¹² Способ уменьшения диффузионных потерь в дрейф-спектрометре

© Е.В. Крылов

Конструкторско-технологический институт геофизического и экологического приборостроения СО РАН, 630090 Новосибирск, Россия

(Поступило в Редакцию 8 декабря 1997 г.)

Рассматривается методика уменьшения диффузионных потерь при анализе ионов тяжелых молекул, пропускаемых вместе с несущим газом через систему разделения при атмосферном давлении. Разделение происходит под действием поперечного переменного электрического поля подобно тому, как это происходит в квадрупольных масс-спектрометрах. Предлагается вместо плоского конденсатора с однородным полем применить цилиндрический конденсатор с неоднородным полем. Экспериментально показано, что достигается увеличение выходного сигнала в несколько раз.

Работа посвящена развитию нового метода разделения ионов в плотной аэровоздушной среде по нелинейной зависимости подвижности ионов от напряженности электрического поля. В работах [1-5] описаны новый метод разделения ионов в газе по зависимости коэффициента подвижности от напряженности электрического поля и прибор (названный дрейф-спектрометром), реализующий его. Сущность этого метода заключается в следующем. При постоянной плотности N дрейфового газа зависимость коэффициента подвижности коэффициента подвижность коэффициента в следующем. При постоянной плотности N дрейфового газа зависимость коэффициента подвижности K от напряженности электрического поля E может быть представлена в виде

$$K(E) = K_0 (1 + \alpha(E)), \qquad (1)$$

где K_0 — значение коэффициента подвижности в слабом поле; $\alpha(E)$ — нормированная функция, описывающая зависимость подвижности от поля.

Из требования изотропии пространства дрейфа ионов следует, что зависимость $\alpha(E)$ может быть только четной функцией *E*. Запишем в явном виде разложение функции $\alpha(E)$ в ряд по четным степеням *E*

$$\alpha(E) = \sum_{n=1}^{\infty} \alpha_{2n} \cdot E^{2n}.$$
 (2)

Постоянные коэффициенты разложения α_{2n} определяются только видом потенциала ион-молекулярного взаимодействия.

Работа дрейф-спектрометра (рис. 1) основана на использовании зависимости коэффициента подвижности Kионов от напряженности электрического поля E. Наличие ненулевой зависимости $\alpha(E)$ приводит к тому, что под действием периодического несимметричного по полярности электрического поля высокой напряженности E(t), удовлетворяющего условиям

$$\int_{0}^{T} E(t)dt = \langle E(t) \rangle = 0, \quad \langle E^{2n+1}(t) \rangle \neq 0, \qquad (3)$$

где T — период поля; n — целое число, большее 1, ионы будут совершать быстрые колебания с периодом T и

медленно смещаться вдоль силовых линий поля с характерной для данного сорта ионов скоростью V. Различие скоростей V для разных сортов ионов используется для разделения ионов.

Разделение происходит в камере, образованной двумя электродами, между которыми прокачивается поток ионизированного газа. К электродам приложено напряжение, такое что на ионы в камере действует электрическое поле

$$E(t) = E_s(t) + E_c = E_s \cdot f(t) + E_c,$$
 (4)

где $E_s(t)$ удовлетворяет условию (3); $E_s = \max |E_s(t)|$; $E_c \ll E_s$; f(t) — нормированная на единицу функция, описывающая форму поля.

Под действием такого поля ион дрейфует поперек потока дрейфового газа со своей характерной скоростью $V = \langle K(E)E(t) \rangle$. Достигший электрода ион теряет заряд

Рис. 1. Дрейф-спектрометр: *1* — анализируемый газ, *2* — камера разделения, *3* — поляризованный электрод, *4* — камера ионизации, *5* — траектории движения ионов, *6* — камера регистрации, *7* — газовый насос, *8* — генератор разделяющего напряжения, *9* — электрометр, *10* — система управления и обработки данных.

