05;06;07;12

Анализ структурных нарушений имплантированных бором монокристаллов кремния по результатам двух- и трехкристальной рентгеновской дифрактометрии

© А.П. Петраков, Н.А. Тихонов, С.В. Шилов

Сыктывкарский государственный университет, 167001 Сыктывкар, Россия

(Поступило в Редакцию 6 мая 1996 г. В окончательной редакции 19 декабря 1997 г.)

На основе кривых дифракционного отражения и трехкристальных спектров проведен анализ структурных нарушений монокристаллов Si. Рассчитано относительное изменение периода решетки, распределение его по глубине, определен тип возникающих дефектов и поведение имплантированной примеси в результате термического отжига.

Введение

Ионная имплантация является эффективным средством изменения электрических свойств полупроводниковых материалов. При этом в качестве имплантанта довольно часто используется бор. Следствием ионной имплантации являются нарушения приповерхностной структуры кристаллов, подверженных облучению. Исследования нарушений структуры проводятся разными методами. Из неразрушающих методов весьма информативными являются методы двух- и трехкристальной рентгеновской дифрактометрии. Этими методами проведено значительное число работ (см., например, [1-5]), в которых исследуется природа нарушений монокристаллов кремния, образующихся в результате имплантации. Вместе с тем развитие методики обработки экспериментальных спектров, в частности трехкристальных, позволяет получать новые данные о нарушениях. В настоящей работе анализируются результаты систематических трехкристальных рентгенодифрактометрических исследований монокристаллов кремния, имплантированных бором с разными дозами и подвергнутых изотермическому отжигу при разных температурах и времени отжига.

Методика эксперимента

Исследовались почти совершенные монокристаллические пластины кремния КДБ-10 толщиной 500 μ m. Поверхность образцов почти совпадала с плоскостью (111). Угол между ними, измеренный рентгенодифрактометрическим методом, составлял около 10 angles. Образцы имплантировались ионами B⁺ с энергией 25 keV и дозами от $D = 6.2 \cdot 10^{14}$ до $6.25 \cdot 10^{15}$ сm⁻². Имплантация проводилась при комнатной температуре в условиях, исключающих каналирование. Применение достаточно слабого ионного тока с плотностью $0.2 \,\mu$ A/cm² исключало также и явление самоотжига при имплантации. После имплантации часть образцов отжигалась в атмосфере азота. Температура отжига изменялась от 300 до 1000°С. Время отжига составляло 10, 60 и 120 min.

Диагностика структуры приповерхностных слоев монокристаллов кремния проводилась с помощью автоматизированного двух- и трехкристального рентгеновского дифрактометра, созданного на базе рентгеновского дифрактометра ДРОН-УМ1. Применялась бездисперсионная геометрия: двухкристальная (n, -n) и трехкристальная (n, -n, n) [6,7]. Излучение Си $K_{\alpha 1}$. Измерялись двухкристальные кривые дифракционного отражения (КДО) и спектры трехкристальной рентгеновской дифракции (ТРД) в режиме ε-сканирования (вращение анализатора). Угол отворота образца (ω) изменялся от -500 до +500 angles. Монохроматором и анализатором служили высокосовершенные монокристаллы кремния с симметричным отражением (111). Полуширины КДО монохроматора и анализатора составляли 10 angle s, что близко к теоретическому.

Экспериментальные результаты

1. З а в и с и м о с т ь н а р у ш е н и й с т р у к т у р ы о т д о з ы. Для изучения зависимости нарушений имплантированного кремния от дозы были исследованы образцы с дозовой нагрузкой от $6.25 \cdot 10^{14}$ до $6.25 \cdot 10^{15}$ сm⁻². На рис. 1 приведены "хвосты" соответствующих КДО. Нуль соответствуют точному брэгговскому положению отражения от плоскости (111) неискаженного кристалла. Заметно увеличение интенсивности КДО в области меньших углов. При этом интенсивность растет вместе с дозой и при наиболь-

Таблица 1. Значения деформации, толщины нарушенного слоя в зависимости от дозы имплантации

Доза (cm ⁻²)	$\frac{\Delta d}{d} \cdot 10^3$	$L_p (\operatorname{по} P(\omega)), \ \mu \mathrm{m}$	$L_i(20),$ μm	$L_i(30),$ μm
$\begin{array}{r} 6.25 \ \cdot 10^{14} \\ 1.875 \cdot 10^{15} \\ 3.125 \cdot 10^{15} \\ 6.25 \ \cdot 10^{15} \end{array}$	0.8	0.16	0.043	0.031
	1.2	0.14	0.067	0.054
	1.9	0.14	0.11	0.09
	2.9	0.13	0.12	0.11

Рис. 1. КДО кристаллов. Доза имплантации, ст⁻²: $I = 6.25 \cdot 10^{14}$, $2 = 1.875 \cdot 10^{15}$, $3 = 3.125 \cdot 10^{15}$, $4 = 6.25 \cdot 10^{15}$; P = кривая совершенного кристалла, I/I_0 — отношение отраженной и падающей интенсивности соответственно.

