04;10

Влияние остаточного газа на зарядовое распределение ионов в плазме вакуумного дугового разряда

© А.Г. Николаев, Е.М. Окс, Г.Ю. Юшков

Томский государственный университет систем управления и радиоэлектроники, 634050 Томск, Россия

(Поступило в Редакцию 24 июня 1997 г.)

С использованием магнитного масс-анализатора и времяпролетного масс-спектрометра исследовано влияние давления и рода остаточного газа на зарядовое распределение ионов в плазме дугового разряда с катодным пятном. Показана возможность получения значительной доли ионов газа в разряде такого типа.

Вакуумно-дуговой разряд с катодным пятном, обеспечивающим в результате испарения материала катода плазмообразующую среду для самоподдержания разряда, на протяжении многих лет является объектом интенсивных исследований как в фундаментальном, так и в прикладном аспектах [1-6]. Информация о зарядовом распределении ионов, генерируемых в плазме вакуумного дугового разряда, и факторах, оказывающих влияние на это распределение, имеет важное значение как для понимания процессов образования плазмы и токопереноса в разряде такого типа, так и для достижения оптимальных параметров вакуумной дуги в коммутаторах, источниках ионов, ионно-плазменных напылителях и других устройствах на ее основе. В вакуумно-дуговом разряде средняя зарядность ионов металлов во многом определяется материалом катода и может изменяться от 1 до 3 при переходе от легких к более тяжелым материалам [7]. Доля высокозарядных ионов также возрастает в сильном магнитном поле [8,9] при повышении тока дуги [10] или сокращении длительности ее горения [11].

Несмотря на достоверно установленные для вакуумного дугового разряда экспериментальные факты, свидетельствующие о том, что процессы ионизации осуществляются в достаточно локальной области, непосредственно прилегающей к катодному пятну, где концентрация атомов испаряемого материала катода намного превышает плотность остаточного газа, именно небольшое изменение давления этого газа оказывает существенное влияние на зарядовое распределение ионов металлов [12–16].

В настоящей работе представлены результаты измерений зарядового распределения ионов в плазме вакуумного дугового разряда при различных давлениях газа, напускаемых в разрядный промежуток.

Техника и методика эксперимента

Исследования зарядового распределения ионов проводились на экспериментальных стендах Ассоциации по исследованию тяжелых ионов ((GSI), г. Дармштадт, ФРГ), а также Национальной лаборатории Лоуренса ((LBNL), г. Беркли, США) в рамках совместных исследовательских проектов с этими научными организациями. Вакуумный дуговой разряд зажигался в электродной системе источников сильноточных широкоапертурных ионных пучков типа MEBBA-4 (GSI) [17] и MEBBA-5 (LBNL) [18]. Идентичные по принципу работы, эти устройства имели лишь небольшие конструктивные отличия.

Схема источника МЕВВА-5 представлена на рис. 1. Вакуумный дуговой разряд (100-500 A, 250 µs, 1-5 pulses/s) зажигался между одним из 18 расположенных в револьверном порядке катодов и полым анодом, одним из частей которого служила внутренняя поверхность соленоида, обеспечивающего в катодной области разряда импульсное магнитное поле до 10 kGs. Инициирование вакуумной дуги осуществлялось традиционным способом, основанным на использовании плазмы вспомогательного разряда по поверхности керамики [19], однако в ряде экспериментов необходимая для возбуждения катодного пятна первичная плазма обеспечивалась одной из разновидностей газового разряда в скрещенных $E \times H$ полях [20]. Системы откачки экспериментальных стендов обеспечивали предельное давление ниже 10^{-6} mm Hg. Рабочий газ (H₂, He, Ne, N₂, O₂, Ar, Xe) напускался непосредственно в катодную область разряда. Имелась также возможность напуска газа в область транспортировки пучка, минуя разрядную камеру. Система регулирования давления позволяла осуществлять его плавное изменение от предельного значения до 10^{-3} mm Hg. При этом давление измерялось в области транспортировки пучка непосредственно за ускоряющим ионы промежутком. В результате существования перепада давлений при протекании газа через отверстия в аноде и сетке ускоряющей системы реальное давление газа, как показывают оценки и следует из экспериментов, было выше измеренного приблизительно на порядок величины для диапазона $10^{-6} - 10^{-5}$ mm Hg и в 3-5 раз в области давлений диапазона 10^{-4} mm Hg.

