01;05;11;12 Влияние кубической анизотропии на температурные характеристики магнитостатических волн в ферритовых пленках, намагниченных в плоскости

© В.В. Шагаев

Институт материалов электронной техники, 248650 Калуга, Россия

(Поступило в Редакцию 12 марта 1997 г. В окончательной редакции 4 августа 1997 г.)

Получены и проанализированы выражения для температурных коэффициентов частот магнитостатических волн в касательно намагниченных ферритовых пленках, обладающих кубической анизотропией. Показано, что в случаях, когда кубическая ось лежит в плоскости пленки, для термостабилизации частот можно использовать температурные изменения внешнего поля как по величине, так и по направлению. Рассмотрена задача двухчастотной термостабилизации. Приведены результаты экспериментальных исследований температурных характеристик волн намагниченности в касательно намагниченной пленке железо-иттриевого граната с поверхностью {100}.

Введение

Пленки ферритов применяются при исследованиях магнитостатических волн (МСВ) и создании приборов диапазона сверхвысоких частот [1,2]. Температурная зависимость частот МСВ возникает из-за температурных изменений намагниченности насыщения и полей анизотропии [3]. Наиболее подробно температурные характеристики МСВ изучались в рамках изотропной модели пленки [4-6]. В частности, были получены явные приближенные выражения для температурных коэффициентов частот при любых значениях волнового вектора [6]. Поле кубической анизотропии учитывалось при исследовании условий термостабилизации частоты однородного ферромагнитного резонанса (ФМР) [7,8]. Оно, как оказалось, может существенно влиять на выбор параметров термостабилизации. В анизотропных пленках характеристики МСВ зависят и от ориентации намагниченности относительно кристаллографических осей.

В настоящей работе получены и исследованы явные выражения для температурных коэффициентов частот (ТКЧ) МСВ в касательно намагниченных ферритовых пленках, обладающих кубической анизотропией и поверхностями {100} или {110}.

Постановка задачи

Рассмотрим пленку феррита толщиной d, намагниченную касательно до насыщения внешним постоянным магнитным полем **H**. Ось z совместим с равновесным направлением вектора намагниченности **M**. Ось y расположим на поверхности пленки. Оси x, y, z образуют правую ортогональную систему координат. Пусть пленка обладает кубической и одноосной магнитной анизотропией. При выводе выражения для ТКЧ будем точно учитывать влияние полей анизотропии на равновесную ориентацию вектора намагниченности. Расчеты упрощаются,

если температурные изменения направления вектора M сводятся к повороту в плоскости пленки. Очевидно, что изменения намагниченности будут именно такими, если одна из кубических плоскостей симметрии совпадает с поверхностью пленки, а ось одноосной анизотропии с нормалью. Рассмотрим только эти случаи.

Окончательная геометрия задачи представлена на рис. 1. Векторы **M**, **H** и ось [001] лежат на поверхности пленки, которая совпадает либо с плоскостью (100), либо с (110) и угол γ между осью [010] и поверхностью пленки принимает значения соответственно 0 и $\pi/4$; ψ, ϕ_h — углы между осью [001] и векторами **M** и **H** соответственно.

Отличные от нуля компоненты тензора эффективных размагничивающих факторов анизотропии [9] имеют вид

$$MN_{xx} = -\frac{3}{2}H_c r(1 - \cos 2\psi) - H_u,$$
 (1a)

$$MN_{yy} = -\frac{3}{8}H_c(4-r)(1-\cos 4\psi),$$
 (1b)

$$MN_{zz} = -\frac{1}{8}H_c \big[(4-r)(3+\cos 4\psi) + 4r\cos 2\psi \big], \quad (1c)$$

$$MN_{yz} = -\frac{1}{8}H_c [2r\sin 2\psi + (4-r)\sin 4\psi],$$
 (1d)

где $r = (1/2)(1 - \cos 4\gamma)$, H_c и H_u — напряженности полей кубической и одноосной анизотропии соответственно.

