Конверторы рентгеновского излучения для радиационной обработки тонких пленок

© В.И. Беспалов¹, В.В. Рыжов², И.Ю. Турчановский²

¹Томский политехнический университет, 634004 Томск, Россия ²Институт сильноточной электроники СО РАН, 634055 Томск, Россия

(Поступило в Редакцию 30 июня 1997 г.)

Методом Монте-Карло проведены расчеты энергии, поглощенной в тонких пленках материалов, при воздействии рентгеновского излучения, возникающего при торможении низкоэнергетических электронов $(E_0 < 500 \text{ keV})$ в конверторах с различными атомными номерами (Z = 29-73). В программе учтены оба механизма ионизации *К*-оболочки, приводящие к излучению характеристических фотонов как за счет электронного удара, так и в результате фотоэффекта, и показан большой вклад характеристического излучения в поглощенную энергию в тонких пленках. Расчеты показали, что обоснованный выбор материала и толщины конвертора позволяет в 2–5 раз увеличить энергию рентгеновского излучения, поглощаемую в тонких пленках пленках полупроводниковых материалов.

Введение

01;07;11;12

Закономерности генерации тормозного излучения, возникающего при торможении высокоэнергетических электронов в мишени, хорошо изучены экспериментально и теоретически [1,2]. Обычно при этих энергиях для максимального выхода тормозного излучения используют материалы с высоким атомным номером Z (вольфрам и тантал). Однако при торможении низкоэнергетических электронов заметная часть энергии может излучаться в виде характеристического излучения, которое возникает как в результате фотопоглощения вторичных фотонов, так и в результате ионизации внутренних оболочек атома электронным ударом. Так как сечение второго процесса возрастает с уменьшением атомного номера Z, то возможна высокая эффективность генерации рентгеновского излучения и в материалах с низким Z. Это обстоятельство необходимо учитывать при радиационной обработке тонких пленок и фольг, эффективность которой определяется не только полной энергией излучения, но и его спектральным составом.

Программа

С целью исследования оптимальных условий облучения и выбора эффективных конверторов ренттеновского излучения для обработки тонких пленок нами использовалась программа, моделирующая процесс развития электронно-фотонного каскада в конверторе и поглощение излучения в материале пленки методом Монте-Карло. Для расчетов спектрального распределения излучения за конвертором был разработан вариант программы [3], в котором учитываются процессы генерации характеристического излучения как вторичным тормозным излучением, так и электронами. Сечение *K*-ионизации электронным ударом было взято из работы [4]. Отметим, что в большинстве программ, моделирующих методом Монте-Карло прохождение электронов и фотонов через вещество, характеристическое излучение либо не учитывается, либо учитывается лишь через канал ионизации внутренних оболочек за счет фотоэффекта. Это связано с тем, что характеристическое излучение не играет существенной роли в традиционных задачах, связанных с расчетом полной энергии тормозного излучения и радиационной защиты.

Результаты расчетов

Для исследования оптимальных условий радиационной обработки тонких пленок были проведены расчеты поглощенной энергии в пленках из золота и полупроводниковых материалов для конверторов с различными атомными номерами Z = 29, 42, 57, 73. Начальная энергия электронов изменялось от 100 до 500 keV. Толщина конверторов оптимизировалась по полному выходу энергии излучения, а для поглощения электронов, выходящих из конвертора, за ним располагалась пластина из графита соответствующей толщины.

Важная роль характеристического излучения в задачах, связанных с поглощением энергии в калориметре на основе тонкой золотой фольги ($d = 27.9 \,\mu$ m), была показана в работе [1]. Одним из неожиданных результатов, который был получен авторами этой работы, состоит в том, что для конверторов из лантана (Z = 57) в калориметре поглощается примерно на 20% энергии больше, чем для конвертора из титана (Z = 73). В то же время общий выход тормозного излучения из танталового конвертора должен быть примерно на столько же выше.

Использованный в экспериментах калориметр измерял энергию, поглощенную в золотой фольге, толщина которой была недостаточной для полного поглощения всей

Рис. 1. Зависимость поглощенной в калориметре энергии от толщины золотой фольги для электронов с начальной энергией $E_0 = 1.0$ MeV, падающих на конвертор из лантана (сплошная кривая) или тантала (штриховая кривая) оптимальной толщины.

Рис. 2. Зависимость вклада характеристического *К*-излучения в энергию, поглощенную в калориметре, от толщины золотой фольги: *1*, *3* — расчет с учетом ионизации *К*-оболочек электронами и тормозном излучением; *2*, *4* — с учетом ионизации *К*-оболочек только тормозным излучением.

энергии излучения. Поэтому мы исследовали влияние толщины фольги калориметра на величину энергии, поглощенной в фольге (рис. 1). Из рис. 1 следует, что, действительно, показания калориметра с тонкой золотой фольгой за конвертором из лантана выше, чем для танталового конвертора, однако при большой толщине поглощаемой фольги (из расчетов $d > 50 \,\mu$ m) ситуация соответствует обычным представлениям о зависимости выхода тормозного излучения от *Z*.