Измерение зарядового распределения ионов осуществлялось с помощью магнитного масс-зарядового сепаратора (GSI) [21] и времяпролетного спектрометра (LBNL) [22]. В обоих случаях извлеченные из плазмы ионы ускорялись напряжением 30–60 kV с помощью трехэлектродной многоапертурной системы извле-

Рис. 1. Источник ионов MEVVA-5 с системой напуска газа. *1* — катод, *2* — поджигающий электрод, *3* — анод, *4* — ускоряющая система, *5* — катушка магнитного поля, *6* — вход газа.

чения [23]. Для исключения влияния длительности импульса дуги все измерения зарядового распределения ионов осуществлялись через 100 µs после зажигания разряда.

Результаты эксперимента

Несмотря на то что изменение рода рабочего газа обусловливало ряд особенностей влияния данного газа, тем не менее при всех используемых в эксперименте

газах повышение давления обеспечивало уменьшение общего тока ионов, извлекаемых из плазмы, снижение доли многозарядных ионов, а также к появлению в массзарядовом спектре ионного пучка газовых ионов.

На рис. 2 и 3 представлены зависимости от давления газа полного тока ионов и выделенных магнитным масссепаратором компонентов этого тока различной зарядности для соответствующих случаев напуска в систему с молибденовым катодом водорода, в систему со стальным катодом аргона. Обращает на себя внимание тот факт, что перераспределение токов разной зарядности имеет

Рис. 2. Зависимость полного тока извлеченных из плазмы ионов, а также его зарядовых составляющих от давления газа в разрядной камере. Катод молибденовый, газ — водород, ток разряда I = 260 A, магнитное поле B = 6 mT.

Рис. 3. Зависимость полного тока извлеченных из плазмы ионов, а также его зарядовых составляющих от давления газа в разрядной камере. Катод железный, газ — аргон, ток разряда I = 250 A, магнитное поле B = 5 mT.

№ образца	Состав ионов	Износ (отн. ед.)		Степень
		имплантированная область	исходная поверхность	увеличения
1	Ti (100%)	15.94	24.82	1.6
2	Ti(60%) + N(40%)	1.05	44.04	42.0
3	Al(50%) + O(50%)	2.92	27.96	9.6
4	C(50%) + N(50%)	31.71	60.91	1.9
5	Cr(50%) + O(50%)	2.83	27.37	9.7

место как при неизменном полном токе ионов, так и при его снижении. Влияние остаточного давления газа на зарядовое распределение ионов начинает ощущаться уже при минимальных давлениях газа. Наиболее чувствительными к давлению остаточного газа оказываются многозарядные ионы. Как видно из представленных зависимостей, наиболее быстро с повышением давления снижаются токи трех- и четырехзарядных ионов. В других экспериментах превышение остаточным давлением газа

Рис. 4. Влияние давления кислорода на зарядовое распределение ионов алюминия при токе разряда 250 А.

Рис. 5. Зависимость полного тока извлеченных из плазмы ионов, а также его зарядовых составляющих от давления газа в разрядной камере. Катод молибденовый, газ — гелий, ток разряда I = 280 A, магнитное поле B = 8 mT.

уровня $5 \cdot 10^{-6}$ mm Hg приводило к практически полному исчезновению в измеряемом спектре четырехзарядных ионов урана, хоть в сильном магнитном поле при давлении на порядок ниже доля этих ионов составляла 30% от общего ионного тока.