Температурные изменения равновесной ориентации **М** задаются производной $d\psi/dT$ (T — температура). Она вычисляется из уравнения для проекции внешнего поля на ось *у*

$$H\sin(\psi - \psi_h) = MN_{yz}.$$
 (2)

Рис. 1. Геометрия задачи.

Дифференцируя по *T*, получаем

$$\frac{d\psi}{dT} = -\frac{1}{8} \left\{ \left[2r\sin 2\psi + (4-r)\sin 4\psi \right] \times \left(\frac{dH_c}{dT} - \frac{H_c}{H} \frac{dH}{dT} \right) + H_z \frac{d\psi_h}{dT} \right\} \times \left\{ H_z + \frac{1}{2} H_c \left[r\cos 2\psi + (4-r)\cos 4\psi \right] \right\}^{-1}, \quad (3a)$$

где

(

$$H_z = H\cos(\psi - \psi_h). \tag{3b}$$

Для расчетов потребуется темпераутрная производная от H_z . Дифференцируя уравнение (3b) и учитывая соотношения (2) и (1d), получим

$$\frac{dH_z}{dT} = \frac{H_z}{H} \frac{dH}{dT} + \frac{1}{8} H_c \left[2r\sin 2\psi + (4-r)\sin 4\psi \right] \\ \times \left(\frac{d\psi}{dT} - \frac{d\psi_h}{dT} \right).$$
(4)

Расчет ТКЧ

Рассмотрим МСВ с волновым вектором **k**, образующим угол φ с вектором **M**. Дисперсионные уравнения (ДУ) в безобменном приближении выводятся из уравнений магнитостатики с учетом электродинамических граничных условий на поверхности пленки [10]. В результате получаются ДУ двух видов.

При любом угле ψ в пленке могут распространяться объемные МСВ (ОМСВ). ДУ для них имеют вид

$$kd = \left| \frac{f^2 - f_l^2}{f^2 - f_t^2} \right|^{1/2} \left\{ L \arctan\left[\frac{2|(f^2 - f_l^2)(f^2 - f_t^2)|^{1/2}}{f_l^2 + f_t^2 + f_m^2 - 2f^2} \right] + Lp + \frac{\pi}{2}(1 - L) + n\pi \right\} \equiv U_v(f, f_l, f_t, f_m), \quad (5)$$

где

j

$$f_{l}^{2} = g^{2} \Big[H_{z} + M(N_{xx} - N_{zz}) + 4\pi M \Big] \Big[H_{z} + M(N_{yy} - N_{zz}) \Big], \quad (6)$$
$$f_{l}^{2} = g^{2} \Big[H_{z} + M(N_{xx} - N_{zz}) \Big]$$
$$\times \Big[H_{z} + M(N_{yy} - N_{zz}) + 4\pi M \sin^{2} \varphi \Big], \quad (7)$$

$$f_m = 4\pi M g \sin \varphi, \qquad (8)$$

f — частота волновой моды с номером n = 0, 1, 2, ...;g = 2.8 MHz/Oe — гиромагнитное отношение; L = 1, если $f_t > f_l$ (прямые OMCB), и L = -1, если $f_t < f_l$ (обратные OMCB); p = 0, если $2f^2 \leq f_l^2 + f_t^2 + f_m^2$, и $p = \pi$ при обратном неравенстве; у функции агсtg используется непрерывная ветвь с диапазоном значений от $(-\pi/2)$ до $\pi/2$; частоты OMCB лежат в интервале между f_l и f_t ; частота $f = f_l$ соответствует однородному ФМР (в том числе и при $f_l = f_t$).

Поверхностные МСВ (ПМСВ) существуют при значениях угла $0 \leq \varphi < \varphi_0$, где φ_0 — корень уравнения $|f_t^2 - f_l^2| = f_m^2$, решаемого относительно φ . При этом f_l , f_t , f_m определены выражениями (6)–(8), в которых MN_{qq} (q = x, y, z) зависят от φ согласно формулам (1a)–(1c), а зависимость H_z от φ определена формулами (2) и (3b).

