Оптимизация камеры-обскуры для нейтронографии термоядерной лазерной плазмы

© В.С. Кинчаков

01:12

Вычислительный центр ДВО РАН, 680063 Хабаровск, Россия

(Поступило в Редакцию 2 апреля 1997 г.)

Методом Монте-Карло решено нестационарное уравнение переноса *dd*- и *dt*-нейтронов в полиэтиленовой стенке с цилиндрическим отверствием. Показано, что предлагаемая камера-обскуры в сравнении с имеющимися аналогами на два порядка снижает требования на яркость источника нейтронов. Даны аналитические оценки разрешающей способности камеры-обскуры и проанализированы способы ее улучшения. Построена область допустимых значений параметров камеры-обскуры. Рассчитаны контурные линии изображений точечных источников нейтронов в зависимости от их количества и положения на термоядерной мишени.

Введение

Целью настоящей работы является исследование характеристик изображения, создаваемого dd- и dtнейтронами импульсных точечных источников, рассеиваемыми полиэтиленовой стенкой с цилиндрическим отверстием. Ранее критерием выбора материала стенки служила величина сечения поглощения нейтронов. На основе этого критерия в США была создана [1] камераобскура из меди со стенкой толщиной порядка одного метра. Однако если использовать для создания камерыобскуры материалы с большим сечением упругого рассеяния нейтронов, например полиэтилен, то представляется перспективным использование временной схемы регистрации нейтронов с целью уменьшения фона вследствие эффективного замедления нейтронов, особенно при рассеянии на ядрах легких элементов. Проведенные в данной работе расчеты показали, что уменьшение фона до разумных значений в этом случае достигается при толщине стенки порядка 0.1 m. Это позволяет на два порядка увеличить яркость изображения в сравнении с имеющимися аналогами [2] и снижает трудности изготовления отверствия малого диаметра.

Камера-обскура такого типа незаменима при исследовании слабых источников нейтронов, которые не могут быть "сфотографированы" обычными камерамиобскурами. Такие ситуации могут иметь место, например, при недостаточном нагреве термоядерной плазмы.

Численное моделирование

Нестационарное интегральное уравнение переноса нейтронов в стенке решалось методом Монте-Карло [1–3], причем разработанная программа не использовала традиционные приближения подготовки констант — "многогрупповость", "узкий" резонанс [4], поэтому сечения задавались в точном соответствии с законами изменения по энергии. Учитывалось многократное рассеяние. Рассеяние нейтрона на углероде и водороде рассматривалось порознь [4]. Полные сечения упругого рассеяния брались из библиотеки ENDF/B [5]. Анизотропия дифференциальных сечений [6] упругого рассеяния нейтронов на углероде учитывалась с помощью разложения по полиномам Лежандра. В интервале 0.1-3.0 MeV сечения задавались 30 точками с шагом 0.1 MeV. Отдельно описывался 20 точками с шагом 0.01 MeV пик рассеяния на углероде в районе 21 MeV. Неупругие каналы возбуждения ядра углерода *dt*-нейтронами учитывались согласно той же библиотеке [5].

Поле регистрации нейтронов представляло собой квадрат, разбитый на 1089 квадратных ячеек со стороной $0.005 \cdot U$ сm, где U — увеличение изображения. Ввиду малости детектирующей ячейки регистрация нейтронов в каждой ячейке — довольно редкое событие. Поэтому для расчета фона рассеянных нейтронов была применена модификация (прямого) метода Монте-Карло методом статистических весов. В точке каждого столкновения вычислялась вероятность попадания нейтронов в детектор. Эти вероятности суммировались по всем столкновениям.