Типичная зависимость зарядового распределения ионов от давления газа на примере пары материал катодаалюминий, газ-кислород представлена на рис. 4. Видно, что зарядовое распределение ионов существенно отличается при переходе от предельного к более высоким давлениям и это изменение состоит в резком снижении доли многозарядных ионов и соответствующем возрастании доли однозарядных ионов. При этом, как правило, если доля однозарядных ионов в распределении возрастает, а ток многозарядных ионов всегда падает с ростом давления, то для двухзарядных ионов, а в некоторых экспериментах и для тока трехзарядных ионов зависимость доли данных компонентов от давления имеет немонотонный характер с явно выраженным максимумом. Наиболее четко существование оптимального значения давления для достижения максимальной концентрации двух- или трехзарядных ионов проявляется при использовании в качестве рабочего газа гелия (рис. 5).

Как показали эксперименты, в исследуемой разрядной системе эффективная генерация ионов напускаемого газа и появление их заметной доли в ионном спектре возможно лишь при помещении разрядной системы в магнитное поле. Помимо давления и выбора газа с большим сечением ионизации возрастанию доли газовых ионов также способствует увеличение магнитного поля и снижение тока дуги (рис. 6). При использовании молекулярных двухатомных газов (N_2 , O_2) с увеличением магнитного поля возрастает доля атомарных ионов (рис. 7). Следует также отметить, что выбор материала катода не оказывает заметного влияния на процессы генерации газовых ионов в разряде такого типа.

Полученный результат делает возможным генерацию смешанных (газометаллических) ионных пучков и их использование для обработки поверхностей конструкционных материалов. Создаваемые при этом газометаллические соединения (нитриды, оксиды и др.) могут обеспечить существенное улучшение эксплуатационных свойств поверхности. В таблице представлены результаты испытаний на износостойкость образцов из нержавеющей стали, обработанных газометаллическим ионным пучком. Как следует из таблицы, наибольший эффект

Рис. 6. Зависимость доли газовых ионов в извлеченном пучке от магнитного поля в разрядной системе. Катод титановый, газ — азот (давление 0.3 mTorr), ток разряда: *1* — 120, *2* — 180, *3* — 280 A.

Рис. 7. Зависимость газового компонента ионного тока от магнитного поля. Катод алюминиевый, газ — кислород (давление 0.2 mTorr), отношение тока разряда к величине индукции магнитного поля I/B = 0.1.

увеличения износостойкости (более чем в 40 раз) наблюдался при использовании пучка, содержащего ионы азота и титана.

Другим интересным приложением может считаться использование газа для управления зарядовым распределением ионов металлов в плазме вакуумной дуги. Так, для дуги с магниевым катодом в обычных условиях ее горения более 80% ионов двукратно ионизованы. При использовании источника ионов на основе вакуумной дуги в качестве инжектора для ускорителя тяжелых ионов в ряде экспериментов требовался сильноточный пучок однократно ионизованных ионов магния. Данная проблема была решена при напуске в разрядный промежуток ионного источника небольшого количества азота, что обеспечило повышение с 20 до 70% доли однократно ионизованных ионов магния в ионном пучке.

Заключение

Из представленных результатов следуют по крайней мере два важных практических вывода: существование многозарядных ионов в плазме вакуумного дугового разряда возможно лишь при предельно малых давлениях остаточного газа: например, для получения заметной доли четырех- и пятизарядных ионов металлов необходимо снижение давления до 10^{-6} mm Hg; при повышенном давлении остаточного газа (порядка 10^{-4} mm Hg) в дуговом разряде с катодным пятном с магнитным полем возможна генерация ионов газа и их отбор из плазмы, при этом доля ионов газа может быть сравнима или даже превышать составляющую ионов металлов в общем ионном потоке.

Полученные результаты позволяют более обоснованно подходить к выбору рабочих параметров ионноплазменных устройств на основе вакуумного дугового разряда.