ДУ ПМСВ имеет вид

$$kd = \frac{1}{2} \left| \frac{f^2 - f_l^2}{f^2 - f_t^2} \right|^{1/2} \\ \times \ln \left\{ 1 + \frac{4 \left[(f^2 - f_l^2) (f^2 - f_t^2) \right]^{1/2}}{f_m^2 - \left[(f^2 - f_l^2) + (f^2 - f_t^2)^{1/2} \right]^2} \right\} \\ \equiv U_s(f, f_l, f_t, f_m).$$
(9)

Частоты ПМСВ лежат в интервале $\max\{f_l, f_t\} < f < (1/2f_m)[(f_l^2 + f_t^2 + f_m^2)^2 - 4f_l^2 f_t^2]^{1/2}.$ Если $f_t > f_l$, то дисперсионная кривая основной моды прямой ОМСВ плавно переходит в дисперсионную кривую ПМСВ на частоте f_t и при значении волнового вектора $kd = 2(f_t^2 - f_l^2)/(f_m^2 - f_t^2 + f_l^2).$

Для частоты f, соответствующей заданному значению волнового вектора, температурный коэффициент α определяется как $\alpha = (1/f)(df/dT)$. Расчет ТКЧ ОМСВ и ПМСВ можно произвести по формуле, следующей из вида ДУ,

$$\alpha_j = -\frac{i}{f^2(\partial U_j/\partial f^2)} \left(\frac{\partial U_j}{\partial f_l^2} \frac{df_l^2}{dT} + \frac{\partial U_j}{\partial f_t^2} \frac{df_t^2}{dT} + \frac{\partial U_j}{\partial f_m^2} \frac{df_m^2}{dT} \right).$$

Здесь j = v, s для ОМСВ и ПМСВ соответственно. Аргументы у функций U_j для краткости записи не указаны. Частные производные от U_j вычисляются из явных зависимостей (5), (9). Аналитические выражения для температурных производных получаются дифференцированием соотношений (6)–(8) и заменой $d\psi/dT$ и

Журнал технической физики, 1998, том 68, № 10

 dH_z/dT согласно формулам (За) и (4) (и при учете очевидного равенства $d\varphi/dT = d\psi/dt$). Подстановка выражения для производных в формулу для α_j даст явные зависимости ТКЧ от частоты МСВ, параметров поля и пленки. Зависимость ТКЧ от kd задается в параметрическом виде через параметр f и ДУ.

Анализ угловых зависимостей ТКЧ

Было проведено численное исследование точных выражений для ТКЧ, полученных описанным выше способом. Очивидно, что формулу для расчета α_j можно преобразовать к виду

$$\alpha_{j} = A_{j} \frac{d(4\pi M)}{dT} + B_{j} \frac{dH_{c}}{dT} + C_{j} \frac{dH_{u}}{dT} + D_{j} \frac{dH}{dT} + E_{j} \frac{d\psi_{h}}{dT}.$$
 (10)

Вначале исследуем зависимость ТКЧ от угла ψ в случае, когда внешнее поле не зависит от температуры $(dH/dT = 0, d\psi_h/dT = 0)$. Параметры пленки при расчетах были следующими: $4\pi M = 1750$ Gs, $H_c = -42$ Oe, $H_u = 0, d(4\pi M)/dT = -4.15$ Gs/k, $dH_c/dT = 0.46$ Oe/K, $dH_u/dT = 0$. Угловые зависимости рассчитывались при постоянных значениях f и kd, а знанчения проекции поля H_z определялись из ДУ. ДЛя этого в уравнение (5) или (9) подставлялись выражения для f_l , f_t , f_m из формул (6)–(8) и в таком виде уравнение решалось относительно H_z .