Анализ результатов наших расчетов подтвердил вывод авторов работы [1] о том, что причиной этого эффекта является высокий вклад характеристического

излучения в энергию, поглощенную в тонкой золотой фольге калориметра. Рассчитанные нами значения вклада характеристического излучения в поглощенную энергию в калориметре приведены на рис. 2. Из рис. 2 видно, что вклад характеристического излучения зависит от материала конвертора и толщины фольги калориметра. Для тонких золотых фольг ($d < 30\,\mu{
m m}$ для конверторов из лантана и $d < 100\,\mu m$ для конверторов из тантала) доля энергии характеристического излучения, поглощаемого в калориметре, растет и достигает 45 и 20% для конверторов из лантана и тантала соответственно, а затем с увеличением толщины фольги падает. Необходимо отметить, что вклад характеристического излучения, образованного при ионизации К-оболочки электронами, для лантана достигает 50% относительно всей энергии тормозного излучения и практически не зависит от толщины фольги калориметра, в то время как длял конверторов из тантала он не превышает 20%, что объясняется соответствующей зависимостью сечения ионизации К-оболочки от Z. Важная роль характеристического излучения в спектре излучения за оптимальными по полной энергии излучения конверторами с различным атомным номером Z следует из данных, приведенных в таблице. Расчеты проведены для плоской геометрии: мононаправленный моноэнергетический электронный пучок падает на конвертор (Cu, Mo, La, Ti), за которым находится поглотитель электронов (пластина из углерода соответствующей толщины), а за ним — пленка из облучаемого материала (Si, Ge, Au). Из таблицы следует, что вплоть до начальных энергий электронов $E_0 = 100 \, \text{keV}$ полный выход энергии рентгеновского излучения за конверторами из меди выше, чем за конверторами из тантала. При этом вклад характеристического излучения для меди превышает 50%, в то время как для тантала он на порядок меньше.

Результаты расчетов для пленок из кремния, облучаемых рентгеновским излучением электронов с начальной энергией 500 keV, приведены на рис. 3. Расчеты показали, что выбор материала конвертора зависит как от толщины обрабатываемой фольги, так и от начальной энергии электронов. Так, для $E_0 = 500$ keV при обработке тонких пленок кремния ($d < 100 \,\mu$ m) следует использовать конверторы из меди, в то время как для толстых пленок ($100 < d < 500 \,\mu$ m) наиболее эффек-

Энергия (keV) фотонов, выходящих за конвертор оптимальной толщины, и доля (%) характеристического излучения в ней (результаты расчетов нормировки на один упавший электрон)

E_0 , keV	Cu	Mo	La	Та
50	0.098	0.0608	0.0516	0.060
	69	40	16	0
100	0.235	0.224	0.221	2.43
	54	34	16	5
500	2.26	3.10	4.08	5.08
	5	8	9	8

Рис. 3. Зависимость поглощенной энергии излучения в слое кремния от его толщины и вещества конвертора для начальной энергии электронов $E_0 = 500$ keV.

тивными являются конверторы из молибдена. При этом, как следует из рисунка, энергия, поглощенная в пленке из кремния, примерно в два раза выше, чем в пленке традиционных конверторов из тантала. Для меньших начальных энергий электронов наиболее эффективными являются конверторы из меди, для которых выигрыш по поглощенной энергии при $E_0 = 100 \, \text{keV}$ достигает 5–6 раз по сравнению с конверторами из тантала.

Расчеты показали, что при обработке германия конверторы из молибдена следует применять лишь для очень тонких пленок ($d < 20 \,\mu$ m), а для пленок средней толщины ($20 < d < 200 \,\mu$ m) наиболее эффективными являются конверторы из лантана.

Выводы

При торможении электронного пучка в мишени энергия характеристического излучения, возникающего в результате ионизации *К*-оболочки, в конверторах с малым атомным номером может превышать половину всей энергии рентгеновского излучения, что дает основание рекомендовать их в качестве наиболее эффективных конверторов для радиационной обработки тонких пленок и покрытий.

Корректный расчет методом Монте-Карло генерации рентгеновского излучения при торможении низкоэнергетических электронов возможен лишь при учете ионизации внутренних оболочек не только за счет фотоэффекта, но и электронным ударом. Основанный на таких расчетах выбор материала и толщины конвертора позволяет в 2–5 раз увеличить энергию рентгеновского излучения, поглощаемую в тонких пленках полупроводниковых материалах.

Список литературы

- Halbleib J.A., Lockwood G.J., Miller G.H. // IEEE Trans. Nucl. Sci. 1976. Vol. NS-23. N 6. P. 1881–1885.
- [2] Ryzhov V.V., Sapozhnikov A.A. // Proc. 9th Intern. Conf. on High-Power Particle Beams "Beams-92". Washington, 1992. Vol. 2. P. 1199–1204.
- [3] Bespalov V.I., Korovin S.D., Ryzhov V.V., Turchanovsky I.Yu. // Proc. 10th IEEE Intern. Pulsed Power Conf. Albuquerque (New Mexico, USA). 1995. Vol. 1. P. 75–79.
- [4] Kolbenstvedt H. // J. Appl. Phys. 1967. Vol. 38. N 12. P. 4785–4787.