Рис. 2. Функции приведенной интенсивности $P(\omega)$. Обозначения соответствуют рис. 1.

шей дозе наблюдается хорошо разрешимый дополнительный пик. Снятые на этих образцах спектры ТРД не показали наличия диффузных пиков. Построенные по спектрам ТРД функции приведенной интенсивности $P(\omega) = I \cdot \omega^2 / P_{id}$ (I — интенсивность главного пика, ω — угол отворота образца, $P_{id} = I^{id} \cdot \omega^2$ — функция приведенной интенсивности для идеального кристалла и приблизительно постоянная для всех углов поворота образца) показаны на рис. 2. Для всех образцов наблюдается четкий макимум со стороны отрицательных углов, интенсивность которого растет вместе с дозой. Кроме того, увеличивается смещение максимумов в область отрицательных углов. Положение пиков на графике совпадает с подъемом интенсивности на КДО в отрицательной области. Наличие максимума на графике $P(\omega)$ свидетельствует о наличии когерентного рассеяния от слоя с измененным параметром решетки. По положению максимумов на рис. 2 были рассчитаны относительные средние деформации по формуле $\Delta d/d = \operatorname{ctg} \Theta_b \cdot \Delta \Theta$, которые приведены в табл. 1.

График зависимости средней деформации от дозы приведен на рис. 3. На рис. 4 представлен рассчитанный по

Рис. 3. Зависимость относительной средней деформации $\Delta d/d$ от дозы имплантации *D*.

программе, разработанной по методике, описанной в [8], профиль деформации для образца, облученного с дозой $6.25 \cdot 10^{15}$ cm⁻². Программа рассчитывает изменение деформации по глубине от поверхности образца на основе анализа дополнительного пика на КДО, обусловленного когерентным рассеянием от слоя с увеличенным параметром решетки. Как видно из графика, максимальное значение $\Delta d/d$, приблизительно равное 0.003, соответствует глубине 0.05 μ m.

Для облученных образцов были рассчитаны также эффективные толщины нарушенных слоев [9] L_i по полуширине максимумов на функции приведенной интенсивности и L_P методом интегральных характеристик без учета области в 20 и 30 angle s возле нуля. Эти данные приведены в табл. 1.

2. В лияние отжига на структуру и м п лантированного кремния. Для исследования влияния отжига на структуру имплантированного бором кремния измерялись КДО и спектры ТРД образцов, облученных с дозой $1.875 \cdot 10^{15}$ сm⁻² и подвергнутых отжигу в атмосфере азота при температурах 300, 600, 800, 900 и 1000°С со временем отжига 10, 60 и 120 min. На рис. 5 приведены "хвосты" КДО для образцов, отожженных при 600 и 800°С в течение 10 min не привел к изменению формы КДО, показанной на рис. 1 для дозы $1.875 \cdot 10^{15}$ сm⁻². Повышение температуры

Рис. 4. Рассчитанный по КДО профиль деформации от глубины *Z*.

до 600°С привело к увеличению интенсивности как со стороны отрицательных, так и положительных углов. Отжиг при 800°С привел к заметному спаду со стороны отрицательных углов.

Построенные по спектрам ТРД функции приведенной интенсивности $P(\omega)$ показывают наличие максимума со стороны отрицательных углов (рис. 6), совпадающего с областью подъема интенсивности на соответствующей КДО. В области положительных углов на графиках функции приведенной интенсивности (для температур отжига 300 и 600°C) наблюдается тенденция к увеличению, что отражает возрастание интенсивности на КДО (рис. 5). Однако отжиг при 800°C приводит к появлению максимума и в этой области углов. Относительная средняя деформация $\Delta d/d$, рассчитанная по положению максимумов на графике $P(\omega)$, приведена в табл. 2.

Таким образом, отжиг при 800°С привел к деформированию в приповерхностном слое двух областей с разным знаком деформации. Следует также отметить, что для всех рассматриваемых образцов, подвергнутых термообработке от 300 до 900°С, на спектрах ТРД, полученных в режиме сканирования анализатором, отсутствовал диффузный пик.