На рис. 2 в качестве примера приведены рассчитанные зависимости от ψ первых двух слагаемых в (10) для длинноволновой границы спектра МСВ (kd = 0, $f = f_l$). При этом использовались следующие значения

Рис. 2. Расчетные угловые зависимости вкладов в ТКЧ температурных изменений намагниченности насыщения и поля кубической анизотропии при $f_l = 3$ (3, 4, 7, 8), 10 GHz (1, 2, 5, 6); $\gamma = 0$ (1, 3, 5, 7), $\pi/4$ (2, 4, 6, 8); $1-4 - dH_c/dT = 0$, $5-8 - d(4\pi M)/dT = 0$.

параметров: $f_l = 3.10 \text{ GHz}$; $\gamma = 0$, $\pi/4$. Зависимости от ψ симметричны относительно значений $\psi = (\pi/2)n$, $n = 1, 2, \ldots$, и кривые легко могут быть продолжены для значений $\psi > \pi/2$.

Анализ угловых зависимостей показывает, что у рассматриваемых пленок наблюдается значительная анизотропия ТКЧ. Причем основной вклад в зависимость от ψ вносит второе слагаемое в (10). Его максимальные значения, достигаемые вблизи $\psi = 0$, положительны и существенно влияют на величину и знак ТКЧ.

Рассмотрим задачу о компенсации температурных изменений частот МСВ с помощью температурных изменений поля подмагничивания [11,12]. Анизотропные свойства планок с касательной кубической осью позволяют использовать для решения этой задачи изменения внешнего поля как по величине, так и по направлению. Проиллюстрируем это на примере пленки с поверхностью {100}.

Каждая из четырех кривых на рис. З получена путем расчета и представляет собой зависимость частоты длинноволновой границы спектра МСВ от угла между внешним полем и осью [001]. Эта зависимость получается из уравнений (2), (6) в параметрическом виде с параметром ψ . Кривая 1 рассчитана для исходных значений параметров: $4\pi M = 1750 \, \text{Gs}$, $H_c = -42$ Ое и H = 2826 Ое. Кривые 2–4 получены при $4\pi M = 1646.25\,\mathrm{Gs}$ и $H_c = -30.5\,\mathrm{Oe}$, что соответствует изменениям исходных значений при повышении температуры на 25 градусов и $d(4\pi M)/dT = -4.15 \,\text{Gs/K},$ $dH_c/dT = 0.46 \, \text{Oe/K}$. Напряженности внешнего поля были 2826, 2860, 2888.5 Ое для кривых 2-4 соответственно. Все кривые проходят через значение частоты f = 10 GHz, отмеченное на рисунке прямой линией. Видно, что термокомпенсация на этой частоте может осуществляться изменением внешнего поля по величине (кривая 3), по направлению (кривая 2), одновременно по

Рис. 4. Зависимости ТКЧ от kd для изотропной пленки (3, 4) и для пленки с кубической анизотропией и термостабилизированными частотами начала и конца спектра ПМСВ (1, 2).

величине и по направлению (кривая 4). Очевидно, что два последних способа исходят из угловой зависимости частот, появляющейся при учете кубической анизотропии. Интервал частот в этой зависимости для пленок ЖИГ с качательной кубической осью равен сотням мегагерц, тогда как в широко используемых пленках ЖИГ {111} — единицам мегагерц, и термостабилизация частот в них с помощью поворота поля подмагничивания возможна лишь при незначительных изменениях температуры.

В рассмотренном примере термостабилизация частоты могла осуществляться различными парами значений параметров dH/dT и $d\psi_h/dT$. Для однозначного определения этих параметров необходимо на ТКЧ наложить не одно, а два условия. Зададим условия обращения ТКЧ в нуль при двух значениях частоты из спектра МСВ. Этой задаче соответствует система из двух уравнений с двумя неизвестными переменными dH/dT и $d\psi_h/dT$:

$$\alpha_j(f_1, H_z, dH/dT, d\psi_h/dT) = 0,$$

$$\alpha_i(f_2, H_z, dH/dT, d\psi_h/dT) = 0.$$
 (11)

Здесь j = v, *s* и i = v, *s*. Функциональные зависимости в левых частях уравнений следуют из явных выражений для ТКЧ; f_1 и f_2 — заданные значения частот МСВ. Значение проекции H_z вычисляется из ДУ при заданном значении волнового вектора для одной из частот.