и не регистрируется. Если E_c такое, что для некоторого сорта ионов выполняется условие компенсации V = 0, то эти ионы пролетают с потоком дрейфового газа камеру разделения и на выходе регистрируются электрометром. Будем называть это значение E_c напряженностью выхода данного сорта ионов. В работе [1] выводится зависимость E_c от значения E_s и функции $\alpha(E)$

$$E_c = \frac{\langle \alpha \cdot E_s \rangle}{1 + \langle \alpha \rangle + \langle \frac{\partial \alpha}{\partial E} \cdot E_s \rangle}.$$
 (5)

Эта формула с учетом (2) приобретает вид

$$E_{c} = \frac{\sum_{n=1}^{\infty} \alpha_{2n} E_{s}^{2n+1} \langle f^{2n+1}(t) \rangle}{1 + \sum_{n=1}^{\infty} (2n+1) \alpha_{2n} E_{s}^{2n} \langle f^{2n}(t) \rangle}.$$
 (5a)

Результаты и обсуждение

Когда для какого-либо сорта ионов выполняется условие компенсации, основной причиной, вызывающей потери ионов в аналитическом тракте, является диффузия ионов на стенки камеры разделения. В случае использования экспериментальной установки, описанной в [1], диффузия ионов на стенки камеры разделения приводит к уменьшению полезного сигнала в 3–5 раз. Предлагается метод борьбы с диффузионными потерями.

Сущность этого метода заключается в том, что разделение ионов проводят в пространственно неоднородном (например, радиальном) электрическом поле. Градиент поля направлен в ту же сторону, что и вектор компенсирующего поля E_c . Наличие градиента поля Eприводит к тому, что на ионы, диффундирующие от положения равновесия, в котором выполняется условие компенсации, действует возвращающая сила. Возникает эффект сжатия облака ионов, приводящий к уменьшению диффузионных потерь ионов.

Прежде чем перейти к расчету процесса разделения ионов в пространственно неоднородном поле $E_c+E_sf(t)$, введем следующие обозначения: \mathbf{r}_0 — координата точки, в которой выполняется условие компенсации $\langle V(r_0) \rangle = 0$; $E_c(E_s)$ — зависимость напряженности компенсирующего поля от амплитуды разделяющего поля для данного типа ионов, эта зависимость считается известной из эксперимента или рассчитывается по формуле (5); $p(\mathbf{r}) = E(\mathbf{r})/E(\mathbf{r}_0)$ — функция, описывающая пространственную зависимость напряженности поля.

Зафиксируем некоторое ненулевое значение E_s и соответствующую напряженность выхода $E_c(E_s)$ для какоголибо типа ионов и рассмотрим движение иона в окрестности точки \mathbf{r}_0 . На него будет действовать разделяющее поле $E_s p(\mathbf{r})$ и компенсирующее поле $E_c p(\mathbf{r})$. Условие компенсации при $\mathbf{r} \neq \mathbf{r}_0$, вообще говоря, не выполняется, так как действие разделяющего поля $E_s p(\mathbf{r})$ компенсируется постоянным полем $E_c(E_s p(\mathbf{r})) \neq E_c p(\mathbf{r})$. Следова-

тельно, воздействие полей на ион в точке r будет эквивалентно действию постоянного поля напряженности

$$E_{ef} = E_c(E_s p(r)) - E_c p(r).$$
(6)

Решение уравнения диффузии ионов $\mathbf{J} = nK\mathbf{E}_{ef} = D\nabla\mathbf{n}$ будет описывать движение облака ионов в пространственно неоднородном поле $E_c + E_s f(t)$.

В предположении малости смещения иона от точки r_0 уравнение диффузии поддается решению в явном виде. Разложение функции E_{ef} по малому параметру $\Delta r/r_0 = (r - r_0)/r_0$ в точке \mathbf{r}_0 имеет вид

$$E_{ef} = \left(E_c - \frac{\partial E_c}{\partial E_s} E_s\right) \cdot \nabla p(r_0) \cdot \Delta r \equiv \gamma \Delta r, \qquad (7)$$

где $\nabla p(\mathbf{r})$ — пространственный градиент поля, $\gamma \Delta r$ — скалярное значение функции E_{ef} в выбранном направлении.