Отжиг при более высоких температурах приводит к дальнейшим изменениям в структуре приповерхностного слоя. На спектрах ТРД наблюдается

Темпе- Время ратура, отжига, °C min	Время	$\frac{\Delta d}{d} \cdot 10^3$		$L_p, \ \mu { m m}$		L.(20) um	L.(30) um
	отжига, min	положительная деформация	отрицательная деформация	положительная деформация	отрицательная деформация	$L_l(20), \mu$ m	$L_i(50), \mu$ m
300	10	1.2	_	0.13	—	0.079	0.059
600	10	1.4	_	0.14	_	0.070	0.050
800	10	1.4	-1.8	0.13	0.09	0.057	0.043
900	60	1.6	-0.97	0.12	0.14	0.045	0.009
1000	60	_	-0.38	_	0.18	_	_
1000	120	—	-0.29	—	0.26	—	—

Таблица 2. Изменение деформации и толщины нарушенного слоя в результате отжига

Рис. 5. КДО кристаллов, имплантированных с дозой $1.875 \cdot 10^{15}$ cm⁻². Температура отжига, °С: 1 - 600, 2 - 800; время отжига 10 min, P — кривая совершенного кристалла.

при 1000°С диффузный пик, увеличивающийся с возрастанием времени отжига. На графике $P(\omega)$ при 1000°С наблюдается только один максимум, свидетельствующий о наличии слоя с отрицательной средней деформацией (табл. 2), величина которой уменьшается.

В табл. 2 приведены рассчитанные для всех температур значения L_i и L_p . Для сильно отожженных образцов (1000°С, 60 и 120 min) величины L_i не приведены, так как применение интегрального способа для оценки толщины нарушенных слоев некорректно ввиду наличия диффузного рассеяния, дающего вклад в КДО.

Для образцов, отожженных при 1000°С и 120 min, по диффузному пику на спектрах ТРД были построены в двойном логарифмическом масштабе графики зависимости интенсивности диффузного пика от угла отворота

Рис. 6. Функция приведенной интенсивности $P(\omega)$. Доза имплантации 1.875 · 10¹⁵ сm⁻², температура отжига 800°C, время отжига 10 min.

образца (рис. 7). На графике присутствуют два участка прямых с тангенсами угла наклона, близкими к 1 и 3.

Наиболее значительные изменения структуры наблюдаются при дозах, близких к дозам, вызывающим аморфизацию приповерхностного слоя при используемых условиях имплантации, которая составляет $\approx 10^{16}\, \text{cm}^{-2}.$ Это можно наблюдать на образцах, имплантированных бором с дозой $6.25 \cdot 10^{15} \, \mathrm{cm}^{-2}$. На рис. 1 и 2 показаны КДО и графики *P*(*ω*) для данной дозы имплантации. Отжиг при температурах 400-700°С в течение 10 min приводил к появлению на КДО в области углов, меньших брэгговских, к 1-2 дополнительным пикам. В области отрицательных углов отворота образца на графике $P(\omega)$ наблюдаются два максимума, связанных с когерентным рассеянием. После отжига при 800°C в течение 10 min КДО образца практически совпадала с аналогичной для неимплантированного образца. При этом на графике $P(\omega)$ никаких пиков не наблюдалось. Дальнейшее увеличение температуры до 900°C вновь приводило к увеличению интенсивности на КДО в области бо́льших и меньших углов, а на графике $P(\omega)$ видны четыре максимума (рис. 8). Диффузные пики отсутствовали на спектрах ТРД в интервале температур отжига 400-900°С. Отжиг при 1000°C, 60 min привел к появлению интенсивного диффузного пика.

Обсуждение результатов

Наличие максимумов на графиках функции приведенной интенсивности (рис. 2) и отсутствие диффузного пика на спектрах ТРД обусловлены когерентным рассеянием на приповерхностном слое с увеличенным

Рис. 7. Зависимость логарифма интенсивности диффузного пика $LN(I_d)$ от логарифма угла поворота образца $LN(\omega)$. Температура отжига 1000°С, время отжига 120 min; I — положительные углы поворота образца, 2 — отрицательные.

Рис. 8. Функция приведенной интенсивности $P(\omega)$. Доза имплантации 6.25 · 10¹⁵ cm⁻², температура отжига 900°С.

параметром решетки. Этот достаточно тривиальный результат связан с генерацией большого количества точечных дефектов при имплантации бора. Ионы кремния, смещаясь из регулярных положений в междоузлия, вызывают расширение решетки. Как и следует ожидать, с увеличением дозы деформация решетки возрастает (рис. 3). Отсутствие диффузного пика на спектрах ТРД указывает на то, что после имплантации ионами бора с дозами до $6.25 \cdot 10^{15}$ сm⁻² в кремнии не образуются протяженные дефекты.

Толщина нарушенного имплантацией приповерхностного слоя, оцененная по полуширине функции приведенной интенсивности, изменяется незначительно.