Из выражения (10) следует, что уравнения системы (11) будут линейными относительно параметров dH/dT и $d\psi_h/dT$ и решения могут быть получены в явном виде. Приведем пример решения системы (11). Рассмотрим пленку с поверхностью {100} и такими же, как и в предыдущих примерах, значениями магнитных параметров. В качестве термостабилизируемых выберем частоты начала и конца спектра ПМСВ при значениях углов $\psi = \pi/2$ и $\psi = \pi/8$. При $H_z = 520$ Oe

спектр лежит в интервале частот от 3 до 3.818 GHz, а при $H_z = 2826 \,\text{Oe}$ — от 10 до 10.275 GHz. B первом случае решения будут $dH/dT = 4.6 \,\text{Oe/K}$ и $(d\psi_h/dT)(180/\pi)$ = -0.741 1/К; во втором dH/dT = 4.611 Oe/K и $(d\psi_h/dT)(180/\pi) = -0.781$ 1/K. На рис. 4 приведены зависимости ТКЧ от kd для обоих случаев: кривые 1,2 для диапазонов 3 и 10 GHz соответственно. Для сравнения приведены кривые 3 и 4, рассчитанные для изотропной пленки ($H_c = 0$, $dH_c/dT = 0$). Для кривой 3 $H_z = 508.3$ Ое и спектр ПМСВ расположен в интервале частот от 3 до 3.873 GHz. Для кривой 4 $H_7 = 2802$ Ое и спектр расположен в интервале от 10 до 10.296 GHz. Видно, что абсолютные значения ТКЧ на кривых с двухчастотной термостабилизацией существенно меньше, чем на кривых для изотропной пленки в соответствующих диапазонах частот.

Эксперимент

В описываемом ниже эксперименте были продемонстрированы анизотропные свойства касательно намагниченной пленки ЖИГ, связанные с зависимостью ТКЧ МСВ от ориентации вектора намагниченности относительно кубических осей.

Использовалась пленка ЖИГ толщиной 9.8 μ m на подложке галлий-гадолиниевого граната размером 13 × 13 mm с ориентаций {100}. Магнитные параметры были следующими (при T = 273 K): $4\pi M_{\rm eff} = 4\pi M - H_u = 1863$ Gs, $H_c = -59$ Oe, $d(4\pi M_{\rm eff})/dT = -4.1$ Gs/K, $dH_c/dT = 0.44$ Oe/K. Возбуждение и прием МСВ осуществлялись с помощью микрополосковых преобразователей (антенн) аналогично работе [13]. Использовалась интерференция сигналов, принятых на две одинаковые антенны, расположенные на разных расстояниях от одинаковых передающих антенн.

Рис. 5. Зависимости f(kd) (1, 2, 5, 6) и $\alpha(kd)$ (3, 4, 7, 8) в пленке ЖИГ {100}: 1, 3, 6, 7 — М || [001]; 2, 4, 5, 8 — М || [011]. Сплошные кривые — теория.

Журнал технической физики, 1998, том 68, № 10

Антенны были выполнены на поликоровой подложке и присоединены к микрополосковым суммирующим узлам. Данная конструкция позволяет построить зависимость f(kd) по амплитудно-частотной характеристике (АЧХ) [13]. Пленка помещалась между полюсами электромагнита в касательное магнитное поле. Ориентация вектора намагниченности относительно касательных кубических осей задавалась поворотом пленки вокруг нормали. Изменения температуры осуществлялись охлаждением в парах азота и нагревом с помощью плоского термоэлемента. Для измерения температуры использвались термопара. ТКЧ для заданных значений kdрассчитывались из дисперсионных зависимостей f(kd)по формуле

где

$$f_e(kd) = \left[f_1(kd) + f_2(kd)\right]/2,$$

 $\alpha(kd) = \left[\frac{1}{f_e(kd)}\right] \left[\frac{f_2(kd) - f_1(kd)}{T_2 - T_1}\right],$

и частоты $f_1(kd)$ и $f_2(kd)$ соответствуют температурам T_1 и T_2 .