Если значение γ отрицательно и не равно нулю, то уравнение диффузии имеет стационарное решение. Установившееся распределение плотности ионов будет иметь гауссову форму с характерным размером $\sqrt{2D/K\gamma}$ и центром в точке **r**₀.

Проведем оценку для коаксиальной камеры разделения, представляющей собой соосно расположенные цилиндр и стержень, между которыми создается разделяющее поле. В этом случае напряженность поля и функция p(r) в цилиндрических координатах будет

$$E(r) = \frac{U}{\ln\left(\frac{r_1}{r_2}\right) \cdot r}; \quad p(r) = \frac{r_0}{r}, \tag{8}$$

где U — напряжение, приложенное к пластинам; r_1, r_2 — соответственно внутренний и внешний радиусы камеры разделения.

Предположим, что условие компенсации выполняется в точке $r_0 = (r_1 + r_2)/2$, и оценим эффект для диффузионного смещения ионов в радиальном направлении, т. е. к стенкам коаксиальной камеры. Целью оценки будет являться вычисление минимального зазора между электродами $d = r_1 - r_2$, при котором диффузионные потери ионов пренебрежимо малы. Для оценки зависимости $E_c(E_s)$ используем формулу (5а), учитывая только первый член разложения (2) зависимости $\alpha(E)$. Подставляя $\alpha(E) = \alpha_2 E^2$ в (5) и ограничиваясь членами нулевого порядка малости, получим

$$E_c = \alpha_2 \langle f^3 \rangle \cdot E_s^3. \tag{9}$$

Элементарные вычисления дадут значение γ для радиального смещения ионов

$$\gamma = \frac{2E_c}{r_0} \approx \frac{2U_c}{r_0 \cdot d},\tag{10}$$

где U_c — напряжение компенсации.

Предположение малости Δr , сделанное выше, дает нам право использовать вместо точного значения E_c (8) приближенное выражение $E_c \approx U_0/d$. Отрицательный знак γ обеспечивается условием сонаправленности E_c и ∇p (для положительных ионов). В противном случае эффект сжатия облака ионов сменится эффектом расталкивания, что приведет к гибели ионов на стенках камеры.

Потребовав, чтобы $d \gg \sqrt{2D/K\gamma}$, с учетом (10) и соотношения Эйнштейна [6] получим

$$d/r_0 \gg U_T/U_c,\tag{11}$$

где $U_T = kT/e$ — термический потенциал.

Аккуратный учет размера сжатого пучка, использование обобщенного уравнения Нернста–Эйнштейна [6], учет следующих порядков разложения $\alpha(E)$ (2) и, следовательно, следующих членов ряда (5а) позволят уточнить неравенство (11). Однако мы оставим его в таком виде, учитывая простоту и наглядность соотношения.

Накопленные экспериментальные данные дают основание утверждать, что $U_c \gg U_T$ в большинстве случаев. Это оправдывает предположение о малости параметра $\nabla r/r$, сделанное при выводе уравнения (7).

Экспериментальная проверка

Экспериментальная установка, блок-схема которой показана на рис. 2, была подробно описана в работе [1]. Анализируемая газовая смесь, полученная с помощью блока подготовки пробы, ионизируется в камере ионизации, где помещается β -источник или поверхностноионизационный источник. Смесь ионов с потоком газаносителя подается в камеру разделения. В эксперименте использовались плоская и коаксиальная камеры разделения. Плоская камера разделения представляет собой две параллельные металлические пластины (электроды) размером 1.5×5 сm, разделенные зазором 1 mm. Коаксиальная камера разделения представляет собой коаксиаль-

Рис. 2. Блок-схема экспериментальной установки: *1* — блок подготовки пробы, *2* — дополнительная камера разделения, *3* — дрейф-спектрометр, *4* — интерфейс RS-232, *5* — IBM PC (программное обеспечение), *6* — блоки электронного обеспечения.

Рис. 3. Дрейф-спектры, т.е. зависимости ионного тока I на выходе камеры разделения от напряженности компенсации E_c , полученные с помощью плоской конструкции камеры разделения (a) и коаксиальной конструкции (b).