Результаты [7] обсуждаемых ниже расчетов фона рассеянных нейтронов нормированы на 10¹⁰ нейтронов за вспышку. Относительное среднеквадратичное отклоне-

Таблица 1. Вариант $R = 13 \, \text{сm}, U = 10$

$T(\mathrm{ns})$	<i>L</i> , cm				
	10	7	3.5		
4	1.24	1.91	2.77		
8	3.14	5.04	6.09		
12	4.74	7.41	9.99		
16	5.99	9.32	12.84		
20	7.04	11.16	15.16		
24	8.06	12.90	17.33		
32	9.71	15.84	21.15		
40	11.00	18.11	24.04		
48	12.11	19.91	26.34		
60	13.40	22.07	28.98		
80	14.80	24.54	32.30		
100	15.61	26.17	34.42		
120	16.04	27.01	35.77		

Рис. 1. Геометрия численного эксперимента.

ние расчетов составляет 3%. Температура *dd*-плазмы во всех нижеследующих расчетах принималась 0.002 MeV, что соответствовало уширению энергетической линии *dd*-нейтронов 0.116 MeV. Для *dt*-нейтронов принималось монохроматическое приближение. Ниже обсуждаются результаты для *dd*-нейтронов, случай *dt*-нейтронов будет оговорен специально.

В табл. 1 приведены результаты расчета фона рассеянных нейтронов в зависимости от времени T регистрации, толщины L полиэтиленовой стенки, увеличения U изображения и расстояния R от плазмы до центра стенки. Уменьшение абсолютного числа зарегистрированных нейтронов с увеличением толщины стенки объясняется многократным рассеянием нейтронов, в результате которого часть из них летит в заднюю полусферу.

Расчеты изображений точечных источников нейтронов, проведенные по прямой схеме метода Монте-Карло, соответствуют 10%-му относительному среднеквадратичному отклонению в области пика и не учитывают фон рассеянных нейтронов, который должен быть добавлен аддитивно во все каналы для конкретного времени регистрации. Результаты нормированы на 10¹⁰ нейтронов за вспышку для каждого источника нейтронов. Рис. 1 иллюстрирует входные данные расчетов. Размер *AB* термоядерной мишени брался равным 0.05 ст. Увеличение *U* изображения *A'B'* во всех расчетах принималось равным 10. Радиус *r* отверстия, как следует из рис. 1, линейно зависит от толщины стенки

$$r = L \cdot R_t / (R \cdot 2). \tag{1}$$

Здесь R_t — радиус термоядерной мишени. На рис. 2 показан расчет изображений двух точечных источников нейтронов, локализованных в центре и на краю тер-

моядерной мишени, для варианта камеры с L = 7 cm и $R = 13 \, \text{сm}$. Отметим хорошее разрешение двух источников и довольно точную идентификацию положения источников. Уменьшение размеров изображения крайнего источника сравнительно с центральным является следствием условий более худшего наблюдения для источника на краю мишени. На рис. 3 приведен расчет изображений трех точечных источников нейтронов, локализованных на одной оси в центре, на краю мишени и посередине между центральным и крайним источниками. Для качественного разрешения источников нейтронов расстояние R от центра стенки до плазмы было увеличено до 30 cm. Толщина L стенки на этом расчете равна 10 ст. Уменьшение числа нейтронов, попавших в пики, обусловлено удалением источников от детекторов нейтронов. Расчеты показывают, что фон нерассеянных нейтронов от одного источника для стенки толщиной $L = 3.5 \, {\rm cm}$ около 35% от величины изображения, при $L = 7 \, \text{ст}$ фон около 15%, при $L = 10 \, \text{ст}$ — около 5%. Итак, эффективное подавление фона достигается для стенки толщиной 7-10 cm и времен регистрации нейтронов 10-40 ns (табл. 1).