Измерения проводились при двух положениях пленки. В одном случае направление намагниченности совпадало с осью (100), в другом — с осью (110). Такие ориентации достигались поворотом пленки вокруг нормали и контролем на АЧХ положения интервала частот спектра МСВ. Наименьшие и наибольшие значения частот МСВ достигаются при совпадении направления вектора намагниченности соответственно с осями (100) и (110).

На рис. 5 представлены экспериментальные и теоретические зависимости f(kd) и $\alpha(kd)$ (при T = 273 K). При расчетах полагалось $H_u = 0$, $dH_u/dT = 0$. Очевидно, что наблюдаемые различия для двух направлений вектора намагниченности связаны с кубической анизотропией пленки. Из расчетов следует, что для рассматриваемых направлений существенно отличаются значения вклада в ТКЧ от температурных изменений поля кубической анизотропии (аналогично отличаются значения на кривой 7 (рис. 2) при $\psi = 0$ и $\pi/4$). Вклады же от температурных изменений намагничельно (аналогично значения отличаются незначительно (аналогично значения ма кривой 3 (рис. 2) при тех же ψ).

Заключение

Кубическая анизотропия ферритовой пленки может существенно влиять на температурные характеристики устройств на МСВ. Используя легированные пленки ЖИГ, можно как усилить так и ослабить ее влияние. Разработанные методы теоретического анализа ТКЧ применимы и в этом случае, так как точно учитывают поле кубической анизотропии при любой его величине. Анизотропные свойства касательно намагниченных пленок с кубической осью, лежащей на поверхности, могут быть использованы при проектировании приборов на МСВ с заданными температурными характеристиками. Автор благодарен А.В. Маряхину за изготовление пленки ЖИГ.

Список литературы

- [1] *Castera J.P.* // J. Appl. Phys. 1984. Vol. 55. № 6. P. 2506–2509.
- [2] Hartemann P. // IEEE Trans. Magn. 1984. Vol. MAG-20. N 5.
 P. 1272–1277.
- [3] Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Сов. радио, 1975. 360 с.
- [4] Берегов А.С., Кудинов Е.В., Ерещенко И.Н. // Электронная техника. Сер. 1. Электроника СВЧ. 1987. Вып. 1(395). С. 19–21.
- [5] Фетисов Ю.К. // ЖТФ. 1987. Т. 57. Вып. 12. С. 2393-2397.
- [6] Славин А., Фетисов Ю.К. // ЖТФ. 1988. Т. 58. Вып. 11. С. 2210–2218.
- [7] Луцев Л.В., Березин И.Л. // Электронная техника. Сер. 1. Электроника СВЧ. 1989. № 6(420). С. 3–8.
- [8] Беляков С.В., Городайкина О.А. // Электронная техника. Сер. 1. Электроника СВЧ. 1986. № 7(391). С. 28–33.
- [9] Гуревич А.Г. Магнитный резонанс в ферритах и антиферромагнетиках. М.: Наука, 1973. 591 с.
- [10] *Берегов А.С.* // Изв. вузов. Сер. Радиоэлектроника. 1984. Т. 27. № 10. С. 9–16.
- [11] Adam J.D., Daniel M.R. // IEEE Trans. 1981. Vol. MAG-17. N 6. P. 2951–2956.
- [12] Adam J.D. // IEEE MTT-S. Int. Microwave Symp. Digest. 1979.
 P. 160–161.
- [13] Гусев Б.Н., Чивилева О.А., Гуревич А.Г. и др. // Письма в ЖТФ. 1983. Т. 9. Вып. 3. С. 159–163.