,\mu\mathrm{m}$ и $n_0 = 5 \cdot 10^{20}$ (кривая 1), 10²¹ (кривая 2), 5 · 10²¹ m⁻³ (кривая 3). Как видно, |K| для БШ с малым значением φ_0 выше |K| для БШ с $\varphi_0 = 0.7 - 0.9$ V, которые наиболее типичны для БШ на n-GaAs. Это связано с тем, что при уменьшении φ_0 увеличивается коэффициент модуляции емкости и глубины области обеднения под БШ [9], т.е. для эффективного возбуждения ВПЗ в ТПС с ОДП целесообразно применять барьеры Шоттки со значением $\varphi_0 = 0.2 - 0.3 \,\text{V}$, что, с одной стороны, обеспечивает высокий коэффициент связи, а с другой, гарантирует достаточно высокую температурную стабильность работы устройства, поскольку при этом $\varphi_0 \gg kT/q$, где k постоянная Больцмана, Т — температура.

На рис. 2, *b* показаны зависимости |K| от частоты CBЧ сигнала *f* для $\varphi_0 = 0.2$ V, $l_2 = 1 \,\mu\text{m}$ и концентрации электронов в рабочем слое $n_0 = 5 \cdot 10^{20}$ (кривая *I*), 10^{21}

(кривая 2), $3 \cdot 10^{21}$ (кривая 3), $5 \cdot 10^{21}$ m⁻³ (кривая 4). Проведенный анализ показал, что при $n_0 = 2 \cdot 10^{21}$ m⁻³ характер зависимости |K| от f меняется: из убывающей она превращается в нарастающую. Такое изменение непосредственно связано с тем, что в расчетах была учтена частотная дисперсия дифференциальной подвижности электронов. Это обстоятельство свидетельствует о необходимости учета зависимости дифференциальной подвижности электронов от частоты при конструировании элементов связи устройств на ВПЗ. Полученные зависимости |K| от f показывают, что, используя разные n_0 под БШ, можно целенаправленно корректировать амплитудно-частотные характеристики элементов связи и всего устройства в целом.

На рис. 3, *а* представлены зависимости |K| от ширины БШ l_2 для $\varphi_0 = 0.2$ V, f = 30 GHz ($\mu_d = -0.128 \text{ m}^2/\text{Vs}$) и для двух значений равновесной концентрации электронов в рабочем слое $n_0 = 2 \cdot 10^{21}$ (кривая *1*) и 10^{21} (кривая *2*). На рис. 3, *b* показаны зависимости модуля коэффициента связи |K| от n_0 для $\varphi_0 = 0.2$ V, $l_2 = 1 \,\mu\text{m}$ и двух частот: f = 25 (кривая *1*) и 30 GHz (кривая *2*).

Немонотонность зависимостей |K| от l_2 и |K| от n_0 определяется сменой знака реальной части K, когда

$$\omega_d \tau = -1, \tag{5}$$

где $\tau = l_2/v_0$ — время пролета электронов под БШ.

Результаты, полученные в данной работе, могут быть использованы при разработке и конструировании различных устройств на ВПЗ в ТПС с ОДП в коротковолновой части СВЧ диапазона.

Список литературы

- [1] *Барыбин А.А.* и др. // Микроэлектроника. 1979. Т. 8. Вып. 1. С. 3–19.
- [2] Иванченко В.А., Михайлов А.И. // Сб. тез. докл. Всесоюз. совещания "Электроника: преобразователи информации". М.; Нижний Новгород, 1991. С. 12–14.
- [3] Михайлов А.И. // Письма в ЖТФ. 1995. Т. 21. Вып. 21. С. 89– 95.
- [4] Михайлов А.И., Сергеев С.А. // Изв. вузов. Радиоэлектроника. 1995. Т. 38. № 9-10. С. 43-51.
- [5] Михайлов А.И., Сергеев С.А. // Письма в ЖТФ. 1996. Т. 22.
 Вып. 24. С. 75–78.
- [6] Kumabe K., Kande H. // Int. J. Elektronics. 1985. Vol. 58. N 4. P. 587–611.
- [7] Левинитейн М.Е., Пожела Ю.К., Шур М.С. Эффект Ганна. М.: Сов. радио, 1975. 288 с.
- [8] Rees H.D. // Sol. St. Commun. 1969. Vol. 7. N 2. P. 267-269.
- [9] Михайлов А.И. // Электронная техника. Сер. 1. Электроника СВЧ. 1981. Вып. 6. С. 28–30.