Для дейтерий-тритиевой плазмы необходимо учитывать, что полное сечение взаимодействия нейтрона с водородом уменьшается примерно в четыре раза сравнительно со случаем dd-нейтронов, и поэтому для подавления фона минимальную толщину стенки приходится увеличивать примерно в два с половиной раза. Это приводит к необходимости отодвигать стенку от источника для улучшения разрешения и соответственно к более высоким требованиям на яркость источника нейтронов. На рис. 4 приведены результаты расчета изображения точечного источника dt-нейтронов, расположенного в центре мишени, значения фона рассеянных нейтронов в зависимости от времени регистрации. Видно, что совокупный фон существенно меньше, чем уровень изображения, даже для больших времен регистрации (400 ns).

Аналитические оценки разрешения нейтронной камеры-обскуры

Приведенные ниже оценки получены в приближении (практически всегда выполняющемся)

$$\operatorname{tg} \theta = R_t / R \ll 1. \tag{2}$$

Кроме того, фон рассеянных нейтронов выбором времени регистрации может быть сведен к минимуму и поэтому в сделанных ниже оценках он не учитывается.

Заметим, что задача обладает цилиндрической симметрией, и определим радиус нейтронного изображения точки условием

$$N(R_i = R_c)/N(R_i = 0) = \exp(-l/\lambda) = P_1.$$
 (3)

Здесь *N* — число зарегистрированных нейтронов; *R_i* — расстояние, отсчитываемое от центра изображения; *R_c* —

Рис. 2. Сечение изображения по оси *x*. Расчет случая двух точечных источников, локализованных по оси *x* в центре и на краю термоядерной мишени.

Рис. 3. Сечение изображения по оси *x*. Расчет случая трех точечных источников, локализованных по оси *x* в центре, на краю термоядерной мишени и посередине между этими источниками.

радиус изображения центральной точки; l — пробег нейтронов в веществе; λ — средняя длина свободного пробега. Выбор $P_1 = 1/3$ обеспечивает надежное разрешение двух точечных источников: в точке касания радиусов изображений двух точечных источников спад суммарной интенсивности по отношению к максимальной интенсивности составит 40%. Из условия (3) получаем для радиуса изображения центральной точки

$$R_c = r \cdot (U+1) \cdot R/R_p, \tag{4}$$

$$R_p = R + L/2 + \lambda \ln P_1. \tag{5}$$

Изображение точки представляет собой площадь круга радиуса R_c . Хорошо известный результат для оптической камеры-обскуры следует из (4) в приближении абсолютной непрозрачности стенок ($\lambda = 0$).

Для точки на краю мишени рассмотрение уравнения (3) приводит к следующим результатам: нейтронный радиус изображения в направлении центра плоскости изображения (рис. 1)

$$R'_{x} = -\lambda \ln P_1(U+1)R_t/R_m, \qquad (6)$$

$$R_m = R - L/2 - \lambda \ln P_1; \tag{7}$$

нейтронный радиус изображения в направлении от центра плоскости изображения (рис. 1)

$$R_x'' = -\lambda \ln P_1 (U+1) R_t / R_p.$$
 (8)

Подчеркнем, что в этом случае положение источника нейтронов на мишени необходимо определять не по центру изображения, а с учетом неравенства радиусов R'_x , R''_x изображения. В оптическом пределе $\lambda = 0$ и $R'_x = R''_x = 0$: точка отображается в точку.

Разрешение изображений двух точечных источников определяется очевидным соотношением

$$R_s = D/U, \tag{9}$$

где *D* — сумма радиусов изображений в направлении их касания.

Из формул (4)–(9) следует, что увеличение расстояния *R* от мишени до камеры уменьшает размеры изображений точек и тем самым улучшает разрешение.