Увеличение толщины L_i , рассчитанной интегральным способом, можно объяснить тем, что чувствительность данного метода к сильно деформированным слоям выше. Величина L_i вычисляется через разность площадей КДО нарушенного и совершенного кристаллов. В связи с тем что коэффициент отражения последнего выше, чем у имплантированного, возникает необходимость исключить часть КДО в области брэгговского угла. Данные табл. 1 показывают критичность этого исключения. Следует также заметить по данным табл. 1, что суммарная толщина нарушенного слоя с "большей" и "меньшей" величиной деформации изменяется незначительно $(0.20-0.25\,\mu\text{m})$ для всех образцов, кроме облученного с дозой $6.25 \cdot 10^{15}$ сm⁻². Это можно объяснить аморфизацией некоторой части слоя, имеющей место в области максимума профиля распределения дефектов.

При отжиге образцов следует ожидать перестройки дефектов в приповерхностной структуре. Отжиг при 300 и 600°С не приводит к существенным изменениям в картине рентгеновской дифракции. Однако отжиг при 800°С приводит к появлению в приповерхностной области слоя с отрицательной деформацией (рис. 6) наряду со слоем с положительной деформацией, образовавшимися в результате имплантации ионов. Образование его можно объяснить существенным ростом концентрации замещающих ионов бора в узлах решетки. Слой с увеличенным параметром решетки, по-видимому, находится несколько ближе к поверхности в силу смещенности к ней распределения дефектов по сравнению с распределением имплантированной примеси.

Постепенное уменьшение толщины слоя с положительной деформацией при увеличении температуры отжига от 300 до 900°С, выявляемое методом интегральных характеристик, по всей видимости, объясняется как диффузией межузельных ионов кремния, что приводит к расплыванию распределения межузельного кремния, переходом кремния в регулярные положения, а также занятием узловых положений в решетке ионами бора, который при высоких температурах отжига активно вытесняет кремний [10,11].

Термообработка при 1000°С приводит к исчезновению слоя с положительной деформацией за счет внедрения еще большего количества бора в узлы решетки. Наряду с этим диффузия в глубь ионов бора приводит к уменьшению отрицательной деформации в приповерхностном слое (табл. 2).

Наличие на спектрах ТРД диффузного пика при высокотемпературном отжиге свидетельствует об ассоциации точечных дефектов в протяженные. Данные, приведенные на рис. 7, показывают, что в кристалле, отожженном при 1000°С и 120 min, в диффузный пик дают вклад преимущественно дефекты типа дислокационных петель. Дислокационные петли связаны с дефектами упаковки, образованными межузельными атомами кремния [12].

Следует подчеркнуть, что данные виды дефектов не являются единственными, дающими вклад в рентгеновскую дифракцию. Известны [11] другие нарушения кристаллической решетки кремния в виде стержнеобразных дефектов, скоплений вакансий и межузельных атомов, пор, трещин, тетраэдров дефектов упаковки и т.д.

Авторы выражают благодарность В.А. Бушуеву за всемерную поддержку и консультации.

Список литературы

- [1] Казимиров А.Ю., Ковальчук М.В., Конн В.Г. // Металлофизика, Т. 9. № 4. 1987. С. 54–58.
- [2] Holy V, Kubena J. // Czech. J. Phys. 1982. Vol. 32. N 7.
 P. 750–766.
- [3] Servidori M., Cembaly F. // J. Appl. Cryst. 1988. Vol. 21. N 5.
 P. 176–181.
- [4] Zaumseil P., Winter U. // Phys. Stat. Sol. 1990. Vol. 120. N 1. P. 67–75.
- [5] Бушуев В.А., Петряков А.П. // Кристаллография. 1995.
 Т. 40. N 6. С. 1043–1049.
- [6] *Iida A., Kohra K. //* Phys. Status Solidi A. 1979. T. 51. P. 533–541.
- [7] Афанасьев А.М., Александров П.А., Имамов Р.М. Рентгенодифракционная диагностика субмиркронных слоев. М.: Наука, 1989. 152 с.
- [8] Kohn V.G., Kovalchuk M.V., Imamov R.M., Labonovich E.F. // Phys. Stat. Sol. (a). 1981. Vol. 64. N 2. P. 435–442.
- [9] Бушуев В.А., Петраков А.П. // ФТТ. 1993. Т. 35. Вып. 2. С. 355–364.
- [10] Качурин Г.А., Тысченко И.Е., Фельсков М. // ФТТ. 1987.
 Т. 21. Вып. 7. С. 1193–1197.
- [11] *Мейер Дж., Эриксон Л., Дэвис Дж.* Ионное легирование полупроводников. М.: Наука, 1973. 296 с.
- [12] Комаров Ф.Ф., Новиков А.П., Соловьев В.С., Ширяев С.Ю. Дефекты структуры в ионноимплантированном кремнии. Минск: Университетское изд-во, 1990. 319 с.