Авторы считают своим приятным долгом поблагодарить руководителя группы применения плазмы Национальной лаборатории Лоуренса (Беркли, США) доктора Яна Брауна и руководителей Лаборатории ионных инжекторов Ассоциации по исследованию тяжелых ионов (Дармштадт, ФРГ) докторов Бернхарда Вольфа и Питера Шпедтке за предоставленные возможности измерения зарядового распределения ионов в плазме вакуумного дугового разряда, доктора Питера Эванса из Национального ядерного и технологического исследовательского центра (Сидней, Австралия) за проведение испытаний облученных образцов на износостойкость.

Работа проводится при поддержке гранта РФФИ № 96-02-16669.

Список литературы

- Вакуумные дуги / Под ред. Дж. Лафферти. М.: Мир, 1982. 428 с.
- [2] *Месяц Г.А.* Эктоны. Ч. 1–3. Екатеринбург: Наука, 1993. 690 с.
- [3] Раховский В.И. Физические основы коммутации электрического тока в вакууме. М.: Наука, 1970. 536 с.
- [4] Proc. 17th Intern. Symp. on Discharge and Electrical Insulation in Vacuum. Berkeley (USA), 1996. Vol. 1–2. P. 1093.
- [5] Тез. докл. IV Всероссийской конф. "Модификация свойств конструкционных материалов пучками заряженных частиц". Томск: НИИ ядерной физики при Томском политехническом университете, 1996. 551 с.
- [6] Vacuum Arc Science and Technology / Ed. R.L. Boxman, P. Martin, D. Sanders. New York: Noyes, 1995.
- [7] Davis W.D., Miller H.C. // J. Appl. Phys. 1969. Vol. 40.
 P. 2212–2221.
- [8] Oks E.M., Brown I.G., Dickinson M.R. et al. // Appl. Phys. Lett. 1995. Vol. 67. P. 200–203.
- [9] Oks E., Anders A., Brown I. et al. // IEEE Trans. Plasma Sci. 1996. Vol. 24. N 3. P. 1174–1183.

- [10] Anders A., Anders S., Juttner B., Brown I. // IEEE Trans. Plasma Sci. 1993. Vol. 21. N 3. P. 305–311.
- [11] Anders A., Anders S., Forster A., Brown I. // Plasma Sources Sci. Technology. 1992. Vol. 1. P. 263–270.
- [12] Аксенов И.И., Коновалов И.И., Падалка В.Г. и др. // Физика плазмы. 1985. Т. 11. С. 1373–1384.
- [13] Lipin Yu. // Vacuum. 1990. Vol. 41. N 7-9. P. 2217-2219.
- [14] Ben-Shalom A., Boxman R.L., Goldsmidt. // IEEE Trans. Plasma Sci. 1993. Vol. 21. P. 435–441.
- [15] Spaedtke P., Emig H., Wolf B.H., Oks E. // Rev. Sci. Instr. 1994. Vol. 65. N 10. P. 3113–3118.
- [16] Wolf B.H., Emig H., Ruck D.M. et al. // Nucl. Instr. and Meth. in Phys. Res. 1995. Vol. B106. P. 651–656.
- [17] Wolf B.H., Emig H., Spaedtke P., Ruck D. // Rev. Sci. Instr. 1994. Vol. 65. N 10. P. 3091–3098.
- [18] Brown I.G. // Rev. Sci. Instr. 1994. Vol. 65. N 10. P. 3061-3081.
- [19] Brown I.G. // IEEE Trans. Plasma Sci. 1993. Vol. 21. N 5.
 P. 537–546.
- [20] Nikolaev A.G., Oks E.M., Yushkov G.Yu. et al. // Rev. Sci. Instr. 1996. Vol. 67. N 9. P. 3095–3098.
- [21] Brown I.G., Spaedtke P., Emig H. et al. // Nucl. Instr. Meth. 1990. Vol. A295. P. 12–18.
- [22] Brown I.G., Feinberg B., Galvin J.E. // J. Appl. Phys. 1988. Vol. 63. P. 4889–4898.
- [23] Oks E., Spaedtke P., Emig H., Wolf B.H. // Rev. Sci. Instr. 1994. Vol. 65. N 10. P. 3109–3112.