В приближении большого увеличения $U \gg 1$ для разрешения R_s двух точечных источников нейтронов имеем

$$R_s/R_t = L/(2R_p) - \lambda \ln P_1/R_m.$$
(10)

Как видно из рис. 5, для камеры с толщиной стенки $L = 7 \text{ cm } R_s \leqslant R_t$, если $R \leqslant 7 \text{ cm}$. Подчеркнем, что максимальное количество точечных источников, которое

-8 -6 -4 -2 0 2 4 6 8 x, cmРис. 4. Сечение изображения по оси *x*. Источник *dt*-нейтронов находится в центре термоядерной мишени радиуса $R_i = 0.5$ cm. R = 50 cm, L = 30, U = 100 cm. Фон рассеянных нейтронов для времен регистрации 100, 200, 300 и 400 пs равен соответственно 95.9 112.4 118.6 1215 нейтронов

Рис. 5. Зависимость разрешающей способности от расстояния *R. L*, ст. *1* — 3.5, *2* — 7.0.

R.cm

6

Таблица 2. Оптические и нейтронные радиусы изображений точечных источников, рассчитанные по формулам (4)–(8)

L	R	Roptic	R_c	R'_x	R_x''	R_s
7	7	1.71	2.22	2.11	1.60	0.044
3.6	2.0	2.44	7.15	4.68	10.05	0.118

П р и м е ч а н и е. В последней колонке указано разрешение (9) центрального и крайнего точечных источников нейтронов. Параметры расчета: U = 100, $R_t = 0.05$ cm. Все величины — в cm.

может разрешить камера-обскура в пограничном случае $R_s = R_t$ равно трем и то лишь, если они находятся на одной прямой, параллельной плоскости стенки камеры. При этом один источник должен располагаться в центре, два других — по противоположным краям мишени.

В табл. 2 приведены радиусы оптического и нейтронного изображений точечных источников, расположенных в центре и на краю мишени, для двух вариантов камеры-обскуры, причем радиусы нейтронных изображений определялись на полувысоте ($P_1 = 1/2$). Там же приведено разрешение этих источников нейтронов. Из табл. 2 следует, что для камер-обскур с малой толщиной L стенки и малым расстоянием R от мишени до центра стенки радиусы оптического и нейтронного изображений сильно отличаются друг от друга. Так же сильно отличаются радиусы нейтронных изображений центрального и крайнего точечных источников, причем $R'_r < R_c$.

Для хорошего разрешения источников в радиальном направлении представляют интерес камеры-обскуры, для которых изображение точечного источника на краю мишени сплюснуто в этом направлении сравнительно с изображением центральной точки $R'_x/R_c \leq 1$. Требуя, чтобы $R L/2 + \lambda \ln P_1$ (что практически всегда выполнимо), можно удовлетворить условию $R'_x/R_c \leq 1$ в двух вариантах: 1) $R > L/2 - \lambda \ln P_1$ и $L/2 > -\lambda \ln P_1$; 2) $R < L/2 - \lambda \ln P_1$ и $L/2 < -\lambda \ln P_1$.

Улучшение разрешающей способности камеры-обскуры может быть достигнуто также некоторым "перемещением" источника нейтронов в область, оптически не наблюдаемую (рис. 1). Это возможно, так как для некоторых направлений движения нейтронов в области отверстия пробег в веществе будет минимален и нейтроны, движущиеся в этих направлениях, практически не будут взаимодействовать с веществом стенки. При этом максимально возможное расстояние x_{max} источника нейтронов от центра мишени определяется максимально возможным относительным уменьшением P_2 яркости изображения из-за рассеяния нейтронов в стенке

$$x_{\max}/r = (2R+L)/(L+\lambda \ln P_2) - 1.$$
 (11)

Минимальное расстояние x_{\min} источника нейтронов от центра мишени определяется требованием разрешения центрального источника и источника, расположенного в оптически не наблюдаемой области,

$$x_{\min}/r = 2R^2(U+1)/(R_p \cdot R_u),$$
 (12)

4

0

$$R_u = UR + L/2 + \lambda \ln P_1. \tag{13}$$

Причем для отчетливого наблюдения этих двух источников должно выполняться условие

$$x_{\max} \ge x_{\min}.$$
 (14)

По существу условие (14) является критерием, определяющим область допустимых значений параметров камеры-обскуры. На рис. 6 область допустимых значений параметров камеры-обскуры, в которой выполняется условие (14), заштрихована.