но расположенные цилиндрические электроды: внешний диаметром 0.5 сm, внутренний — 0.3 cm. В зазоре между плоскими или коаксиальными электродами ионная смесь подвергается воздействию электрического поля. Для создания поля требуемой конфигурации (4) к электродам прикладывается высокочастотное ($T = 1 \, \mu$ s), высоковольтное (диапазон изменения амплитуды 1–3 kV) напряжение. Форма поля описывается выражением [7]

$$f(t) = 0.7\cos(2\pi t/T) + 0.3\cos(4\pi t/T).$$
 (12)

На рис. З приведены дрейф-спектры, снятые в одинаковых условиях в плоской (*a*) и коаксиальной (*b*) камерах разделения. В качестве тестовой смеси использовалась смесь трипропиламина и триэтиламина. Возросшая в несколько раз высота пиков для значений $E_c > 100$ V/cm свидетельствует об уменьшении потерь ионов в коаксиальной камере разделения.

Интересно также сравнить зависимость коэффициента потерь ионов в камере разделения $K_L = I_{inp}/I_{out}$, равного отношению входного и выходного ионных токов, от напряженности разделяющего поля E_s для плоской и коаксиальной камер разделения.

Рис. 4. Зависимости логарифма коэффициента потерь ионов $In(K_L)$ от амплитуды разделяющего поля E_s для плоской конструкции камеры разделения (*a*) и коаксиальной конструкции (*b*).

Для корректной постановки этого эксперимента была проведена модификация экспериментальной установки. Между ионизатором и камерой разделения была помещена еще одна камера разделения с необходимым электронным оборудованием. Она настраивалась на отдельный явно выраженный пик дрейф-спектра, соответствующий веществу с высоким сродством к электрону или протону, и Ес фиксировалось. Ионный ток на выходе этой камеры служил входным током для исследуемой (плоской или коаксиальной) камеры разделения. Такое построение экспериментальной установки гарантирует стабильный ток ионов одного сорта на входе в камеру разделения и позволяет измерять коэффициент потерь в аналитическом тракте в зависимости от E_s . Для получения количественного значения К_L периодически контролировалось значение ионного тока на выходе дополнительной камеры разделения.

Зависимости $\ln K_L(E_s)$ для плоской (*a*) и коаксиальной (*b*) камер разделения приведены на рис. 4. Исследовались $(M+H)^+$ ионы, полученные при β -ионизации паров трипропиламина в атмосфере воздуха [5]. Расчетные кривые получены в результате решения уравнения диффузии ионов в камере разделения в τ -приближении с учетом эффекта сжатия.

Заключение

Предложен и рассчитан новый метод уменьшения диффузионных потерь ионов в дрейф-спектрометре, основанный на использовании пространственно неоднородного электрического поля для разделения ионов. Получены экспериментальные подтверждения этого эффекта.

Автор приносит свою благодарность У.Х. Расулеву, Э.Г. Назарову и И.А. Бурякову за плодотворные обсуждения и помощь в экспериментальной проверке эффекта.

Список литературы

- Buryakov I.A., Krylov E.V., Nazarov E.G., Rasulev U.Kh. // International J. Mass Spectr. and Ion Proc. 1993. Vol. 128. P. 143–148.
- [2] Горшков М.П. А.С. № 966583. МКИ 01 № 27/62. БИ. 1982. № 38.
- [3] Буряков И.А., Крылов Е.В., Макась А.Л. и др. // Письма в ЖТФ. 1991. Т. 17. Вып. 12. С. 60–65.
- [4] Буряков И.А., Крылов Е.В., Солдатов В.П. А.С. № 1485808. МКИ G01 № 27/62. БИ. 1989. № 16.
- [5] Буряков И.А., Крылов Е.В., Макась А.Л. и др. // ЖАХ. 1993. Т. 48. № 1. С. 156–165.
- [6] Mason E.A., McDaniel E.W. Transport Properties of Ions in Gases. New York: Wiley, 1988. 558 p.
- [7] Крылов Е.В. // ПТЭ. 1991. № 4. С. 114–115.