Из рис. 1 видно, что центр изображения точечного источника нейтронов, расположенного в оптически не наблюдаемой области, определяется прямой KK', так как для любого другого направления движения нейтрона пробег в веществе больше. Расстояние x_i до центра изображения равно

$$x_i = x(UR + L/2)/(R - L/2).$$
 (15)

Здесь *х* — расстояние от центра мишени до точечного источника. Для радиуса изображения точечного источника нейтронов имеем

$$R_x = x_i - r - (x - r)R_u/R_m.$$
 (16)

В заключение приведем результаты расчета контурных линий двух точечных источников нейтронов, расположенных в центре и на краю мишени: L = 7 cm, R = 7

1.7

1.5

1.1

0.9

 R_s/R_t

0.7 4 6 8 10 **Рис. 6.** Возможные максимальное x_{max} и минимальное x_{min} удаления точечного источника нейтронов от центра мишени в зависимости от расстояния *R*. Случай расположения источника нейтронов в оптически не наблюдаемой области. Заштрихованная область определяет параметры камеры-обскуры, разрешающей хотя бы источник в центре и источник по краю мишени, причем они должны находиться на прямой параллельной плоскости стенки камеры. L = 7 cm; $1 - x_{max}/(2 \cdot r), 2 - x_{min}/(2 \cdot r)$.

Рис. 7. Контурные линии изображения двух точечных источников нейтронов. U = 100. Нормировка на 10^{10} нейтронов за вспышку для двух источников нейтронов. I - 75.39, 2 - 177.27, 3 - 279.15, 4 - 381.03.

Рис. 8. То же, что и на рис. 7, только R = 14 cm.

(рис. 7), 14 ст (рис. 8). Из рис. 7,8 видно уменьшение размеров изображения при удалении источников от стенки камеры-обскуры. Форма контурных линий изображения центрального источника нейтронов — окружность, форма контурных линий изображения источника на краю мишени приближается к эллипсу при удалении источника от камеры-обскуры. Видно, что разрешаются два точечных источника нейтронов в этом случае, начиная с расстояния $R \ge 7$ ст.

Выводы

Показано, что предложенная в данной работе камераобскура из полиэтилена с временной регистрацией нейтронов на два порядка сравнительно с имеющимися аналогами повышает яркость изображения. Это позволяет проводить локализацию более слабых источников нейтронов. Сделаны аналитические оценки разрешающей способности такой камеры. Сформулирован критерий, устанавливающий область допустимых значений параметров нейтронной камеры-обскуры. Модификация прямой схемы метода Монте-Карло методом статистических весов существенно уменьшает расчетное время достижения заданной статистической точности.

Автор признателен О.И. Стукову и Ю.А. Михайлову за полезные обсуждения и стимуляцию данной работы.

Список литературы

- [1] Наумов В.А., Розин С.Г. Решение задач физики реакторов методом Монте-Карло. Минск: Наука и техника, 1978. 205 с.
- [2] Марчук Г.И. и др. Метод Монте-Карло в атмосферной оптике. Новосибирск: Наука, 1976. 283 с.
- [3] Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений. М.: Мир, 1980. 171 с.
- [4] Абагян Л.П., Базанянц Н.О., Бондаренко И.И., Николаев М.Н. Групповые константы для расчета ядерных реакторов. М.: Атомиздат, 1964. 153 с.
- [5] ENDF/B. Cross Section Evaluation Center Brookhaven. Report BNL 50066. 1967. 467 p.
- [6] Атлас эффективных нейтронных сечений элементов. М.: Атомиздат, 1955. 359 с.
- [7] Епанешников В.Д., Кинчаков В.С., Михайлов Ю.А. и др. О прохождении термоядерных нейтронов через стенку. Препринт ФИАН. М., 1986. № 348. 24 с.